JPH0360068A - Semiconductor memory device - Google Patents
Semiconductor memory deviceInfo
- Publication number
- JPH0360068A JPH0360068A JP1194800A JP19480089A JPH0360068A JP H0360068 A JPH0360068 A JP H0360068A JP 1194800 A JP1194800 A JP 1194800A JP 19480089 A JP19480089 A JP 19480089A JP H0360068 A JPH0360068 A JP H0360068A
- Authority
- JP
- Japan
- Prior art keywords
- polycrystalline silicon
- impurities
- resistance element
- high resistance
- gate electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 7
- 239000012535 impurity Substances 0.000 claims abstract description 31
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 22
- 238000009792 diffusion process Methods 0.000 claims abstract description 15
- 230000005669 field effect Effects 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 7
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 abstract description 5
- 238000000034 method Methods 0.000 abstract description 5
- 239000011574 phosphorus Substances 0.000 abstract description 5
- 238000010438 heat treatment Methods 0.000 abstract description 3
- 238000007796 conventional method Methods 0.000 abstract description 2
- 230000000452 restraining effect Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Landscapes
- Semiconductor Memories (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
本発明は半導体集積回路装置に間し、特にスタティック
型ランダムアクセスメモリを備えたバイポーラCMO5
回路装置(以下、BiCMO5SRAMという)に間す
るものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to semiconductor integrated circuit devices, and in particular to bipolar CMO5 equipped with static random access memory.
It is installed between a circuit device (hereinafter referred to as BiCMO5SRAM).
[従来の技術及び発明が解決しようとする問題点]SR
AMのメモリセルは2組の高抵抗負荷素子および駆動用
MO5FETで構成されるフリップフロップ回路と、そ
の1対の入出力端子にそれぞれ接続される1対の転送用
MO5FETとで構成されている。前記高抵抗負荷素子
はメモリセル面積を縮小して高集積化を計るために、電
s1!′圧用配線と一体に形成された例えばCVDによ
る第2層目の多結晶シリコン膜で構成されている。この
抵抗素子は駆動用MO5FETのゲート電極を覆ってい
る層間絶縁膜上に配置され、また10〜100ギガΩ程
度の高い抵抗を有している。[Prior art and problems to be solved by the invention] SR
The AM memory cell is composed of a flip-flop circuit composed of two sets of high-resistance load elements and a driving MO5FET, and a pair of transfer MO5FETs each connected to a pair of input/output terminals of the flip-flop circuit. In order to reduce the memory cell area and achieve high integration, the high-resistance load element has a voltage of s1! It is composed of a second layer polycrystalline silicon film formed integrally with the pressure wiring, for example, by CVD. This resistance element is disposed on an interlayer insulating film covering the gate electrode of the driving MO5FET, and has a high resistance of about 10 to 100 gigaohms.
この高抵抗負荷素子として使用される多結晶シリコン膜
は高抵抗を有するように、抵抗値を低減用のn型不純物
(As、P)を導入しないで形成されている。一方、電
源電圧用配線として使用する多結晶シリコン膜は前記不
純物を導入して構成ざれている。The polycrystalline silicon film used as this high resistance load element is formed without introducing n-type impurities (As, P) for reducing the resistance value so as to have high resistance. On the other hand, the polycrystalline silicon film used as the power supply voltage wiring is constructed by introducing the impurity described above.
しかしながら構成素子の微細化にともなって、抵抗素子
の長さが短縮されてくると、所定の高抵抗値を得ること
が困難になるという問題点があった。すなわち、高抵抗
負荷素子の一端は駆動用MO5FETのゲート電極に接
続されており、このゲート電極に導入されている不純物
(リン)が微細化にともない製造工程中の熱処理時に高
抵抗素子部に拡散する。さらに、抵抗素子の他端部が電
源配線に接続しているので、電源配線に導入された不純
物(As、P)も同様に高抵抗素子部に拡散する。尚、
拡散する不純物量は前者の方が多い。However, as the length of the resistor element becomes shorter with the miniaturization of the constituent elements, there is a problem in that it becomes difficult to obtain a predetermined high resistance value. In other words, one end of the high-resistance load element is connected to the gate electrode of the driving MO5FET, and as the impurity (phosphorus) introduced into this gate electrode is miniaturized, it diffuses into the high-resistance element during heat treatment during the manufacturing process. do. Furthermore, since the other end of the resistance element is connected to the power supply wiring, impurities (As, P) introduced into the power supply wiring similarly diffuse into the high resistance element portion. still,
The amount of impurities diffused is larger in the former case.
多結晶シリコン膜中の不純物拡散計数は単結晶中の拡散
計数に比較して約10倍高いことが確かめられている。It has been confirmed that the impurity diffusion coefficient in a polycrystalline silicon film is about 10 times higher than that in a single crystal.
このため、抵抗素子の長さが4μm程度以下になると抵
抗値が急激に低下する。For this reason, when the length of the resistance element becomes about 4 μm or less, the resistance value decreases rapidly.
この問題点を解決するための一手段として膜中の不純物
拡散計数が小さい5IPOS (Semi上nsula
ting 旦o1y 5ilicon)膜を抵抗素
子として用いることも考えられるが、高抵抗素子とバイ
ポーラトランジスタのエミッタ電極とを共用するBiC
MO5SRAMにおいては、エミッタ不純物の拡散も同
時に抑制されてしまうため、この方法が適用できない。One way to solve this problem is to use 5IPOS (Semi nsula), which has a small impurity diffusion coefficient in the film.
Although it is conceivable to use a high resistance element and a bipolar transistor emitter electrode, it is possible to use a BiC film as a resistance element.
This method cannot be applied to MO5SRAM because the diffusion of emitter impurities is also suppressed at the same time.
従って、本発明の目的は上記問題点を解決し、BjCM
O5SRAMのメモリセルを微細化しても必要な高抵抗
を発生させられる技術を提供することである。Therefore, the purpose of the present invention is to solve the above problems and
It is an object of the present invention to provide a technology that can generate the necessary high resistance even when the memory cells of O5 SRAM are miniaturized.
[発明の従来技術に対する相違点]
上述した従来の高抵抗負荷素子を用いたSRAM用メモ
リセルに対して、本発明は駆動用MO5FETのゲート
電極と高抵抗負荷素子の接続部に不純物拡散を抑制する
多結晶シリコン膜を設けるという相違点を有する。[Differences between the invention and the prior art] In contrast to the above-mentioned SRAM memory cell using the conventional high resistance load element, the present invention suppresses impurity diffusion in the connection between the gate electrode of the driving MO5FET and the high resistance load element. The difference is that a polycrystalline silicon film is provided.
[問題点を解決するための手段]
本発明の要旨は、一端が高不純物濃度の電源用配線に接
続され他端が電界効果トランジスタの高不純*[度層に
接続された低不純物濃度の高抵抗負荷素子を有し、該高
抵抗負荷素子と上記電界効果トランジスタとでメモリ回
路の構成された半導体メモリ装置において、上記高抵抗
負荷素子の両端の少なくとも一方が不純物の拡散を抑制
する多結晶シリコン層を介して上記電源用配線または高
不純物濃度層に接続されていることである。[Means for Solving the Problems] The gist of the present invention is that one end is connected to a high impurity concentration power supply wiring and the other end is connected to a low impurity concentration high In a semiconductor memory device having a resistive load element and in which a memory circuit is configured by the high resistive load element and the field effect transistor, at least one of both ends of the high resistive load element is made of polycrystalline silicon that suppresses diffusion of impurities. It is connected to the power supply wiring or the high impurity concentration layer through the layer.
[発明の作用]
上記構成に係る半導体メモリ装置は製造高低中に高抵抗
負荷素子と電源用配線または高不純物濃度層とが高温化
にさらされても、高抵抗負荷素子への不純物の拡散は多
結晶シリコン層で抑制される。[Function of the Invention] In the semiconductor memory device having the above configuration, even if the high resistance load element and the power supply wiring or the high impurity concentration layer are exposed to high temperature during manufacturing, the diffusion of impurities to the high resistance load element is prevented. Suppressed by polycrystalline silicon layer.
[実施例] 次に本発明の実施例について図面を参照して説明する。[Example] Next, embodiments of the present invention will be described with reference to the drawings.
第1図は本発明の第1実施例のSRAMセルを示す縦断
面図である。4は配送用MO3FETのゲート電極、5
は駆動用MO5FETのゲート電極である。駆動用MO
5FETのゲート5と不純物を含まない多結晶シリコン
膜で形成された高抵抗素子10との接続部8にゲート電
極5に導入されている不純物(リン)が高抵抗素子側へ
製造高低中の熱処理によって拡散するのを抑制する多結
晶シリコン層9が設けられている。不純物拡散を抑制す
る多結晶シリコンN9としては5ipos(S em
i 上nsulating Po1ySilico
n)を用いることができる。5IPO8膜中の不純物拡
散は成膜時のN20ガス流量の影響を受ける。第5図は
S I PO5中のリンの拡散長とN20ガス流量の関
係を示す。同図が示すように成膜時のN20の流量を3
0SCCM以上にすれば従来方法で形成された多結晶シ
リコン中のリンの拡散長(N20を含まない場合)の1
/4以下に抑えることができる。FIG. 1 is a longitudinal sectional view showing an SRAM cell according to a first embodiment of the present invention. 4 is the gate electrode of MO3FET for delivery, 5
is the gate electrode of the driving MO5FET. MO for driving
The impurity (phosphorus) introduced into the gate electrode 5 is transferred to the connection part 8 between the gate 5 of the 5FET and the high-resistance element 10 formed of a polycrystalline silicon film containing no impurities to the high-resistance element side through heat treatment during manufacturing. A polycrystalline silicon layer 9 is provided to suppress the diffusion caused by. 5ipos (S em
i Upper insulating PolySilico
n) can be used. Impurity diffusion in the 5IPO8 film is affected by the N20 gas flow rate during film formation. FIG. 5 shows the relationship between the diffusion length of phosphorus in S I PO5 and the flow rate of N20 gas. As shown in the figure, the flow rate of N20 during film formation was
If it is 0SCCM or more, the diffusion length of phosphorus in polycrystalline silicon formed by the conventional method (if N20 is not included) is 1
/4 or less.
次に本実施例の製造方法を第4図(a)(b)を用いて
説明する。第4図(a)に示すようにP型基板1上に駆
動用MOSFETのゲート5、転送用MO5FETのゲ
ート4、ソース・ドレイン電極6を順次形成した後、高
抵抗素子と駆動用MO5FETのゲート5とを接続する
窓8を形成する。次に全面に5IPO5膜9を成長する
。成長条件はLPCVD法により、例えば、SiH4流
量400〜300 SCCM、N20流f130〜40
SCCM、N2流量500 SCCM、成長温度60
0℃において2000〜4000Aの膜厚成長する。次
に第4図(b)に示すように全面をCF4.SF6等の
エツチングガスを用いてドライエッチによりエッチバッ
クし、接続窓8内にのみ5IPOS膜9を残す。Next, the manufacturing method of this example will be explained using FIGS. 4(a) and 4(b). As shown in FIG. 4(a), after sequentially forming the gate 5 of the drive MOSFET, the gate 4 of the transfer MO5FET, and the source/drain electrodes 6 on the P-type substrate 1, the high resistance element and the gate of the drive MO5FET are formed. 5 is formed. Next, a 5IPO5 film 9 is grown over the entire surface. The growth conditions are LPCVD method, for example, SiH4 flow rate 400-300 SCCM, N20 flow f130-40
SCCM, N2 flow rate 500 SCCM, growth temperature 60
The film grows to a thickness of 2000 to 4000A at 0°C. Next, as shown in FIG. 4(b), the entire surface is covered with CF4. Etching back is performed by dry etching using an etching gas such as SF6, leaving the 5IPOS film 9 only within the connection window 8.
この高低はPR工程数の増加もなく極めて容易に行うこ
とができる。次に不純物を導入していない多結晶シリコ
ンにより高抵抗素子10を形成する。This elevation can be done extremely easily without increasing the number of PR steps. Next, a high resistance element 10 is formed from polycrystalline silicon into which no impurities have been introduced.
この多結晶シリコンは従来通りバイポーラCMO5SR
AMのメモリセルの高抵抗素子とエミッタ電極を共用す
ることができる。This polycrystalline silicon is bipolar CMO5SR as before.
The emitter electrode can be shared with the high resistance element of the AM memory cell.
第2図は本発明の第2実施例の縦断面図である。FIG. 2 is a longitudinal sectional view of a second embodiment of the invention.
4は転送用MO9FETのゲート電極、5は駆動用MO
5FETのゲート電極である。駆動用MO5FETゲー
ト5と不純物を含まない多結晶シリコン膜で形成された
高抵抗素子10との接続部8と電源配線14との接続部
8′の両方に不純物拡散を抑制する5IPO3膜9が設
けられている。4 is the gate electrode of MO9FET for transfer, 5 is MO for drive
This is the gate electrode of 5FET. A 5IPO3 film 9 for suppressing impurity diffusion is provided at both the connection part 8 between the drive MO5FET gate 5 and the high resistance element 10 formed of a polycrystalline silicon film containing no impurities, and the connection part 8' with the power supply wiring 14. It is being
本実施例では高抵抗素子100両端にs r pos膜
9が設けられているので第1実施例よりも抵抗長を短く
できさらに、SRAMのセルを縮小することが可能にな
る。In this embodiment, since the s r pos film 9 is provided at both ends of the high resistance element 100, the resistance length can be made shorter than in the first embodiment, and furthermore, it is possible to downsize the SRAM cell.
[発明の効果]
以上説明したように本発明は、駆動用MO3FETのゲ
ート電極と高抵抗素子との接続部に不純物の拡散を抑制
する多結晶シリコン膜をPR工程を増加させず設けるこ
とにより、SRAMセルの面積を従来の1/2以下にす
ることができる。またバイポーラCMOSSRAMにお
いても高抵抗素子と、バイポーラトランジスタのエミッ
タ電極を従来通り同一の多結晶シリコンを用いて形成で
き、かつメモリセル面積の縮小が可能となる。[Effects of the Invention] As explained above, the present invention provides a polycrystalline silicon film that suppresses the diffusion of impurities at the connection portion between the gate electrode of the driving MO3FET and the high resistance element without increasing the PR process. The area of the SRAM cell can be reduced to 1/2 or less of the conventional size. Furthermore, even in a bipolar CMOSSRAM, the high resistance element and the emitter electrode of the bipolar transistor can be formed using the same polycrystalline silicon as in the past, and the memory cell area can be reduced.
第1図は本発明の第1実施例を示す縦断面図、第2図は
本発明の第2実施例を示す縦断面図、第3図は第2実施
例の平面図、第4図(a)(b)は第1実施例の製造方
法を示す断面図、第5図は5IPOSの不純物の拡散を
示すグラフである。
1 ・ ・ ・ ・ ・
2 ・ ・ ◆ ・ ◆
3 ・ ◆ ・ ◆ ・
4・ ・ ◆ ・ ◆
5 ・ ・ ・ ◆ ・
6 ・ ・ ・ ・ ◆
8 ◆ ・ ・ ◆ ・
9 ・ ・ ・ ・ ・
10 ・ ◆ ・ ◆
11 ・ ・ ・ ◆
7、 12. 1
13 ・ ・ ◆ ・
14 ・ ◆ ・ ・
16 ・ ・ ・ ・
・・P型基板、
・・フィールド酸化膜、
・・ゲート酸化膜、
・・転送用MOSFETゲート電極、
・・駆動用MO5FETゲート電極、
・・n9ソース・ドレイン、
・・ゲート−高抵抗素子接続窓、
◆◆5IPO5゜
・・高抵抗多結晶シリコン膜、
・・多結晶シリコン電源配線部、
5・・・・層間絶縁膜、
・・・・・引出し電極、
・・・・・電源(V CC)配線、
・・・・・ダイレクトコンタクト窓、
17 ・
・接地配線、
18゜
・コンタクト窓。FIG. 1 is a longitudinal cross-sectional view showing a first embodiment of the present invention, FIG. 2 is a longitudinal cross-sectional view showing a second embodiment of the present invention, FIG. 3 is a plan view of the second embodiment, and FIG. a) and (b) are cross-sectional views showing the manufacturing method of the first embodiment, and FIG. 5 is a graph showing the diffusion of impurities in 5IPOS. 1. . ◆ ・ ◆ 11 ・ ・ ・ ◆ 7, 12. 1 13 ・ ・ ◆ ・ 14 ・ ◆ ・ ・ 16 ・ ・ ・ ・ P-type substrate, ... field oxide film, ... gate oxide film, ... transfer MOSFET gate electrode, ... drive MO5FET gate electrode,・・n9 source/drain, ・・gate-high resistance element connection window, ◆◆5IPO5゜・・high resistance polycrystalline silicon film, ・・polycrystalline silicon power supply wiring section, 5・・interlayer insulating film, ・・...Extractor electrode, ...Power supply (V CC) wiring, ...Direct contact window, 17. Ground wiring, 18° contact window.
Claims (1)
効果トランジスタの高不純物濃度層に接続された低不純
物濃度の高抵抗負荷素子を有し、該高抵抗負荷素子と上
記電界効果トランジスタとでメモリ回路の構成された半
導体メモリ装置において、 上記高抵抗負荷素子の両端の少なくとも一方が不純物の
拡散を抑制する多結晶シリコン層を介して上記電源用配
線または高不純物濃度層に接続されていることを特徴と
する半導体メモリ装置。[Scope of Claims] A high resistance load element with a low impurity concentration, one end of which is connected to a power supply wiring with a high impurity concentration and the other end connected to a high impurity concentration layer of a field effect transistor, the high resistance load element In a semiconductor memory device in which a memory circuit is constituted by a field effect transistor and a field effect transistor, at least one of both ends of the high resistance load element is connected to the power supply wiring or the high impurity concentration via a polycrystalline silicon layer that suppresses diffusion of impurities. A semiconductor memory device characterized in that the semiconductor memory device is connected to layers.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1194800A JPH0360068A (en) | 1989-07-27 | 1989-07-27 | Semiconductor memory device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1194800A JPH0360068A (en) | 1989-07-27 | 1989-07-27 | Semiconductor memory device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0360068A true JPH0360068A (en) | 1991-03-15 |
Family
ID=16330471
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1194800A Pending JPH0360068A (en) | 1989-07-27 | 1989-07-27 | Semiconductor memory device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0360068A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6204307B1 (en) | 1997-09-05 | 2001-03-20 | Seiko Epson Corporation | Ink composition capable of realizing image possessing excellent rubbing/scratch resistance |
US6271285B1 (en) | 1997-03-28 | 2001-08-07 | Seiko Epson Corporation | Ink composition for ink jet recording |
US6333542B2 (en) | 1998-05-01 | 2001-12-25 | Nec Corporation | Semiconductor device and method of manufacturing the same |
US6538047B1 (en) | 1999-09-29 | 2003-03-25 | Seiko Epson Corporation | Ink composition and ink jet recording method using the same |
US7040747B2 (en) | 1999-07-30 | 2006-05-09 | Seiko Epson Corporation | Recording method for printing using two liquids on recording medium |
-
1989
- 1989-07-27 JP JP1194800A patent/JPH0360068A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6271285B1 (en) | 1997-03-28 | 2001-08-07 | Seiko Epson Corporation | Ink composition for ink jet recording |
US6204307B1 (en) | 1997-09-05 | 2001-03-20 | Seiko Epson Corporation | Ink composition capable of realizing image possessing excellent rubbing/scratch resistance |
US6653367B2 (en) | 1997-09-05 | 2003-11-25 | Seiko Epson Corporation | Ink composition capable of realizing image possessing excellent rubbing/scratch resistance |
US6333542B2 (en) | 1998-05-01 | 2001-12-25 | Nec Corporation | Semiconductor device and method of manufacturing the same |
US7040747B2 (en) | 1999-07-30 | 2006-05-09 | Seiko Epson Corporation | Recording method for printing using two liquids on recording medium |
US6538047B1 (en) | 1999-09-29 | 2003-03-25 | Seiko Epson Corporation | Ink composition and ink jet recording method using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS62174968A (en) | Semiconductor device | |
JPH0818011A (en) | Semiconductor device and its production | |
JPS63261746A (en) | Manufacture of bipolar type semiconductor integrated circuit device | |
JPH0360068A (en) | Semiconductor memory device | |
JP2667465B2 (en) | Semiconductor device | |
JPS6251216A (en) | Manufacture of semiconductor device | |
JPS62147759A (en) | Manufacture of semiconductor device | |
JPH0441502B2 (en) | ||
JPH10242301A (en) | Semiconductor memory and manufacture thereof | |
JPS63131565A (en) | Semiconductor device | |
JPH04152566A (en) | Stack type sram | |
JPS60140862A (en) | Semiconductor memory device | |
JPH0456280A (en) | Semiconductor device and manufacture thereof | |
JPH0432264A (en) | Semiconductor device and manufacture thereof | |
JP2001358088A (en) | Semiconductor device | |
JP2562868B2 (en) | Semiconductor device and manufacturing method thereof | |
JPS6025272A (en) | Insulated gate field-effect type transistor | |
JPH1117026A (en) | Semiconductor memory | |
JPH04129274A (en) | Semiconductor device | |
JPH027474A (en) | Semiconductor device | |
JPH0812926B2 (en) | Method of manufacturing thin film field effect transistor | |
JP2000100972A (en) | Semiconductor device | |
JPS59978B2 (en) | Manufacturing method of semiconductor integrated circuit | |
JPS6455853A (en) | Semiconductor device and manufacture thereof | |
JPH04179162A (en) | Semiconductor device and manufacture thereof |