JPH04130658A - Polycrystalline silicon resistor for semiconductor device - Google Patents
Polycrystalline silicon resistor for semiconductor deviceInfo
- Publication number
- JPH04130658A JPH04130658A JP25095590A JP25095590A JPH04130658A JP H04130658 A JPH04130658 A JP H04130658A JP 25095590 A JP25095590 A JP 25095590A JP 25095590 A JP25095590 A JP 25095590A JP H04130658 A JPH04130658 A JP H04130658A
- Authority
- JP
- Japan
- Prior art keywords
- resistor
- layer
- polycrystalline silicon
- pattern
- resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910021420 polycrystalline silicon Inorganic materials 0.000 title claims abstract description 46
- 239000004065 semiconductor Substances 0.000 title claims abstract description 15
- 230000002093 peripheral effect Effects 0.000 claims abstract description 34
- 239000000758 substrate Substances 0.000 abstract description 6
- 238000000034 method Methods 0.000 abstract description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract 1
- 229910052710 silicon Inorganic materials 0.000 abstract 1
- 239000010703 silicon Substances 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 70
- 239000012535 impurity Substances 0.000 description 13
- 238000009792 diffusion process Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- 238000005513 bias potential Methods 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
Landscapes
- Semiconductor Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は半導体装置とくに集積回路装置内への組み込み
用に適する多結晶シリコンからなる抵抗に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a resistor made of polycrystalline silicon suitable for incorporation into a semiconductor device, particularly an integrated circuit device.
集積回路装置等の半導体装置内に作り込まれる素子や回
路部分は抵抗と接続した状態で使用する場合がかなり多
く、これをいわゆる外付けとすることもできるが外部接
続に要するスペースや手間を省く上では抵抗を半導体装
置内に組み込むのが一般に存利である。この組み込み抵
抗として拡散抵抗や抵抗接続MO3)ランジスタを単結
晶シリコン半導体内に作り込めるが、抵抗値がごく低く
てよい場合は別としてかなりのチップ面積をそれ用に割
り当てる必要がある。Elements and circuit parts built into semiconductor devices such as integrated circuit devices are often used in a state where they are connected to a resistor, and although this can be so-called externally connected, it saves the space and effort required for external connections. In this case, it is generally advantageous to incorporate the resistor into the semiconductor device. As this built-in resistor, a diffused resistor or a resistance-connected MO3) transistor can be built into a single crystal silicon semiconductor, but a considerable amount of chip area needs to be allocated for it, unless the resistance value is very low.
このため、MOSFETのゲート等に用いられている多
結晶シリコンを利用して抵抗を構成することが従来から
行なわれており、その例を第2図を参照して簡単に説明
する。For this reason, it has been conventional practice to construct a resistor using polycrystalline silicon, which is used for MOSFET gates, etc., and an example thereof will be briefly explained with reference to FIG.
第2図(b)の断面に示す半導体基体lは集積回路装置
等の単結晶ノリコン基板やその上に成長されたエピタキ
シャル層であり、その表面に被着された素子骨111M
やフィールド酸化膜等の比較的厚い絶縁膜2の上に抵抗
を組み込む、この絶縁膜2上に多結晶シリコン膜3をふ
つうはMOSFETのゲート用と同時に成長させ、フォ
トエツチングにより同図Ca)の上面図に示すような細
長いパターンに形成し、かつ適度の面抵抗値が得られる
ようにp形やn形の不純物をドープする。The semiconductor substrate l shown in the cross section of FIG. 2(b) is a single-crystal silicone substrate of an integrated circuit device or the like, or an epitaxial layer grown thereon, and an element bone 111M attached to the surface thereof.
On this insulating film 2, a polycrystalline silicon film 3 is usually grown at the same time as the MOSFET gate, and by photoetching, the resistor is built in on a relatively thick insulating film 2 such as a field oxide film. It is formed into an elongated pattern as shown in the top view, and doped with p-type or n-type impurities to obtain an appropriate sheet resistance value.
さらに、同図(blのように多結晶シリコン膜3の上を
例えば燐シリケートガラスの眉間絶縁膜6で覆い、それ
に明けた窓を介してアルミの電極膜7を多結晶シリコン
膜3のこの例ではやや広幅な各端部にそれぞれ導電接触
させて、抵抗用の1対の接続端子とする。この組み込み
抵抗は絶縁膜2により半導体基体1から絶縁されており
、電極膜7を介して半導体装置内の所定個所に接続され
る。Furthermore, as shown in FIG. Now, conductive contact is made to each of the slightly wide ends to form a pair of connection terminals for the resistor.This built-in resistor is insulated from the semiconductor substrate 1 by the insulating film 2, and is connected to the semiconductor device via the electrode film 7. Connected to a predetermined location within.
なお、第2図(a)は図示の都合から眉間絶縁膜6が透
明なものとして示しである。Note that in FIG. 2(a), the glabella insulating film 6 is shown as being transparent for convenience of illustration.
上述の多結晶シリコン抵抗は、絶&tl12の上に配設
されるので半導体基体1内に抵抗を組み込む場合と比べ
接合分離が不要な点等から所要チップ面積がずっと少な
くて済む利点があるが、最近の高集積化の進展に伴い多
結晶シリコン抵抗とくに高抵抗に他の回路素子並みのサ
イズ縮小が要求されるようになって来た。The above-mentioned polycrystalline silicon resistor has the advantage that the required chip area is much smaller because it does not require junction separation compared to the case where the resistor is built into the semiconductor substrate 1 because it is disposed on the top of the resistor 12. With the recent progress in high integration, it has become necessary to reduce the size of polycrystalline silicon resistors, especially high resistors, to the same level as other circuit elements.
いま、抵抗膜の面抵抗をRs、長さをり1幅をWとする
と、周知のように抵抗値はRs (L/W)となるから
、面抵抗Rsを一定とすると第2図(a)の多結晶シリ
コン膜3の幅Wを縮小すると長さしも小さくなって小形
化できる。しかし、実際にはフォトプロセスのデザイン
ルール上の制約があり、幅Wをルール上の最小寸法例え
ば34以下にはできないから、高抵抗では長さしが大き
くなって小形化が困難になる。また、小形化するには面
抵抗IRsを上げればよいが、多結晶シリコン膜3にあ
る程度以上の不純物濃度を与えないと抵抗値が不安定に
なるのでこれにも自ずから限界がある。Now, if the sheet resistance of the resistive film is Rs, and the length and width are W, then the resistance value will be Rs (L/W) as is well known, so if the sheet resistance Rs is constant, the value shown in Figure 2 (a) will be obtained. When the width W of the polycrystalline silicon film 3 is reduced, the length is also reduced and the size can be reduced. However, in reality, there are restrictions in the photo process design rules, and the width W cannot be made smaller than the minimum dimension under the rules, for example, 34, so if the resistance is high, the length increases, making it difficult to downsize. Further, in order to reduce the size, it is possible to increase the sheet resistance IRs, but there is a limit to this because the resistance value becomes unstable unless the impurity concentration is given to the polycrystalline silicon film 3 above a certain level.
この問題を一層困難にするのは高集積化に伴い回路素子
の消費14流が減少して益々高抵抗が要求されることで
あって、例えば従来は数十にΩ程度でよかったものが数
百にΩから数MΩの高抵抗が必要になり問題に拍車を掛
けることになる。What makes this problem even more difficult is that as circuit elements become more highly integrated, the current consumption of circuit elements decreases and higher resistances are required. This requires a high resistance of Ω to several MΩ, which adds to the problem.
かかる事情に立脚して、本発明の課題は多結晶シリコン
抵抗を小形化することにある。Based on such circumstances, an object of the present invention is to miniaturize a polycrystalline silicon resistor.
[課題を解決するための手段〕
この課題は本発明によれば、絶縁膜上に所定のパターン
で配設された多結晶シリコン膜と、それに一方の導電形
で拡散された抵抗層と、抵抗層の少なくとも一部と重な
り抵抗を周辺から限定するパターンで多結晶シリコン膜
内に拡散された他方の導電形の抵抗周辺層とから多結晶
シリコン抵抗を構成して、これを抵抗周辺層に抵抗層に
対する逆バイアス方間の電位を賦与した状態で使用する
ことによって解決される。[Means for Solving the Problem] According to the present invention, this problem is solved by combining a polycrystalline silicon film disposed in a predetermined pattern on an insulating film, a resistive layer diffused therein with one conductivity type, and a resistor. A polycrystalline silicon resistor is formed from the resistor peripheral layer of the other conductivity type, which is diffused in the polycrystalline silicon film in a pattern that overlaps at least a portion of the layer and limits the resistance from the periphery, and this is connected to the resistor peripheral layer. This is solved by applying a reverse bias potential to the layer.
なお、上記構成中にいう抵抗周辺層を抵抗層と多結晶ン
リコン抵抗の一方の端部において短絡してlくのが実用
上有利である。Note that it is practically advantageous to short-circuit the resistor peripheral layer in the above structure at one end of the resistor layer and the polycrystalline silicon resistor.
また、抵抗層と抵抗周辺層の拡散パターンには種々な形
態が可能で、例えば抵抗層を多結晶シリコン膜の全面に
拡散して置いた後に抵抗周辺層を拡散することでもよい
が、実用上は抵抗層をおおむね細長なパターンで拡散し
、抵抗周辺層をこの抵抗層を取り囲みその実効パターン
幅を限定するパターンで拡散するのが最も合理的である
。このように抵抗周辺層は多結晶シリコン抵抗の抵抗値
を決める抵抗層の実効パターンを限定するものであるか
ら、抵抗周辺層を抵抗層より高不純物濃度で拡散するの
が有利である。In addition, various forms are possible for the diffusion pattern of the resistor layer and the resistor peripheral layer. For example, it is possible to diffuse the resistor layer over the entire surface of the polycrystalline silicon film and then diffuse the resistor peripheral layer. It is most rational to diffuse the resistor layer in a generally elongated pattern and diffuse the resistor peripheral layer in a pattern that surrounds this resistor layer and limits its effective pattern width. Since the resistor peripheral layer thus limits the effective pattern of the resistor layer that determines the resistance value of the polycrystalline silicon resistor, it is advantageous to diffuse the resistor peripheral layer with a higher impurity concentration than the resistor layer.
本発明は導電形が異なる2個の隣接拡散層間の接合面が
一方から他方への不純物拡散により移動することに着目
したもので、抵抗層や抵抗周辺層はもちろんデザインル
ール上の最小寸法でパターンニングするが、抵抗周辺層
の不純物を抵抗層内に拡散させて抵抗値を決めるその実
効幅をルール上の最小寸法より狭く限定することにより
課題の解決に成功したものである。The present invention focuses on the fact that the junction surface between two adjacent diffusion layers with different conductivity types moves due to impurity diffusion from one side to the other. However, this problem was successfully solved by diffusing impurities in the resistor peripheral layer into the resistor layer and limiting the effective width, which determines the resistance value, to be narrower than the minimum dimension specified in the rules.
このため絶縁膜上に配設された多結晶シリコン膜に一方
の導電形の抵抗層と他方の導電形の抵抗周辺層とを拡散
するが、抵抗周辺層を前項の構成にいうよう抵抗層の少
なくとも一部と重なり抵抗を周辺かろ限定するパターン
で拡散して、抵抗層の実効幅をデザインルール上の最小
寸法より狭めて抵抗値を上げる。For this purpose, a resistor layer of one conductivity type and a resistor peripheral layer of the other conductivity type are diffused into the polycrystalline silicon film disposed on the insulating film. It is diffused in a pattern that overlaps at least a portion and limits the resistance from the periphery, thereby narrowing the effective width of the resistance layer from the minimum dimension according to the design rules and increasing the resistance value.
例えば、抵抗層が3−の幅のパターンで拡散されていて
も、両側の抵抗周辺層から不純物が14ずつ拡散される
と実効幅は1μになり抵抗は3倍になる。従って、同じ
抵抗値を得るための実効幅は3分の1になりそれに応じ
て長さも3分の1にできるので、本発明では抵抗の実効
部分の面積を9分の1に縮小できることになる。For example, even if the resistance layer is diffused in a pattern with a width of 3-, if 14 impurities are diffused from the resistor peripheral layers on both sides, the effective width becomes 1μ and the resistance triples. Therefore, in order to obtain the same resistance value, the effective width can be reduced to one-third and the length can be reduced to one-third accordingly, so in the present invention, the area of the effective portion of the resistor can be reduced to one-ninth. .
さらに本発明は、多結晶シリコン抵抗が抵抗層の上述の
ように狭められた実効幅で確実に動作するよう、抵抗層
に対する逆バイアス方向の電位。Furthermore, the present invention provides a reverse bias potential for the resistor layer to ensure that the polycrystalline silicon resistor operates with the narrowed effective width of the resistor layer as described above.
例えば抵抗層がP形で抵抗周辺層がn形の場合は正方向
の電位を抵抗周辺層に賦与した状態でこの多結晶シリコ
ン抵抗を使用するものである。For example, when the resistor layer is of P type and the resistor peripheral layer is of N type, this polycrystalline silicon resistor is used with a positive potential applied to the resistor peripheral layer.
〔実施例]
以下、第1図を参照して本発明の半導体装置用多結晶シ
リコン抵抗の実施例を説明する。同図(川はその上面図
、同図■)はその中央部分を横方向に切った断面図、同
図(C)は縦方向に切った断面図であり、前に説明した
第2図との対応部分には同し符号が付されている。[Example] Hereinafter, an example of the polycrystalline silicon resistor for a semiconductor device of the present invention will be described with reference to FIG. The same figure (the river is a top view, ■ in the same figure) is a cross-sectional view of the central part taken in the horizontal direction, and the same figure (C) is a cross-sectional view taken in the vertical direction, which is similar to Fig. 2 explained earlier. Corresponding parts are given the same symbols.
第1図ら)に示すように集積回路装置等の半導体基体l
の表面を酸化シリコンの素子分!IIないしフィールド
酸化膜であるふつうIIIm程度の膜厚の絶縁膜2で覆
い、その上に多結晶シリコン抵抗を組み込む、それ用の
多結晶シリコンH3は前述のように集積回路装置内のM
OS)ランジスタ用のゲートと同時に成長かつパターン
ニングするのが有利で、その膜厚はふつう0.5〜1i
mとされる。As shown in Figure 1, etc., semiconductor substrates such as integrated circuit devices
The surface of the silicon oxide element! The polycrystalline silicon H3 used for this is covered with an insulating film 2, which is a field oxide film, and is usually about IIIm thick, and a polycrystalline silicon resistor is built thereon.
OS) It is advantageous to grow and pattern at the same time as the gate for the transistor, and the film thickness is usually 0.5 to 1i.
It is assumed that m.
多結晶シリコン膜3はこの例では同図(a)のように両
端部がやや大きいほぼ短冊形のパターンに形成され、そ
の中央部の図の上下方向の幅はデザインルール上の最小
寸法が3−の場合その例えば3倍の94程度に設定され
る。In this example, the polycrystalline silicon film 3 is formed into a substantially rectangular pattern with both ends slightly larger as shown in FIG. -, it is set to about 94, which is three times that value.
抵抗層4はMOS )ランジスタのゲートに対する不純
物ドープと同時に多結晶シリコン膜3内に拡散するのが
よく、この実施例ではn形とされ、抵抗値が安定するよ
う例えばIQIS〜10”原子/dの不純′#!J′a
度で拡散される。第1図(a)にP4で示すように、こ
の抵抗層4は両端が太き(中央が細いパターンP4で拡
散され、中央部の幅はルール上の最小寸法と同じ311
とされる。The resistance layer 4 is preferably doped with impurities into the polycrystalline silicon film 3 at the same time as impurity doping for the gate of the MOS transistor. Impurity'#!J'a
It is diffused by degrees. As shown by P4 in FIG. 1(a), this resistance layer 4 is thick at both ends (it is diffused by a narrow pattern P4 in the center, and the width at the center is 311mm, which is the same as the minimum dimension according to the rule).
It is said that
抵抗周辺層5は抵抗層4とは逆のn形とされ、MOS)
ランジスタのソース・ドレイン層と同時に拡散するのが
有利で、従ってその不純物濃度は抵抗層4よりかなり高
い例えばIQ+?原子/cj程度とされる。この抵抗周
辺層5用の不純物の導入は抵抗層4のパターンP4の逆
パターン、換言すれば多結晶シリコン膜3のパターンP
4の内部を除いた全面に対して行なうが、この導入不純
物を熱拡散により抵抗層4内に例えばIJm入り込ませ
て実際の拡散パターンを同図(alのP5にすることに
より、抵抗層4の中央部の実効幅Weを両側から14ず
つ狭めてIIImにする。The resistor peripheral layer 5 is n-type, which is opposite to the resistor layer 4, and is a MOS)
It is advantageous to diffuse the source and drain layers of the transistor at the same time, so that their impurity concentration is considerably higher than that of the resistive layer 4, for example, IQ+? It is assumed to be about atom/cj. This introduction of impurities for the resistor peripheral layer 5 is performed in a pattern opposite to the pattern P4 of the resistor layer 4, in other words, the pattern P of the polycrystalline silicon film 3.
This is done over the entire surface of the resistor layer 4 except for the inside of the resistor layer 4, but by thermally diffusing the introduced impurity into the resistor layer 4 by, for example, IJm, the actual diffusion pattern is changed to P5 in the same figure (al). The effective width We at the center is narrowed by 14 from both sides to IIIm.
以後は、第3図の場合と開襟に層間絶縁膜6等の絶縁膜
で多結晶シリコン膜3を覆い、それに窓明けを施した上
で、電極1IlI7を抵抗層4の両端部に導電接触させ
て他の回路素子との接続用端子とすればよいが、この実
施例では図示のように左側の電極!I7の方を同じ窓部
内で抵抗周辺層5とも導電接触させることによって、抵
抗層4の左端を抵抗周辺層5と短絡する。Thereafter, the polycrystalline silicon film 3 is covered with an insulating film such as the interlayer insulating film 6 in the case of FIG. However, in this embodiment, as shown in the figure, the electrode on the left side can be used as a terminal for connecting to other circuit elements. The left end of the resistive layer 4 is short-circuited with the resistive peripheral layer 5 by bringing I7 into conductive contact with the resistive peripheral layer 5 within the same window.
上のように構成されたこの実施例の多結晶シリコン抵抗
は左側の電極膜を例えば正の電源端子に接続し、右側の
電極膜を集積回路内の所望個所に接続して使用する。こ
れにより、n形の抵抗層4とn形の抵抗周辺層5の間の
接合には常に逆バイアス方向に電圧が掛かり、抵抗層4
の上述のIIImの実効幅−eで決まる多結晶シリコン
抵抗の抵抗値が安定に維持される。The polycrystalline silicon resistor of this embodiment configured as above is used by connecting the left electrode film to, for example, a positive power supply terminal, and connecting the right electrode film to a desired location within the integrated circuit. As a result, a voltage is always applied in the reverse bias direction to the junction between the n-type resistance layer 4 and the n-type resistance peripheral layer 5, and the resistance layer 4
The resistance value of the polycrystalline silicon resistor determined by the effective width -e of IIIm described above is maintained stably.
以上かられかるように本発明の多結晶シリコン抵抗は抵
抗層4の実効幅−〇をルール上の最小寸法より狭くでき
、その組み込みに要するチップ面積を従来に比べて約1
桁縮小できる。As can be seen from the above, the polycrystalline silicon resistor of the present invention can make the effective width -〇 of the resistance layer 4 narrower than the minimum dimension according to the rules, and the chip area required for its integration can be reduced by about 1 compared to the conventional one.
Can be reduced by digits.
以上説明した実施例に限らず、本発明は種々のS樺で実
施可能である0例えば、抵抗層4の一端と抵抗周辺層5
を常に短絡する必要はなく、n形の抵抗周辺層5に正の
電源電位を与えて置いて、P形の抵抗層4の両端から導
出される電極WI7を集積回路内の任意の個所に接続し
て使用できる。The present invention is not limited to the embodiments described above, and can be implemented in various types of S.
There is no need to always short-circuit the n-type resistor peripheral layer 5, and the electrode WI7 led out from both ends of the p-type resistor layer 4 can be connected to any location within the integrated circuit by applying a positive power supply potential to the n-type resistor peripheral layer 5. It can be used as
抵抗層4と抵抗周辺rrI5の導電形は実施例と逆にし
てもよい、また、抵抗層4を多結晶シリコン膜の全面に
拡散して置き、抵抗周辺層5を実施例のパターンで拡散
させることもできる。The conductivity types of the resistor layer 4 and the resistor peripheral rrI5 may be reversed from those in the example.Also, the resistor layer 4 is diffused over the entire surface of the polycrystalline silicon film, and the resistor peripheral layer 5 is diffused in the pattern of the example. You can also do that.
以上のとおり本発明では、絶縁膜の上に所定のパターン
で配設された多結晶シリコン膜と、それに一方の導電形
で拡散された抵抗層と、抵抗層の少なくとも一部と重な
り抵抗を周辺から限定するパターンで多結晶シリコン膜
内に拡散された他方の導電形の抵抗周辺層とによって多
結晶シリコン抵抗を構成して、抵抗周辺層に抵抗層に対
する逆バイアス方向の電位を賦与した状態でこれを使用
することにより、次の効果が得られる。As described above, in the present invention, a polycrystalline silicon film disposed in a predetermined pattern on an insulating film, a resistor layer diffused into the polycrystalline silicon film of one conductivity type, overlap at least a part of the resistor layer, and surround the resistor. A polycrystalline silicon resistor is formed by a resistor peripheral layer of the other conductivity type diffused in a polycrystalline silicon film in a limiting pattern, and a potential in a reverse bias direction with respect to the resistor layer is applied to the resistor peripheral layer. By using this, the following effects can be obtained.
(a)抵抗周辺層により抵抗層の実効幅をフォトプロセ
スのデザインルール上の最小寸法より狭く限定すること
により、多結晶シリコン抵抗を小形化し所要チップ面積
を従来より約1桁縮小できる。(a) By limiting the effective width of the resistor layer by the resistor peripheral layer to be narrower than the minimum dimension according to the photo process design rules, the polycrystalline silicon resistor can be made smaller and the required chip area can be reduced by about one order of magnitude compared to the conventional method.
[有]ノ抵抗体に面抵抗の高い多結晶シリコンを用い、
かつ抵抗層の実効幅を狭くできるので高抵抗用にとくに
通し、集積回路装置の高集積化に伴う要求を満たしてそ
の消費電流を削減できる。[Yes] Polycrystalline silicon with high sheet resistance is used for the resistor,
In addition, since the effective width of the resistance layer can be narrowed, it is particularly suitable for high resistance applications, and satisfies the demands associated with higher integration of integrated circuit devices, thereby reducing the current consumption thereof.
(C1同じ抵抗値の多結晶ノリコン抵抗に従来より低い
面抵抗の高不純物濃度の抵抗層を用いることにより、抵
抗値のばらつきを減少させ、かつ安定性を向上させるこ
とができる。(C1 By using a highly impurity-concentrated resistance layer with a lower sheet resistance than the conventional polycrystalline Noricon resistor having the same resistance value, variations in resistance value can be reduced and stability can be improved.
(d、1通常の抵抗値の多結晶シリコン抵抗はサイズを
非常に小さくできるので、集積回路装置内の素子分1I
Il1等の上の従来利用できなかった小スペース内への
組み込みが可能になり、チップ面積を抵抗に割り当てる
必要をな(すことができる。(d, 1 Since polycrystalline silicon resistors with normal resistance values can be made very small in size, the element size in an integrated circuit device is 1I).
It becomes possible to incorporate the device into a small space that was not previously available on Il1, etc., and it is possible to eliminate the need to allocate chip area to the resistor.
本発明は集積度の高い集積回路装置に適用して上述の効
果をとくに有利に発揮して、高集積化上の隘路の突破に
貢献するものである。The present invention particularly advantageously exhibits the above-mentioned effects when applied to highly integrated circuit devices, and contributes to overcoming the bottleneck in achieving high integration.
第1図は本発明による半導体装置用多結晶ノリコン抵抗
の実施例を示し、同図<aJはその上面図、同図0))
はこれを左右方向に切った断面図、同図fclはこれを
上下方向に切った断面図である。第2図は従来の多結晶
ンリコン抵抗の例を示し、同図(alはその上面図、同
図(ハ)はその断面図である。これらの図において、
l二手導体基体、2:絶縁膜、3;多結晶シリコン膜、
4:抵抗層、5:抵抗周辺層、6:層間絶縁膜、7:電
極膜、L:抵抗膜の長さ、P4:抵抗層の拡散パターン
ないし抵抗周辺層用不純物の導入パターン、P5:抵抗
周辺層の拡散パターン、W;抵抗膜の幅、−e:抵抗膜
の実効幅、である。
(b)
La
2l−J2ry:JFIG. 1 shows an embodiment of a polycrystalline Noricon resistor for semiconductor devices according to the present invention, where <aJ is a top view thereof, and FIG. 0))
is a cross-sectional view taken in the horizontal direction, and fcl is a cross-sectional view taken in the vertical direction. Figure 2 shows an example of a conventional polycrystalline silicon resistor (Al is its top view, and Figure (C) is its cross-sectional view. , 3; polycrystalline silicon film,
4: resistance layer, 5: resistance peripheral layer, 6: interlayer insulating film, 7: electrode film, L: length of resistance film, P4: resistance layer diffusion pattern or impurity introduction pattern for resistance peripheral layer, P5: resistance The diffusion pattern of the peripheral layer, W: width of the resistive film, -e: effective width of the resistive film. (b) La 2l-J2ry:J
Claims (1)
コン膜と、それに一方の導電形で拡散された抵抗層と、
抵抗層の少なくとも一部と重なり抵抗を周辺から限定す
るパターンで多結晶シリコン膜内に拡散された他方の導
電形の抵抗周辺層とを備えてなり、抵抗周辺層に抵抗層
に対する逆バイアス方向の電位を賦与した状態で使用す
るようにしたことを特徴とする半導体装置用多結晶シリ
コン抵抗。 2)請求項1に記載の抵抗において、抵抗層がおおむね
細長なパターンで拡散され、抵抗周辺層がこの抵抗層を
取り囲みそのパターン幅を限定するパターンで拡散され
ることを特徴とする半導体装置用多結晶シリコン抵抗。 3)請求項1に記載の抵抗において、抵抗の1端で抵抗
層と抵抗周辺層が短絡されることを特徴とする半導体装
置用多結晶シリコン抵抗。[Claims] 1) A polycrystalline silicon film disposed in a predetermined pattern on an insulating film, and a resistance layer diffused therein with one conductivity type;
A resistor peripheral layer of the other conductivity type is diffused in the polycrystalline silicon film in a pattern that overlaps at least a portion of the resistor layer and limits the resistance from the periphery. A polycrystalline silicon resistor for semiconductor devices, characterized in that it is used in a state where a potential is applied. 2) A resistor according to claim 1, characterized in that the resistive layer is diffused in a generally elongated pattern, and the resistive peripheral layer is diffused in a pattern that surrounds this resistive layer and limits its pattern width. Polycrystalline silicon resistor. 3) A polycrystalline silicon resistor for a semiconductor device according to claim 1, wherein the resistor layer and the resistor peripheral layer are short-circuited at one end of the resistor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25095590A JPH04130658A (en) | 1990-09-20 | 1990-09-20 | Polycrystalline silicon resistor for semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25095590A JPH04130658A (en) | 1990-09-20 | 1990-09-20 | Polycrystalline silicon resistor for semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04130658A true JPH04130658A (en) | 1992-05-01 |
Family
ID=17215496
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25095590A Pending JPH04130658A (en) | 1990-09-20 | 1990-09-20 | Polycrystalline silicon resistor for semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04130658A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020155481A (en) * | 2019-03-18 | 2020-09-24 | 富士電機株式会社 | Semiconductor integrated circuit |
-
1990
- 1990-09-20 JP JP25095590A patent/JPH04130658A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020155481A (en) * | 2019-03-18 | 2020-09-24 | 富士電機株式会社 | Semiconductor integrated circuit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2954486A (en) | Semiconductor resistance element | |
KR870004496A (en) | Semiconductor memory | |
JPH06104438A (en) | Film transistor | |
JPS5864059A (en) | High withstand resistance element | |
JPH04130658A (en) | Polycrystalline silicon resistor for semiconductor device | |
JPH02268462A (en) | Semiconductor device | |
JPS59143358A (en) | Semiconductor thin film resistance element | |
JPS6238865B2 (en) | ||
JPS60244058A (en) | Semiconductor integrated circuit device | |
JPS63168051A (en) | Complementary soi lateral insulated gate rectifier | |
JPH05211294A (en) | Semiconductor device | |
KR810001618B1 (en) | Semiconductor device | |
JPS586156A (en) | Semiconductor device | |
JPH07254707A (en) | Semiconductor device | |
JPS63161656A (en) | Resistor of integrated circuit with balanced field plate | |
JPS6298772A (en) | Semiconductor device | |
JPH01286459A (en) | Protecting device for semiconductor integrated circuit | |
JPH043462A (en) | Semiconductor resistance element | |
JPH027556A (en) | Input protection device of semiconductor integrated circuit | |
JPS6074662A (en) | High resistor pattern in ic | |
JPH02197162A (en) | Resistor | |
JPS61256756A (en) | Semiconductor device | |
JPH01228177A (en) | Semiconductor variable capacitance element | |
JPH0645526A (en) | Semiconductor diffusion resistor | |
JPH04145657A (en) | Semiconductor device |