JPS586156A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS586156A
JPS586156A JP10429481A JP10429481A JPS586156A JP S586156 A JPS586156 A JP S586156A JP 10429481 A JP10429481 A JP 10429481A JP 10429481 A JP10429481 A JP 10429481A JP S586156 A JPS586156 A JP S586156A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
impurities
contact
silicon layer
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10429481A
Other languages
Japanese (ja)
Inventor
Hiroyuki Oshima
弘之 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP10429481A priority Critical patent/JPS586156A/en
Publication of JPS586156A publication Critical patent/JPS586156A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body

Abstract

PURPOSE:To obtain contact of a semiconductor device in high density by a method wherein impurities are introduced into a high resistance polycrystalline silicon layer from a contact hole opened in an insulating film on the polycrystlline silicon layer. CONSTITUTION:After an oxide film 15 is formed on a single crystal silicon substrate 14, the polycrystalline silicon layer 16 is formed. Then impurities 17 are doped in the silicon layer 16 to obtain the necessary resistance value. After the interlayer insulating film 18 is formed, the contact hole 19 is opened. Impurities 20 are doped using the film 18 as the mask to form a low resistance polycrystalline silicon layer 21. Then a metal layer 22 is formed, and ohmic contact is obtained.

Description

【発明の詳細な説明】 本発明は高抵抗多結晶シリコンと金属との間のコンタク
トを、高書変かつ容易に提供する半導−装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device that provides highly variable and easy contact between high resistance polycrystalline silicon and metal.

近都、高抵抗材料として、不純物濃度の低い多結晶シリ
コンを用いる傾向が強まっている。これは従来の抵抗材
料に比べて多結晶シリコンの比抵抗を大倉い値に設定で
き、したがって抵抗の占める面積を減少できるためで&
為、啼た。多結晶シリコンは比較的、多層構造なi1威
することが容易↑あるため、高抵抗多結晶シリコンを他
の素子の上層に形成できる点も大傘な畏所である。さら
に多結晶シリコンは、導入する不純物濃度によって比抵
抗を大@Kfll’化させることができ、その制御亀容
易であり、安定した抵抗値が得られる点も見逃せない。
In recent years, there has been a growing trend to use polycrystalline silicon, which has a low impurity concentration, as a high-resistance material. This is because the resistivity of polycrystalline silicon can be set to a higher value than conventional resistive materials, and the area occupied by the resistor can therefore be reduced.
I cried for a reason. Since polycrystalline silicon is relatively easy to form a multilayer structure, the ability to form high-resistance polycrystalline silicon on top of other elements is also a great advantage. Furthermore, the specific resistance of polycrystalline silicon can be increased by adjusting the impurity concentration introduced, and it is easy to control it, and it is important to note that a stable resistance value can be obtained.

請1図けNチャネル金属−酸化膜一半導体磨電界効果ト
ランシスター(以下、MO811)ランシスターという
)Kよるインバーター■略を示すものである。第3図(
iは、負荷トランジスタ、−を抵抗として用いる通常の
方法を示し、第5図(ロ)は高抵抗多結晶シリコンを抵
抗として用いる方法を示している。1はエンハンスメン
ト謬のスイッチングトランジスター、2はデプリーシ曹
ン膠の負荷トランジスター、3は高抵抗多結晶シリコン
を用いた負荷抵抗である。このように、高抵抗多結晶シ
リコンは、基本回路であるインバーター回路内の負荷抵
抗として用いられ、tた単なる抵抗素子としても用いら
れる。したがりて、その用途は非常に広い、こ1>4合
、前述の通秒、小面積で高抵抗を実現できるため、高抵
抗多結晶シリコンは今後オすオす広く用いられるようk
なるものと考えられゐ。
Figure 1 shows an inverter based on an N-channel metal-oxide-semiconductor polished field-effect transistor (hereinafter referred to as MO811 run transistor). Figure 3 (
5(b) shows a method of using high-resistance polycrystalline silicon as a resistor. 1 is an enhancement switching transistor, 2 is a load transistor made of Depreciation glue, and 3 is a load resistor using high-resistance polycrystalline silicon. In this way, high-resistance polycrystalline silicon is used as a load resistor in an inverter circuit, which is a basic circuit, and also as a simple resistive element. Therefore, its applications are very wide.If 1>4, high resistance can be achieved in a small area, so high resistance polycrystalline silicon is expected to be widely used in the future.
It is thought that it will be.

このように、高抵抗多結晶シリコンは優れた利点を有し
ているが、一方で問題点−抱えている。
As described above, although high-resistivity polycrystalline silicon has excellent advantages, it also has problems.

すなわち、多結晶シリコンで高抵抗を実現するためKは
、ドープすゐ不純物量を修めて少なくしなくてはならな
いが、このため、金属との抵抗性接触、(オー電ツクコ
ンタクト)が得られないという点でああ。
In other words, in order to achieve high resistance in polycrystalline silicon, the amount of K must be reduced by adjusting the amount of doped impurities, but for this reason, resistive contact with metal (autoelectrical contact) cannot be obtained. Oh, in that there isn't.

一般に半導体と金属が接触すると、仕事関撒差のために
シ嘗ットキーパリアが形成され、ダイオード畳性が4察
される。金属を配線として用いる通常の半導体!!冒で
は、半導体との接触はオーンックーンタクトでなくては
ならず、ダイオード轡性が111111−Jれることは
不都合であゐ、そこで、金属と半導体との間にオー電ツ
クコンタクトが必要な場合には、半導体中に多くの不純
物を導入してバリアq)幅を―めて薄くすゐことKよ艶
トンネリングを誘起させている。バリアの幅がどく薄け
れば、トンネル効果によ抄キャリアは金属と半導体との
間を自由に動くことができ、オー電ツクコンタクトが得
られる。
In general, when a semiconductor and a metal come into contact, a shut-off barrier is formed due to the difference in work relationship, and diode bulging characteristics are observed. A normal semiconductor that uses metal as wiring! ! In metals, the contact with the semiconductor must be direct, and it is inconvenient for the diode conductivity to be 111111-J, so an electrical contact between the metal and the semiconductor is required. In some cases, many impurities are introduced into the semiconductor to make the barrier wider and thinner, inducing tunneling. If the width of the barrier is very thin, the tunneling effect allows the carriers to move freely between the metal and the semiconductor, resulting in an open electrical contact.

高抵抗多結晶シリコンと金属との間でオー電ツクコンタ
クトを得るためには、上述の1由から。
In order to obtain an electrical contact between high-resistance polycrystalline silicon and metal, there is one reason mentioned above.

少なくと亀コンタクト領域の多結晶シリコンには多くの
不純物をドープする必要がある。ところが本来、高抵抗
多結晶シリ;ン中の不純物濃度は低くすべきものである
から、金属とのコンタクト領域中の不純物濃度q)入を
高くする必要がある。このため、従来は、7オトリンダ
ツフイー技術を用いてマスクを形成し、これKよ一コン
タクト優域の多結晶シリコン中に不純物を榛(ドープし
ていた。以下、 #1211を用いて、従来行なわれて
いた高#に抗多結晶シリコンと金1の;ンタクト形成方
法を詳しく述べる。
At least the polycrystalline silicon in the tortoise contact region needs to be doped with a large amount of impurity. However, since the impurity concentration in high-resistance polycrystalline silicon should originally be low, it is necessary to increase the impurity concentration in the contact region with metal. For this reason, in the past, a mask was formed using the 7-odds technology, and impurities were doped into the polycrystalline silicon in the contact dominant area.Hereinafter, using #1211, The conventional method of forming contacts between highly anti-polycrystalline silicon and gold 1 will be described in detail.

第211は従来のコンタクト形成方法の一例である。第
211(a)のように1単結晶シリコン基板4上に酸化
lF5を彫威した後、多結晶シリコン6を形成する。こ
の後、所望すゐ抵抗値を得るためK。
No. 211 is an example of a conventional contact forming method. As shown in No. 211(a), after oxidizing lF5 is carved onto a single crystal silicon substrate 4, polycrystalline silicon 6 is formed. After this, K to obtain the desired resistance value.

必要量の不純物7を多結晶シリコン6にドープする・と
のドープ量は通常、非常に少ないので制御性及び安定性
の面からイオン打ち退入法が用いられる0次に、第2図
(ト)のように、金属とコンタクトをと石領域に位置す
る多結晶シリコン中に、不純物を濃くドープする。この
と鎗、不純物を濃くドープすゐ領域は、フォトリングラ
フイー技術を用いて選択される0通常は、フォトリソグ
ラフィーによりパターニングされたフォトレジスト8を
マスクとして、コンタクト領域中に不純物9を導入し多
くの不純物を含む低抵抗多結晶シリコン10を形成す石
、不純物の導入にはイオン打ち込り法が用いられゐ、こ
の場合、マスク材料はフォトレジスト切外の薄膜が用い
られることもあり、オた耐熱性薄膜をマスクとして、熱
拡散法により不純物を導入することもある。次に、マス
ク材料を除去し、@211(o)0ように1層関絶綴$
111を形成した後、多結晶シリコンと金属との;ンタ
クトを得るためのコンタクトホー12を一口する。その
後、#2図(a)のように◆属13を形成する0以上の
結果、多結晶シリプンと金属のオー電ツタコンタクトが
形成される。
The required amount of impurity 7 is doped into polycrystalline silicon 6. Since the amount of doping is usually very small, the ion bombardment method is used from the viewpoint of controllability and stability. ), impurities are heavily doped into the polycrystalline silicon located in the metal contact region. In this case, the region heavily doped with impurities is selected using photolithography technology.Usually, impurity 9 is introduced into the contact region using a photoresist 8 patterned by photolithography as a mask. Ion implantation is used to introduce the impurities that form the low-resistance polycrystalline silicon 10 that contains many impurities, and in this case, the mask material may be a thin film outside the photoresist cut. Alternatively, impurities may be introduced by thermal diffusion using a heat-resistant thin film as a mask. Next, remove the mask material and make one layer like @211(o)0.
After forming 111, a contact hole 12 for obtaining contact between polycrystalline silicon and metal is taken. After that, as shown in FIG. #2 (a), as a result of 0 or more forming the ◆ group 13, an over-current contact between the polycrystalline silicon and the metal is formed.

以上の説明から明らかなように、従来の方法には次のよ
うな欠点がある。すなわち、不純物を―くドープする領
域を選択するために、フォトリングラフイー技術を用い
ていゐ点である。このため製造ニーが複雑になり、コス
トも高くなる。さらには、歩留り低下の原因ともなる。
As is clear from the above description, the conventional method has the following drawbacks. That is, photophosphorography technology is used to select regions to be heavily doped with impurities. This complicates manufacturing needs and increases costs. Furthermore, it also causes a decrease in yield.

★た、アライメント誤差を見込む必要があるために不純
物を―くドープする蕾域の面積をコンタクトホール以上
の大きitK設定しなくてはならない。このため。
*Also, since it is necessary to allow for alignment errors, it is necessary to set the area of the bud region heavily doped with impurities to be larger than the contact hole. For this reason.

高集積化に制限が生じている。There are limits to high integration.

本発明はこのような欠点を除去するものであり不純物を
濃くドープする領域をコンタクトホー身との自己整合に
より形成する40′1%ある。以下。
The present invention eliminates these drawbacks and forms a region heavily doped with impurities by self-alignment with the contact hole (40'1%). below.

第5図を参照して1本発明の詳細な説明する。A detailed explanation of the present invention will be given with reference to FIG.

第ss#i、本発明の製造方法を示す−である。No. ss#i is - indicating the manufacturing method of the present invention.

まず、第5111 (a)のように、単結晶シリコン基
1[14上に酸化1[15を形成した後、多結晶シリコ
ン16を形成する。この後、所望する抵抗値を得るため
に必要量の不純物17を多結晶シリコン16にドープす
ゐ、この工Stでは、従来の方法と伺も替わるところは
ない0次に85図(lのように層間絶縁膜18を形成し
た俵、多結晶シリコンと金属とのコンタクトを得るため
のコンタクトホール19を開口する。従来は、フォトリ
ソグラフィー技術を用いて、コンタクト領竣中に不純物
を濃くドープしてから層間絶縁膜を形成したが、本発明
ではフォトリングラフィーエII#′i省略される0次
に第3図(c)のように、先に形成した眉間絶縁fl1
1Bを!スフとして、コンタクトホール19から多結晶
シリコン中に不純物20を濃くドープし、多くの不純物
を含む低抵抗多結晶シリコン21を形成する。不純物の
導入にはイオン打ち込λ法を用いてもよいし、熱拡散法
を用いてもよい、このようにコンタクトホールから不純
物を自己替金的に多結晶シリコン中へ導入すゐ点が本発
明の特徴tある。
First, as shown in No. 5111(a), after forming oxide 1[15 on single crystal silicon base 1[14], polycrystalline silicon 16 is formed. After this, the necessary amount of impurity 17 is doped into the polycrystalline silicon 16 in order to obtain the desired resistance value. A contact hole 19 is opened in order to make contact between the bale on which the interlayer insulating film 18 is formed, the polycrystalline silicon, and the metal. Conventionally, impurities are heavily doped into the contact area using photolithography technology. However, in the present invention, as shown in FIG. 3(c), the interlayer insulating film formed previously is
1B! As a step, impurity 20 is heavily doped into polycrystalline silicon through contact hole 19 to form low-resistance polycrystalline silicon 21 containing many impurities. The ion implantation λ method or the thermal diffusion method may be used to introduce the impurity.The main point of this method is to introduce the impurity into the polycrystalline silicon through the contact hole in a self-exchanging manner. There are features of the invention.

最後に第311EI (a)のように金属22を形成し
、オーZツクコンタクトを得る。
Finally, metal 22 is formed as shown in No. 311EI (a) to obtain an open Z contact.

以上の説明から明らかなように1本発明によれば、不純
物を濃くドープする多結晶シリコンの―域を、コンタク
トホーAKj−位曾決めするために、従来行なわれてい
たフォトリソグラフィ一工程が不要となる。このため、
製造T1が簡略化され、コス) e)低減、歩留−の向
上が実現できる。
As is clear from the above description, according to the present invention, one step of photolithography, which was conventionally performed, is unnecessary in order to position the area of polycrystalline silicon heavily doped with impurities by positioning the contact hole AKj. becomes. For this reason,
The manufacturing process T1 is simplified, and cost reduction and yield improvement can be realized.

さらに、不純物を濃くドープする領域は自己整合により
形成されるため、アライメント誤差を見込む必要がなく
、したがって素子の高集積化が可能となる。
Furthermore, since the region heavily doped with impurities is formed by self-alignment, there is no need to allow for alignment errors, and therefore, it is possible to increase the integration of the device.

以上、述べたように本発明は不純物を濃くドープする領
域を自己整合によ艶形成するととにより高集積化、製造
1嚇の簡略化、低コスト化、及び歩留りの向上を実覗す
るという優れた効果を有するものfある。
As described above, the present invention has advantages in that it achieves high integration, simplification of manufacturing, cost reduction, and improvement in yield by forming a region heavily doped with impurities to be glossy by self-alignment. There are some things that have certain effects.

【図面の簡単な説明】[Brief explanation of the drawing]

蒙1111侃)、伽)はNチャネルMO8膠トランジス
ターによるインバーターll1llIを示す図である。 であ秒、#5図(a)〜(ロ))は本発明の半導体装曹
の製造方法を示す図↑あゐ。 以  上 出願人 株式金社 −訪精工舎 伏遅人 弁1士 最上 務 第1図
Figures 1111(1111) and 1111(a) are diagrams showing an inverter ll1llI using an N-channel MO8 glue transistor. Second, #5 Figures (a) to (b) are diagrams showing the method for manufacturing the semiconductor substrate of the present invention. Applicant: Kinsha Co., Ltd. - Hoseikosha Fushido, Bento 1, Tsutomu Mogami Figure 1

Claims (1)

【特許請求の範囲】[Claims] 高抵抗多結晶シリコンを負荷抵抗として用いた半導体@
*において、前記高抵抗多結晶シリコン上の絶縁層に開
口したコンタクトホールがら、前記高抵抗多結晶シリコ
ン中に不純物を導入して成ることを特徴とする半導体装
置・
Semiconductor using high-resistance polycrystalline silicon as a load resistor @
* The semiconductor device characterized in that impurities are introduced into the high resistance polycrystalline silicon through contact holes opened in an insulating layer on the high resistance polycrystalline silicon.
JP10429481A 1981-07-02 1981-07-02 Semiconductor device Pending JPS586156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10429481A JPS586156A (en) 1981-07-02 1981-07-02 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10429481A JPS586156A (en) 1981-07-02 1981-07-02 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS586156A true JPS586156A (en) 1983-01-13

Family

ID=14376907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10429481A Pending JPS586156A (en) 1981-07-02 1981-07-02 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS586156A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0298685A (en) * 1988-10-06 1990-04-11 Nkk Corp Method and device for measuring distance
JPH02145985A (en) * 1988-02-09 1990-06-05 Nkk Corp Method and apparatus for measuring distance
JPH03282289A (en) * 1990-03-30 1991-12-12 Nkk Corp Method and apparatus for measuring distance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02145985A (en) * 1988-02-09 1990-06-05 Nkk Corp Method and apparatus for measuring distance
JPH0298685A (en) * 1988-10-06 1990-04-11 Nkk Corp Method and device for measuring distance
JPH03282289A (en) * 1990-03-30 1991-12-12 Nkk Corp Method and apparatus for measuring distance

Similar Documents

Publication Publication Date Title
US7915107B2 (en) Integrated circuit using complementary junction field effect transistor and MOS transistor in silicon and silicon alloys
KR20080086484A (en) Method of producing and operating a low power junction field effect transistor
JPH01130552A (en) High resistant element
JPS586156A (en) Semiconductor device
US7772619B2 (en) Semiconductor device having a fin structure and fabrication method thereof
JPS60123060A (en) Semiconductor device
JP3054937B2 (en) Semiconductor device and manufacturing method thereof
US4611237A (en) Semiconductor integrated circuit device
JPH06310725A (en) Semiconductor device and fabrication thereof
JP2554993B2 (en) Semiconductor device
JP2004296883A (en) Semiconductor device and its manufacturing method
JPS59201463A (en) Semiconductor device
JPH0432264A (en) Semiconductor device and manufacture thereof
JPH0341762A (en) Semiconductor device
JPS6345865A (en) Floating gate type mos semiconductor device
JPS5897869A (en) Manufacture of semiconductor device
JPH0358186B2 (en)
JPH04130658A (en) Polycrystalline silicon resistor for semiconductor device
JPS61181166A (en) Manufacture of mis transistor
JPS6027193B2 (en) semiconductor circuit device
JPH0154867B2 (en)
JPS6248907B2 (en)
JPS583391B2 (en) The power of transistors is high.
JPH02239646A (en) Semiconductor device and manufacture thereof
JPH01124250A (en) Semiconductor device