JPS6074662A - High resistor pattern in ic - Google Patents

High resistor pattern in ic

Info

Publication number
JPS6074662A
JPS6074662A JP18202683A JP18202683A JPS6074662A JP S6074662 A JPS6074662 A JP S6074662A JP 18202683 A JP18202683 A JP 18202683A JP 18202683 A JP18202683 A JP 18202683A JP S6074662 A JPS6074662 A JP S6074662A
Authority
JP
Japan
Prior art keywords
high resistance
diffusions
high resistor
length
compensating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18202683A
Other languages
Japanese (ja)
Inventor
Kazuhide Endo
遠藤 和英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP18202683A priority Critical patent/JPS6074662A/en
Publication of JPS6074662A publication Critical patent/JPS6074662A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To enable to keep a stable resistance value without the influence of movable ions, etc. even in the state of marked variation in the resistance value due to the distribution of potentials by a method wherein a compensation diffused part in the titled pattern is put into a form having a connection part having the same width as that of a high resistor to be connected and a fixed length. CONSTITUTION:Compensating diffusions 7 and 7' are provided with connection parts 71 and 71' having a shorter width W than the diffusions and a length l, and the high resistor 8 is connected. The tips of these connections partly have the overlap of high concentration compensating diffusions 7 and 7' the low concentration high resistor 8. Such a construction enables the reduction of the influence of the movable ions 6, etc. on the high resistor to a degree of neglect by adjustment of the length l. In other words, even when the ions, etc. come together according to the distribution of potentials, they gather at the part of the compensating diffusion because the diffusions 7 and 7' project by the length lof the connections 71 and 71', and the influence on the high resistor disappears. As a result, the variation of the resistance value due to the distribution of potentials can be inhibited.

Description

【発明の詳細な説明】 (1) 発明の技術分野 本発明は補償拡散部を有する集積回路における拡散高抵
抗パターンに関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to diffused high resistance patterns in integrated circuits having compensating diffusions.

(2) 技術の背景 集積回路における拡散抵抗の抵抗値は概ね層抵抗とI、
/W (Lは抵抗の長さ、Wは抵抗の幅)との積で与え
られる。L/Wの値は拡散抵抗の形状によって容易に決
定されるために、抵抗値の設定によく使用されるが、抵
抗値が高(なると長さしを長くとる必要があり、占有面
積が太き(なってしまう。そこで拡散する不純物の濃度
を低クシ層抵抗を高くすることで高抵抗を実現する技術
が開発されたが、占有面積の問題は解決されても抵抗値
の安定性に関しては問題を残している。特に高抵抗にお
いては高い電圧が印加されることが多く。
(2) Background of the technology The resistance value of the diffused resistor in an integrated circuit is generally determined by the layer resistance and I,
/W (L is the length of the resistor, W is the width of the resistor). The value of L/W is easily determined by the shape of the diffused resistor, so it is often used to set the resistance value. Therefore, a technology has been developed to achieve high resistance by lowering the concentration of diffused impurities and increasing the resistance of the comb layer, but even though the problem of occupied area is solved, the stability of the resistance value is Problems remain.Especially when high resistance is used, high voltage is often applied.

この問題の解決が望まれている。A solution to this problem is desired.

(3) 従来技術と問題点 以下、従来技術について説明する。(3) Conventional technology and problems The conventional technology will be explained below.

第1図は従来の拡散高抵抗パターンを含む抵抗素子の平
面図である。同図においてP形の低濃度拡散高抵抗(以
下、高抵抗と略す)1は幅W、長さしをもち、その両端
は高濃度補償拡散層(以下。
FIG. 1 is a plan view of a resistance element including a conventional diffused high resistance pattern. In the figure, a P-type low concentration diffused high resistance (hereinafter abbreviated as high resistance) 1 has a width W and a length, and both ends thereof are high concentration compensation diffusion layers (hereinafter referred to as high resistance).

補償拡散と略す)2及び2′を介して電極3及び3′に
電気的に接続されている。なお、以下図中の補償拡散部
分はすべて斜線で示される。上述したように、高抵抗1
は抵抗の長さしを小さくすることができるという利点を
有しているが、その一方で高抵抗であるため、直接に電
極(通常アルミニウムAl電極)3及び3′とのオーム
性の良い接続をとることが困難である。補償拡散2及び
2′は、オーム性の良い接続をとるために高抵抗1と電
極3及び3′とを仲介しているわけである。
It is electrically connected to electrodes 3 and 3' via compensation diffusion (abbreviated as compensation diffusion) 2 and 2'. Note that all compensation diffusion portions in the figures below are indicated by diagonal lines. As mentioned above, high resistance 1
has the advantage of being able to reduce the length of the resistance, but on the other hand, because of its high resistance, it can be directly connected to the electrodes (usually aluminum electrodes) 3 and 3' with good ohmic properties. It is difficult to take. The compensating diffusions 2 and 2' mediate the high resistance 1 and the electrodes 3 and 3' in order to establish a good ohmic connection.

またn形エピタキシャルN4上に形成された高抵抗パタ
ーンはP形の分離用拡散層5によって他の素子と電気的
に分離されている。
Further, the high resistance pattern formed on the n-type epitaxial N4 is electrically isolated from other elements by a P-type isolation diffusion layer 5.

第1図中には明確に図示されていないが、抵抗素子の表
面は電極3及び3′の部分を除いて酸化膜でおおわれて
いる。
Although not clearly shown in FIG. 1, the surface of the resistance element is covered with an oxide film except for the electrodes 3 and 3'.

ところで、この酸化膜は半導体の高温熱処理。By the way, this oxide film is created by high-temperature heat treatment of semiconductors.

すなわち熱酸化あるいは不純物拡散などによって形成さ
れる。しかし使用される薬品や純水などには不可避的に
汚染物質が含まれており、そのためにこの酸化膜中には
ナトリウム・イオン等の正に帯電した可動イオンが導入
されてしまう。このような可動イオンの混入はプロセス
全体を汚染から守るように注意することである程度減少
させることはできるが、完全に除去することは事実上不
可能である。
That is, it is formed by thermal oxidation or impurity diffusion. However, the chemicals and pure water used inevitably contain contaminants, and as a result, positively charged mobile ions such as sodium ions are introduced into the oxide film. Although such mobile ion contamination can be reduced to some extent by taking care to protect the entire process from contamination, it is virtually impossible to completely eliminate it.

ところが第1図に示された従来の高抵抗パターンでは、
この可動イオンの影響によって抵抗値が変化してしまい
、信頼性が低下するという欠点があった。以下、この問
題を第2図を用いて説明する。
However, in the conventional high resistance pattern shown in Figure 1,
The disadvantage is that the resistance value changes due to the influence of these mobile ions, resulting in a decrease in reliability. This problem will be explained below using FIG. 2.

第2図は第1図の高抵抗パターンのうち一方の補償拡散
2と高抵抗1の一部分を切り出して描いた概略的平面図
である。すでに述べたように高抵抗1は長さしを短くす
ることが可能である。しかしそのために高抵抗1と補償
拡散2との間の電位分布が高抵抗1の幅Wよりも広範囲
に広がり、しかもこの電位分布に従って上述した酸化膜
中の可動イオン6が、第2図に示すように、高抵抗1と
補償拡散2の境目付近に集合する結果となる。この可動
イオン6は正に帯電しているために、高抵抗1の両側に
はn形エピタキシャル層4内のアクセプタイオンが可動
イオン6と同様な分布で集合することとなる。そのため
に高抵抗1の面積があたかも増大したかのような状態と
なり、抵抗値の低下を引き起こす結果となっていた。ま
たこのような抵抗値の変化を避けるためには補償拡散2
及び2′のW方向の幅を小さくすればよいのだが。
FIG. 2 is a schematic plan view showing a portion of the compensating diffusion 2 and the high resistance 1 of the high resistance pattern shown in FIG. 1. As already mentioned, the length of the high resistance 1 can be shortened. However, for this reason, the potential distribution between the high resistance 1 and the compensation diffusion 2 spreads over a wider range than the width W of the high resistance 1, and moreover, according to this potential distribution, the mobile ions 6 in the oxide film described above move as shown in FIG. As a result, they gather near the boundary between the high resistance 1 and the compensated diffusion 2. Since the mobile ions 6 are positively charged, acceptor ions in the n-type epitaxial layer 4 gather on both sides of the high resistance 1 in the same distribution as the mobile ions 6. Therefore, the area of the high resistance 1 appears to have increased, resulting in a decrease in the resistance value. In addition, in order to avoid such changes in resistance value, compensation diffusion 2
It would be better if the widths of 2' and 2' in the W direction were made smaller.

能動素子等に使用される場合は第1図に示されるパター
ン形状は避けることはできない。
When used as an active element or the like, the pattern shape shown in FIG. 1 cannot be avoided.

このように従来の高抵抗パターンでは電位分布が著しい
場合に抵抗値の安定性を欠くという問題を有していた。
As described above, conventional high-resistance patterns have a problem in that the resistance value lacks stability when the potential distribution is significant.

(4) 発明の目的 本発明は上記従来の問題点に鑑み、電位分布の著しい状
態でも可動イオン等の影響を受けることなく安定した抵
抗値を保つことのできる集積回路における高抵抗パター
ンを提供することを目的とする。
(4) Purpose of the Invention In view of the above-mentioned conventional problems, the present invention provides a high resistance pattern in an integrated circuit that can maintain a stable resistance value without being affected by mobile ions, etc. even under conditions of significant potential distribution. The purpose is to

(5) 発明の構成 上記目的は本発明によれば電極と拡散高抵抗とのオーム
性の良い接続を行うための補償拡散部を有する高抵抗パ
ターンにおいて、補償拡散部の形状を接続される高抵抗
と同じ幅をもち所定の長さの接続部を有する形状とした
ことを特徴とする集積回路における高抵抗パターンを提
供することによって達成される。
(5) Structure of the Invention According to the present invention, in a high resistance pattern having a compensation diffusion part for connecting an electrode and a diffused high resistance with good ohmic properties, the shape of the compensation diffusion part is adjusted to This is achieved by providing a high-resistance pattern in an integrated circuit characterized in that it is shaped with a connection having the same width as the resistor and a predetermined length.

(6) 発明の実施例 5− 以下本発明の実施例を図面を用いて説明する。(6) Examples of the invention 5- Embodiments of the present invention will be described below with reference to the drawings.

第3図は本発明による高抵抗パターンの一実施例を示す
概略的平面図である。
FIG. 3 is a schematic plan view showing an embodiment of a high resistance pattern according to the present invention.

補償拡散7及び7′には、補償拡散7.7′より短い幅
Wを有し長さlの接続部71.71’が設けられ、高抵
抗8が接続されている。この接続部71.71’の先端
の一部は高濃度補償拡散7゜7′と低濃度高抵抗8が重
なりあっている。このように構成することによって第4
図に示されるように、前述した可動イオン6等による高
抵抗8への影響を長さlを調整することで無視できる程
度に減らずことができる。すなわち、電位分布に従って
可動イオン6等が集合して来ても、補償拡散7及び7′
が接続部71.71’の長さpだけ突き出しているため
に補償拡散部分に可動イオン6が集まることになり、従
来例において問題となった高抵抗8への影響がほとんど
なくなり、その結果電位分布による抵抗値の変動をおさ
えることができる。
The compensation diffusions 7 and 7' are provided with a connection 71.71' having a width W shorter than the compensation diffusion 7.7' and a length l, to which a high resistance 8 is connected. At a part of the tip of this connecting portion 71, 71', the high concentration compensating diffusion 7.7' and the low concentration high resistance 8 overlap. By configuring in this way, the fourth
As shown in the figure, the influence of the above-mentioned mobile ions 6 and the like on the high resistance 8 can be prevented from being reduced to a negligible level by adjusting the length l. In other words, even if mobile ions 6 etc. gather according to the potential distribution, compensated diffusion 7 and 7'
Since the connecting portion 71.71' protrudes by the length p, the mobile ions 6 gather at the compensating diffusion portion, and the influence on the high resistance 8, which was a problem in the conventional example, is almost eliminated, and as a result, the potential Fluctuations in resistance due to distribution can be suppressed.

また本実施例では補償拡散部と抵抗との電位分6− 布を問題にしたが、これに限定されるものではない。た
とえば集積化の向上に伴って抵抗とトランジスタなどの
複合能動素子との距離が接近し、そのための電位分布が
著しくなっている場合にも。
Further, in this embodiment, the problem is the potential distribution between the compensating diffusion section and the resistor, but the present invention is not limited to this. For example, with improvements in integration, the distance between resistors and composite active elements such as transistors has become closer, resulting in a significant potential distribution.

第3図に示されるパターンにすることで高抵抗8への影
響を軽減することができる。
By adopting the pattern shown in FIG. 3, the influence on the high resistance 8 can be reduced.

また単に接続用の補償拡散であれば第5図に示されるよ
うに補償拡散9,9′と接続部91゜91′の幅を高抵
抗10の幅と同一の形状にすることで補償拡散9及び9
′と高抵抗10との電荷分布をほとんど皆無にすること
ができる。
If the compensation diffusion is simply for connection, as shown in FIG. and 9
′ and the high resistance 10 can be almost completely eliminated.

(7) 発明の効果 以上、詳細に説明したように1本発明は高抵抗の幅と同
じ幅で所定の長さをもつ接続部を補償拡散に設けること
で、電位分布の著しい状態にあっても可動イオン等によ
る抵抗値への影響を軽減でき、信頼性を向上させるとい
う効果大なるものである。
(7) Effects of the Invention As explained in detail above, one aspect of the present invention is to provide a connecting portion having a predetermined length and the same width as the width of the high resistance in the compensating diffusion, thereby reducing the potential distribution in a state where the potential distribution is significant. This also has the great effect of reducing the influence of mobile ions and the like on the resistance value and improving reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の高抵抗パターンの平面図、第2図は可動
イオンの状態を説明するためのもので第1図における高
抵抗パターンの一部を省略した概略的平面図、第3図は
本発明による高抵抗パターンの平面図、第4図は可動イ
オンの状態を説明するためのもので第3図における高抵
抗パターンの一部を省略した概略的平面図、第5図は本
発明の第2の実施例を示す高抵抗パターンの平面図であ
る。1,8.10・・・高抵抗、 2.2’。 7.7’、9.9’・・・補償拡散 71゜71′、9
1.91’・・・接続部 第3図 第4図 第5図
Fig. 1 is a plan view of a conventional high resistance pattern, Fig. 2 is a schematic plan view with a part of the high resistance pattern in Fig. 1 omitted for explaining the state of mobile ions, and Fig. 3 is a plan view of a conventional high resistance pattern. A plan view of the high resistance pattern according to the present invention, FIG. 4 is a schematic plan view for explaining the state of mobile ions and a part of the high resistance pattern in FIG. 3 is omitted, and FIG. 5 is a plan view of the high resistance pattern according to the present invention. FIG. 7 is a plan view of a high resistance pattern showing a second example. 1,8.10...High resistance, 2.2'. 7.7', 9.9'...Compensated diffusion 71°71', 9
1.91'... Connection part Fig. 3 Fig. 4 Fig. 5

Claims (1)

【特許請求の範囲】[Claims] 電極と拡散高抵抗とのオーム性の良い接続を行うための
補償拡散部を有する高抵抗パターンにおいて、補償拡散
部が接続される高抵抗と同じ幅をもち所定の長さの接続
部を有することを特徴とする集積回路における高抵抗パ
ターン。
In a high-resistance pattern having a compensation diffusion part for making a connection with good ohmic properties between an electrode and a diffused high resistance, the compensation diffusion part has a connection part of a predetermined length and the same width as the high resistance to which it is connected. High resistance patterns in integrated circuits characterized by
JP18202683A 1983-09-30 1983-09-30 High resistor pattern in ic Pending JPS6074662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18202683A JPS6074662A (en) 1983-09-30 1983-09-30 High resistor pattern in ic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18202683A JPS6074662A (en) 1983-09-30 1983-09-30 High resistor pattern in ic

Publications (1)

Publication Number Publication Date
JPS6074662A true JPS6074662A (en) 1985-04-26

Family

ID=16111038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18202683A Pending JPS6074662A (en) 1983-09-30 1983-09-30 High resistor pattern in ic

Country Status (1)

Country Link
JP (1) JPS6074662A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4713680A (en) * 1986-06-30 1987-12-15 Motorola, Inc. Series resistive network

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4713680A (en) * 1986-06-30 1987-12-15 Motorola, Inc. Series resistive network

Similar Documents

Publication Publication Date Title
JPS6144454A (en) Semiconductor device
KR100253869B1 (en) Semiconductor device
JPS6074662A (en) High resistor pattern in ic
JPS6123669B2 (en)
KR920007784B1 (en) High feequency semiconductor with emitter stabilized resistor and its manufacturing method
JPH0580153B2 (en)
JPH04127574A (en) Vertical type insulated-gate field-effect transistor
JPH01268050A (en) Diffused resistor element
JPH04130658A (en) Polycrystalline silicon resistor for semiconductor device
JPS63161656A (en) Resistor of integrated circuit with balanced field plate
JP2021158298A (en) Semiconductor device
JP3588476B2 (en) Hall element
JP2710356B2 (en) Semiconductor device
JPH01122161A (en) Vertical type bipolar transistor
JPS5810854A (en) Resistor in diffused region in semiconductor
JPH0645526A (en) Semiconductor diffusion resistor
JPS627151A (en) Semiconductor device
JPH03204973A (en) Manufacture of semiconductor device
JPH02121366A (en) Current mirror circuit
JPS61150262A (en) Input protection resistor
JPH027553A (en) Semiconductor integrated circuit device
JP2003174188A (en) Optical semiconductor device and manufacturing method thereof
JPS59139664A (en) Semiconductor integrated circuit device
JPH0258266A (en) Manufacture of semiconductor memory device
JPH0379077A (en) Bidirectional thyristor