JPH03204973A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH03204973A
JPH03204973A JP34099890A JP34099890A JPH03204973A JP H03204973 A JPH03204973 A JP H03204973A JP 34099890 A JP34099890 A JP 34099890A JP 34099890 A JP34099890 A JP 34099890A JP H03204973 A JPH03204973 A JP H03204973A
Authority
JP
Japan
Prior art keywords
contact window
wiring layer
metal wiring
dummy
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34099890A
Other languages
Japanese (ja)
Inventor
Hikotaro Masunaga
増永 彦太郎
Shinji Emori
江森 伸二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP34099890A priority Critical patent/JPH03204973A/en
Publication of JPH03204973A publication Critical patent/JPH03204973A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a structure which hardly varies in contact resistance by a method wherein a heat treatment process, where silicon contained in a substrate is made to diffuse into the fine wire section of a first metal wire layer through a contact window and a dummy contact window and the fine wire section is substantially saturated with silicon, is prepared. CONSTITUTION:A dummy contact window DRC is provided to a semiconductor layer between a contact window RC and the extensions MET2 and MET2' of a metal wiring layer close to the contact window RC, as the reaction between Si of the substrate surface and Al of a wiring layer occurs at not only the contact window RC but also the dummy contact window DRC, a prescribed heat treatment is executed in a manufacturing process so as to enable Si to diffuse from the contact window RC into Al to such an extent that Al is saturated with Si. A metal wiring layer DMET fine in width is formed between the metal wiring layer on the dummy contact window DRC and the metal wiring layer on the contact window RC, so that Si hardly diffuses from the contact window RC. Moreover, a grounding wiring layer MET2 is connected to the contact window RC through the intermediary of the wiring layer MET2' fine in width. In result, a structure which hardly varies in contact resistance can be obtained.

Description

【発明の詳細な説明】 本発明は、半導体集積回路の半導体基板表面に形成され
る抵抗拡散層と金属配線層とのコンタクト抵抗値を一定
に保つことができる新規な構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel structure that can maintain a constant contact resistance value between a resistance diffusion layer and a metal wiring layer formed on the surface of a semiconductor substrate of a semiconductor integrated circuit.

半導体集積回路を設計する場合、回路中の抵抗を一定の
抵抗比で厳密に形成するような必要性を生じることがし
ばしばある。例えば第1図に示すカレントミラー回路が
それである。L2.L、は所定の負荷回路でトランジス
タT =、 T s等よりなる電流源から電流I2j、
が供給されている。Vccは電源、GNDは接地を示す
。トランジスタTT 2 、 T sのペースエミッタ
間の耐圧V Beや電流増幅率hpi等が同一になるよ
うに設計すると、電流値I3.I2.I2の関係は抵抗
R,,R,,R2により決定する。すなわちI、、L、
1.はR,、R,、R。
When designing a semiconductor integrated circuit, it is often necessary to strictly form the resistors in the circuit with a constant resistance ratio. An example of this is the current mirror circuit shown in FIG. L2. L, is a predetermined load circuit, and a current I2j,
is supplied. Vcc indicates a power supply, and GND indicates grounding. If the transistors TT 2 and T s are designed so that the withstand voltage V Be between the pace emitters, the current amplification factor hpi, etc. are the same, the current value I3. I2. The relationship of I2 is determined by the resistances R, , R, , R2. That is, I,,L,
1. is R,,R,,R.

に依存する。従って12.1.を所定の比にするために
は、R2とR2の比が適当な値とし、その比は常に保た
れるようにしなければならない。
Depends on. Therefore 12.1. In order to have a predetermined ratio, the ratio of R2 and R2 must be set to an appropriate value, and this ratio must be maintained at all times.

第1図のT1.TLT2 、R+、R2,R4の部分か
実際に半導体基板に形成された場合の従来の平面図を第
2図に示す。第2図ではトランジスタT。
T1 in FIG. FIG. 2 shows a conventional plan view when the TLT2, R+, R2, and R4 portions are actually formed on a semiconductor substrate. In FIG. 2, the transistor T.

T、、T、及び抵抗R,,R,,R,lはいずれも同一
になるよう設計されている。
T, ,T, and resistances R, ,R, ,R,l are all designed to be the same.

トランジスタT、、T2.T、は分離領域■8゜に囲ま
れた島の中に形成され、CはN型のコレクタ領域てコレ
クタコンタクト窓CCWより金属配線層MCに導通され
ている。BはP型のベース領域で、ベースコンタクト窓
BCWを介して金属配線層MBにより共通接続されてい
る。Eはベース領域B内に設けられたN型のエミッタ領
域で、エミッタコンタクト窓ECWより金属配線層ME
T1に接続されている。抵抗R+、 R2,Rs も分
離領域1 s。
Transistors T,, T2. T and C are formed in an island surrounded by an 8° isolation region, and C is an N-type collector region and is electrically connected to the metal wiring layer MC through the collector contact window CCW. B is a P-type base region, which is commonly connected to a metal wiring layer MB via a base contact window BCW. E is an N-type emitter region provided in the base region B, and is connected to the metal wiring layer ME from the emitter contact window ECW.
Connected to T1. Resistors R+, R2, Rs are also in the isolation region 1 s.

に囲まれた島であるN型領域RES内に形成され、P型
の抵抗拡散層REDよりなる。抵抗拡散層REDは抵抗
コンタクト窓RCより、一端は金属配線層METIを介
してトランジスタT、、T2.T。
It is formed in the N-type region RES, which is an island surrounded by the P-type resistance diffusion layer RED. The resistance diffusion layer RED is connected to the resistance contact window RC at one end via the metal wiring layer METI to the transistors T, , T2 . T.

のエミッタに、他端は接地用の金属配線層MET2に接
続されている。
The other end is connected to the emitter of the metal wiring layer MET2 for grounding.

この様な回路において、電流11.Ix、Isを等しく
するためには、前述した様にR+、 R2,Rzを等し
く形成する必要がある。そこで設計者は通常抵抗拡散層
REDの大きさや、抵抗コンタクト窓RCの大きさ等を
すべて等しく設計する。しかしながら実質的な抵抗値は
、抵抗拡散層REDでの抵抗とコンタクト部でのコンタ
クト抵抗との直列抵抗の値で決まるものである。抵抗拡
散層REDでの抵抗値は通常安定で、−旦形成されると
ほとんど変化しないが、コンタクト抵抗は、通常製造工
程における熱処理や使用時の経時変化により基板のSi
と金属配線層のA1との間の反応か進みSiがA1の中
に拡散するため変化してしまう。従っていかに正確にパ
ターンが設計されても、上記のR3か所定の比に保たれ
なくなるという問題があった。
In such a circuit, the current 11. In order to make Ix and Is equal, it is necessary to form R+, R2, and Rz equally as described above. Therefore, a designer usually designs the size of the resistance diffusion layer RED, the size of the resistance contact window RC, etc. to be all equal. However, the actual resistance value is determined by the series resistance value of the resistance in the resistance diffusion layer RED and the contact resistance in the contact portion. The resistance value of the resistance diffusion layer RED is usually stable and hardly changes once it is formed, but the contact resistance changes due to heat treatment in the manufacturing process or changes over time during use.
The reaction between A1 and the metal wiring layer progresses, and Si diffuses into A1, resulting in changes. Therefore, no matter how accurately the pattern is designed, there is a problem in that R3 cannot be maintained at a predetermined ratio.

この点について第3図、第4図によりさらに詳述する。This point will be explained in more detail with reference to FIGS. 3 and 4.

第3図は第2図の部分平面図で抵抗R2の部分である。FIG. 3 is a partial plan view of FIG. 2, showing a portion of the resistor R2.

そして第4図は第3図のx−x’ の断面図である。1
はP型のSi半導体基板で、 2はその表面のN型半導
体層である。そしてその表面にはP型の不純物拡散層よ
りなる抵抗拡散層REDが形成され、絶縁膜3に形成さ
れたコンタクト窓RCより金属配線層MET1.MET
2に接続されている。
FIG. 4 is a sectional view taken along line xx' in FIG. 3. 1
is a P-type Si semiconductor substrate, and 2 is an N-type semiconductor layer on its surface. A resistance diffusion layer RED made of a P-type impurity diffusion layer is formed on the surface thereof, and a contact window RC formed in the insulating film 3 connects the metal wiring layer MET1. MET
Connected to 2.

回路動作に実質的に作用する抵抗は、拡散層REDの拡
散抵抗DRとコンタクト部のコンタクト抵抗である。そ
してコンタクト抵抗はAIとSiの反応により変化し、
特に接地用の配線層MET2の如き大量のAIが存在す
ると、SiのAI中への拡散はいっそう活発に進み、そ
の変化は重要な問題になる。ところでコンタクト部のコ
ンタクト抵抗は電流か集中するコンタクト窓の縁端部4
での反応の進みぐあいにより決まる。これは拡散層RE
Dの抵抗が金属配線層MET2の抵抗に比べて非常に大
きいため、電流集中かコンタクト窓RCの拡散層RED
の延長部側の縁端部4に生じるためである。
The resistances that substantially affect the circuit operation are the diffusion resistance DR of the diffusion layer RED and the contact resistance of the contact portion. The contact resistance changes due to the reaction between AI and Si,
In particular, when a large amount of AI exists, such as in the grounding wiring layer MET2, the diffusion of Si into the AI progresses even more actively, and its change becomes an important problem. By the way, the contact resistance of the contact part is the edge part 4 of the contact window where the current is concentrated.
It depends on how the reaction progresses. This is the diffusion layer RE
Since the resistance of D is very large compared to the resistance of the metal wiring layer MET2, it may be due to current concentration or the diffusion layer RED of the contact window RC.
This is because it occurs at the edge 4 on the extension side.

そこで本発明は上記従来の欠点に鑑み、コンタクト抵抗
が変化しないような新規な構造を提供することを目的と
し、その特徴は、シリコンよりなる一導電型の半導体基
板の表面に反対導電型の拡散層を形成する工程と、該拡
散層上に絶縁層を形成する工程と、該絶縁層上に該拡散
層の一部を露出するコンタクト窓と、それに隣接するダ
ミーコンタクト窓を形成する工程と、該コンタクト窓お
よび該ダミーコンタクト窓を接続し、且つ該コンタクト
窓と該ダミーコンタクト窓との間は、両窓の幅よりも狭
く構成された細線部を有する第一の金属配線層を該絶縁
層上に形成する工程と、該コンタクト窓に対して、該ダ
ミーコンタクト窓を挟んで対向する位置に該第一の金属
配線層に接続する第二の金属配線層を形成する工程と、
該第一の金属配線層の該細線部に該コンタクト窓および
該ダミーコンタクト窓を介して該基板のシリコンを拡散
して実質的に飽和させる熱処理工程とを含むことを特徴
とする半導体装置の製造方法を採用するものである。
Therefore, in view of the above-mentioned conventional drawbacks, the present invention aims to provide a novel structure in which the contact resistance does not change. a step of forming a layer, a step of forming an insulating layer on the diffusion layer, a step of forming a contact window exposing a part of the diffusion layer on the insulating layer, and a dummy contact window adjacent to the contact window. A first metal wiring layer connecting the contact window and the dummy contact window, and having a thin line portion between the contact window and the dummy contact window that is narrower than the width of both windows, is connected to the insulating layer. forming a second metal wiring layer connected to the first metal wiring layer at a position opposite to the contact window with the dummy contact window in between;
manufacturing a semiconductor device, comprising a heat treatment step for substantially saturating silicon of the substrate by diffusing silicon in the thin wire portion of the first metal wiring layer through the contact window and the dummy contact window; method.

以下、本発明の一実施例を図面に従って詳細に説明する
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第5図は第3図に本実施例を適用した場合の部分平面図
で、第6図は、第5図のY−Y’の断面図である。第5
,6図の各部には第3,4図のそれと同じ符号を付した
FIG. 5 is a partial plan view when this embodiment is applied to FIG. 3, and FIG. 6 is a sectional view taken along YY' in FIG. Fifth
, 6 are given the same reference numerals as those in FIGS. 3 and 4.

本実施例の第1の要点は、コンタクト窓RCの近傍でコ
ンタクト窓RCと金属配線層の延長部。
The first point of this embodiment is the extension of the contact window RC and the metal wiring layer in the vicinity of the contact window RC.

ET2.MET2’  との間にダミーコンタクト窓D
RCを設けたことにある。こうすることにより基板表面
のSiと配線層のA1との反応はコンタクト窓RCと共
にダミーコンタクト窓DRCでも起こる。通常Al中へ
のSiの拡散はA1中のSiの量が1%程度になると飽
和しそれ以上進まない。
ET2. Dummy contact window D between MET2'
This is due to the establishment of RC. By doing so, the reaction between Si on the substrate surface and A1 in the wiring layer occurs not only in the contact window RC but also in the dummy contact window DRC. Normally, the diffusion of Si into Al reaches saturation when the amount of Si in A1 reaches about 1% and does not proceed any further.

従ってダミーコンタクト窓RCからのSiの拡散はその
拡散に要するAIの量が少なくなり、すぐに飽和してし
まう。そこで製造工程において、所定の熱処理を施こし
てコンタクト窓RCからAl中へのSiの拡散を飽和さ
せておけば、コンタクト抵抗に実質的な影響を及ぼす縁
端部4での拡散はそれ以上進まず、コンタクト抵抗が変
化することはない。
Therefore, the amount of AI required for diffusion of Si from the dummy contact window RC becomes small, and saturates quickly. Therefore, if a predetermined heat treatment is performed in the manufacturing process to saturate the diffusion of Si from the contact window RC into Al, the diffusion at the edge portion 4, which has a substantial effect on the contact resistance, will proceed further. First, the contact resistance does not change.

さらに本実施例での第2の要点は、コンタクト窓RC上
の金属配線層とダミーコンタクト窓DRC上の金属配線
層との間の金属配線層DMETが細幅に形成されている
点である。つまりコンタクト窓RCからのSiの拡散は
、ダミーコンタクト窓DRCからのStの拡散により金
属配線層MET2側へは拡散できずに飽和してしまうが
、金属配線層DMETを細幅にすることにより、コンタ
クトRCからのSiの拡散はなおいっそう進みにくくな
る。
Furthermore, the second point of this embodiment is that the metal wiring layer DMET between the metal wiring layer above the contact window RC and the metal wiring layer above the dummy contact window DRC is formed to have a narrow width. In other words, the diffusion of Si from the contact window RC becomes saturated due to the diffusion of St from the dummy contact window DRC, without being able to diffuse toward the metal wiring layer MET2 side. However, by making the metal wiring layer DMET narrower, The diffusion of Si from the contact RC becomes even more difficult.

本実施例での第3の要点は、第3図の従来例では大量の
AIよりなる接地用の配線層MET2が直接コンタクト
窓RCに接続されていたが、ここではMET2に細幅の
配線層MET2’ を介して接続している。こうするこ
とにより、接地用の配線層MET2の大量のA1がコン
タクト窓RC及びダミーコンタクト窓DRCより遠くな
り、コンタクト部でのAIとSiの反応に必要なAIの
供給効率が下がり、ますます反応が起こりにくくなり、
よりコンタクト抵抗は安定化する。
The third point in this embodiment is that in the conventional example shown in FIG. It is connected via MET2'. By doing this, a large amount of A1 in the grounding wiring layer MET2 is moved away from the contact window RC and the dummy contact window DRC, which reduces the supply efficiency of AI necessary for the reaction between AI and Si in the contact area, and the reaction is further increased. becomes less likely to occur,
Contact resistance becomes more stable.

第7図は本発明の他の実施例の部分平面図で、コンタク
ト窓RC及びダミーコンタクト窓DRCの部分のみを示
している。前述の実施例ではダミーコンタクト窓DRC
はコンタクト窓RCと別に離隔して設けられていたが、
本実施例の如くダミーコンタクト窓DRCがコンタクト
窓RCと一体化しても良い。すなわちコンタクト抵抗に
実質的に影響を与える縁端部4でのAIとSiの反応が
進まなければよいのであるから、ダミーコンタクト窓D
RCからのSiの拡散によりコンタクト窓RCから金属
配線層MET2’側へのSiの拡散が阻止されれば良く
、ダミーコンタクト窓DRCの形状は適宜選択できる。
FIG. 7 is a partial plan view of another embodiment of the present invention, showing only the contact window RC and dummy contact window DRC. In the above embodiment, the dummy contact window DRC
was provided separately from the contact window RC,
As in this embodiment, the dummy contact window DRC may be integrated with the contact window RC. In other words, since the reaction between AI and Si at the edge portion 4, which substantially affects the contact resistance, should not proceed, the dummy contact window D is
It is sufficient that the diffusion of Si from the contact window RC toward the metal wiring layer MET2' is prevented by the diffusion of Si from the RC, and the shape of the dummy contact window DRC can be selected as appropriate.

以上説明した様に本発明によれば、コンタクト抵抗の変
動がほとんどなく、実質的な抵抗値(拡散抵抗子コンタ
クト抵抗)がほとんど変化しない抵抗を正確に設計でき
るので、特に抵抗値の正確さが厳しく要求されるような
回路に適用するとはなはだ有効である。
As explained above, according to the present invention, it is possible to accurately design a resistor in which there is almost no variation in contact resistance and in which the actual resistance value (diffusion resistor contact resistance) hardly changes. It is extremely effective when applied to circuits with strict requirements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般的なカレントミラー回路、第2図は従来の
設計パターンの平面図、第3図は第2図の部分平面図、
第4図は第3図のx−x’ は断面図、第5図は本発明
の一実施例の平面図、第6図は第5図のY−Y’断面図
、第7図は本発明の他の実施例の部分平面図である。 図中、l、2:半導体基板、RED :拡散層(抵抗拡
散層)、RC:コンタクト窓、DRC:ダミーコンタク
ト窓、3:絶縁層、METI、MET2.MET2’ 
、DMT:金属配線層第 1 図 第2図 躬 図 第 乙°図
Figure 1 is a general current mirror circuit, Figure 2 is a plan view of a conventional design pattern, Figure 3 is a partial plan view of Figure 2,
4 is a sectional view along line xx' in FIG. 3, FIG. 5 is a plan view of an embodiment of the present invention, FIG. 6 is a sectional view taken along YY' in FIG. FIG. 6 is a partial plan view of another embodiment of the invention. In the figure, l, 2: semiconductor substrate, RED: diffusion layer (resistance diffusion layer), RC: contact window, DRC: dummy contact window, 3: insulating layer, METI, MET2. MET2'
, DMT: Metal wiring layer Figure 1 Figure 2 Figure 2 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)シリコンよりなる一導電型の半導体基板の表面に
反対導電型の拡散層を形成する工程と、 該拡散層上に絶縁層を形成する工程と、 該絶縁層上に該拡散層の一部を露出するコンタクト窓と
、それに隣接するダミーコンタクト窓を形成する工程と
、 該コンタクト窓および該ダミーコンタクト窓を接続し、
且つ該コンタクト窓と該ダミーコンタクト窓との間は、
両窓の幅よりも狭く構成された細線部を有する第一の金
属配線層を該絶縁層上に形成する工程と、 該コンタクト窓に対して、該ダミーコンタクト窓を挟ん
で対向する位置に該第一の金属配線層に接続する第二の
金属配線層を形成する工程と、該第一の金属配線層の該
細線部に該コンタクト窓および該ダミーコンタクト窓を
介して該基板のシリコンを拡散して実質的に飽和させる
熱処理工程とを含むことを特徴とする半導体装置の製造
方法。
(1) A step of forming a diffusion layer of an opposite conductivity type on the surface of a semiconductor substrate of one conductivity type made of silicon, a step of forming an insulating layer on the diffusion layer, and a step of forming one of the diffusion layers on the insulating layer. forming a contact window exposing a portion of the contact window and a dummy contact window adjacent thereto; connecting the contact window and the dummy contact window;
And between the contact window and the dummy contact window,
forming a first metal wiring layer on the insulating layer having a thin line portion configured to be narrower than the width of both windows; forming a second metal wiring layer connected to the first metal wiring layer; and diffusing silicon of the substrate into the thin wire portion of the first metal wiring layer through the contact window and the dummy contact window. A method for manufacturing a semiconductor device, comprising: a heat treatment step for substantially saturating the semiconductor device.
JP34099890A 1990-11-30 1990-11-30 Manufacture of semiconductor device Pending JPH03204973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34099890A JPH03204973A (en) 1990-11-30 1990-11-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34099890A JPH03204973A (en) 1990-11-30 1990-11-30 Manufacture of semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP55176672A Division JPS57100755A (en) 1980-12-15 1980-12-15 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH03204973A true JPH03204973A (en) 1991-09-06

Family

ID=18342259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34099890A Pending JPH03204973A (en) 1990-11-30 1990-11-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH03204973A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6430368B1 (en) 1999-08-27 2002-08-06 Ricoh Company, Ltd. Autofocus apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945685A (en) * 1972-09-04 1974-05-01

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945685A (en) * 1972-09-04 1974-05-01

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6430368B1 (en) 1999-08-27 2002-08-06 Ricoh Company, Ltd. Autofocus apparatus

Similar Documents

Publication Publication Date Title
US4199778A (en) Interconnection structure for semiconductor integrated circuits
JPH03204973A (en) Manufacture of semiconductor device
JPH0127588B2 (en)
JPH0746716B2 (en) Manufacturing method of injected resistor and semiconductor resistor
JP2687469B2 (en) Semiconductor device
JPH05235279A (en) Semiconductor integrated circuit device
JPS62134961A (en) Semiconductor integrated circuit device
JPS6142945A (en) Semiconductor device
JPS6256666B2 (en)
JPS60142537A (en) Manufacture of integrated circuit device
JPS6037158A (en) Mos integrated circuit
JPH01228159A (en) Semiconductor device and manufacture thereof
JPH0645526A (en) Semiconductor diffusion resistor
JPS59155163A (en) Semiconductor device
JPH0328829B2 (en)
JPS6320864A (en) Semiconductor device
JPH0382041A (en) Manufacture of semiconductor integrated circuit
JPS6256667B2 (en)
JPH01150336A (en) Semiconductor device
JPS59225565A (en) Manufacture of metal ballast resistor in semiconductor device
JPS60145651A (en) Resistor formation for semiconductor ic
JPH04145657A (en) Semiconductor device
JPH04348560A (en) Production of semiconductor device
JPH0325516A (en) Constant current circuit
JPH07202167A (en) Semiconductor device