JPH04348560A - Production of semiconductor device - Google Patents

Production of semiconductor device

Info

Publication number
JPH04348560A
JPH04348560A JP12074891A JP12074891A JPH04348560A JP H04348560 A JPH04348560 A JP H04348560A JP 12074891 A JP12074891 A JP 12074891A JP 12074891 A JP12074891 A JP 12074891A JP H04348560 A JPH04348560 A JP H04348560A
Authority
JP
Japan
Prior art keywords
film
forming
polysilicon film
layer
diffusion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12074891A
Other languages
Japanese (ja)
Inventor
Masahiro Nakatani
昌弘 中谷
Takehiro Hirai
健裕 平井
Mitsuo Tanaka
光男 田中
Akihiro Kanda
神田 彰弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12074891A priority Critical patent/JPH04348560A/en
Publication of JPH04348560A publication Critical patent/JPH04348560A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To provide highly accurate resistance for a semiconductor device. CONSTITUTION:An oxide film 4, a p-type diffused layer 5 as a resistance layer and an Si3N4 film 6 are formed on a p-type Si substrate 1, then, an independent polysilicon film pattern 12 is formed on the top of a p-type diffused layer 5 simultaneously with the polysilicon film patterns on the electrodes. Even when an Al wiring is formed on the resistance layer, since the distance between the resistance layer and an Al film is long enough, the resistance change caused by the potential of the Al wiring is suppressed and a highly accurate device is provided.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は高精度の半導体装置の製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device with high precision.

【0002】0002

【従来の技術】近年、アナログICの集積度が上がるに
つれて、さらに高精度な抵抗が要求されている。図2は
、npnバイポーラトランジスタのベース拡散層を抵抗
層とした拡散抵抗の製造工程断面図の一例であり、高精
度化のために電極部にバリアメタルを採用している。
2. Description of the Related Art In recent years, as the degree of integration of analog ICs has increased, resistors with even higher precision have been required. FIG. 2 is an example of a cross-sectional view of the manufacturing process of a diffused resistor in which the base diffusion layer of an npn bipolar transistor is used as a resistance layer, and a barrier metal is used for the electrode portion to improve precision.

【0003】まず、p型Si基板1に周知の技術を用い
て、n+埋め込み層2、nーエピ層3を形成する。次に
、酸化膜4を約50nmを形成し、例えばレジストをマ
スクにしてB+を30kevで1.5E13cmー2の
条件で注入することにより、p型拡散層5を形成する。 次に、Si3N4膜6を約50nm堆積した後、例えば
レジストをマスクにして酸化膜4及びSi3N4膜6を
ドライエッチングして電極部となる開口窓を形成する。 次に、ポリシリコン膜7を約300nm形成し、例えば
レジストをマスクにしてポリシリコン膜7をドライエッ
チングして、電極となるポリシリコン膜パターン7を形
成する。次に、例えばレジストをマスクにして、ポリシ
リコン膜パターン7にB+を40kevで2E16cm
ー2の条件で注入した後、900℃60分間N2雰囲気
中で熱処理を行うことにより、コンタクト拡散領域とな
るp++型拡散層8を形成する(図2(a))。
First, an n+ buried layer 2 and an n- epitaxial layer 3 are formed on a p-type Si substrate 1 using a well-known technique. Next, an oxide film 4 of about 50 nm is formed, and a p-type diffusion layer 5 is formed by implanting B+ at 30 kev and 1.5E13 cm -2 using a resist as a mask, for example. Next, after depositing the Si3N4 film 6 to a thickness of about 50 nm, the oxide film 4 and the Si3N4 film 6 are dry-etched using, for example, a resist as a mask to form an opening window that will become an electrode portion. Next, a polysilicon film 7 is formed to a thickness of about 300 nm, and the polysilicon film 7 is dry-etched using, for example, a resist as a mask to form a polysilicon film pattern 7 that will become an electrode. Next, for example, using a resist as a mask, apply B+ to the polysilicon film pattern 7 at 40keV to 2E16cm.
After implantation under conditions of -2, a heat treatment is performed at 900° C. for 60 minutes in an N2 atmosphere to form a p++ type diffusion layer 8 which will become a contact diffusion region (FIG. 2(a)).

【0004】次に、CVDSiO2膜9を堆積した後、
例えばレジストをマスクにしてCVDSiO2膜9をド
ライエッチングし、ポリシリコン膜パターン7の上面に
開口窓を形成する。次に、例えば厚さが約100nm/
5nmのTiN/Tiからなるバリアメタル10を形成
した後、厚さが約800nmのAl膜11をスパッタ蒸
着で形成する。その後、例えばレジストをマスクにして
、バリアメタル10及びAl膜11をドライエッチング
して所望のAl膜パターン11を形成し、ポリシリコン
膜7とAl膜11とを電気的に接続してこの半導体装置
は完成する(図2(b))。
Next, after depositing the CVDSiO2 film 9,
For example, the CVDSiO2 film 9 is dry-etched using a resist as a mask to form an opening window on the upper surface of the polysilicon film pattern 7. Next, for example, the thickness is about 100 nm/
After forming a barrier metal 10 made of TiN/Ti with a thickness of 5 nm, an Al film 11 with a thickness of about 800 nm is formed by sputter deposition. Thereafter, for example, using a resist as a mask, the barrier metal 10 and the Al film 11 are dry-etched to form a desired Al film pattern 11, and the polysilicon film 7 and the Al film 11 are electrically connected to form the semiconductor device. is completed (Fig. 2(b)).

【0005】[0005]

【発明が解決しようとする課題】しかしながらこのよう
な従来の半導体装置の製造方法では、抵抗層の上にAl
配線が通ると、抵抗層とAl膜の間にある絶縁膜(酸化
膜とSi3N4膜)が薄いために、Al配線の電位の影
響を受けて抵抗値が変動する(以後Alバイアス効果と
呼ぶことにする)。特に、ペアの抵抗の場合には、一方
の抵抗層の上にのみAl配線が通るとペアの抵抗値のバ
ラツキが増大し、デバイスの高精度化にとって大きな問
題を有していた。
[Problems to be Solved by the Invention] However, in such conventional semiconductor device manufacturing methods, Al
When the wiring passes through, the resistance value fluctuates due to the influence of the potential of the Al wiring because the insulating film (oxide film and Si3N4 film) between the resistance layer and the Al film is thin (hereinafter referred to as the Al bias effect). ). In particular, in the case of a pair of resistors, if the Al wiring runs over only one of the resistor layers, the variation in the resistance value of the pair increases, which poses a major problem in improving the precision of the device.

【0006】本発明は上記問題点に鑑み、工程数を増や
すことなく、Alバイアス効果を抑制することにより、
高精度の半導体装置が得られる半導体装置の製造方法を
提供することを目的とする。
In view of the above problems, the present invention suppresses the Al bias effect without increasing the number of steps.
It is an object of the present invention to provide a method for manufacturing a semiconductor device that allows a highly accurate semiconductor device to be obtained.

【0007】[0007]

【課題を解決するための手段】本発明は上記問題点を解
決するために、一導電型半導体基板の一主表面に、逆導
電型の拡散層を形成する工程と、前記半導体基板表面に
第一の絶縁膜を形成する工程と、前記第一の絶縁膜を選
択的に除去し、前記拡散層上の所定の位置に第一の開口
窓を形成する工程と、前記第一の開口窓及び前記拡散層
上部に、各々独立した第一及び第二の半導体膜パターン
を形成する工程と、前記半導体基板上に第二の絶縁膜を
形成する工程と、前記第二の絶縁膜を選択的に除去し、
前記第一の半導体膜パターン上に第二の開口窓を形成す
る工程と、金属膜を形成し、前記第一の半導体膜パター
ンと前記金属膜とを電気的に接続する工程とを少なくと
も備えた半導体装置の製造方法である。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention includes a step of forming a diffusion layer of an opposite conductivity type on one main surface of a semiconductor substrate of one conductivity type, and a step of forming a diffusion layer of an opposite conductivity type on one main surface of a semiconductor substrate of one conductivity type. forming a first insulating film; selectively removing the first insulating film and forming a first opening window at a predetermined position on the diffusion layer; forming independent first and second semiconductor film patterns on the diffusion layer; forming a second insulating film on the semiconductor substrate; and selectively forming the second insulating film. remove,
The method comprises at least a step of forming a second opening window on the first semiconductor film pattern, and a step of forming a metal film and electrically connecting the first semiconductor film pattern and the metal film. This is a method for manufacturing a semiconductor device.

【0008】[0008]

【作用】本発明は上記の構成により、電極部だけでなく
抵抗層の上にもポリシリコン膜を形成していることによ
り、従来例の場合に比べて、抵抗層とAl膜との距離を
ポリシリコン膜の厚みだけ大きくすることができ、Al
バイアス効果による抵抗値の変動を抑制することができ
る。
[Function] With the above structure, the present invention forms a polysilicon film not only on the electrode portion but also on the resistance layer, thereby reducing the distance between the resistance layer and the Al film compared to the conventional example. The thickness of the polysilicon film can be increased, and Al
Fluctuations in resistance value due to bias effects can be suppressed.

【0009】[0009]

【実施例】以下、本発明の実施例について、図面を参照
しながら説明する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0010】図1は、本発明の実施例を示すnpnバイ
ポーラトランジスタのベース拡散層を抵抗層とした拡散
抵抗の製造工程断面図の一例である。
FIG. 1 is an example of a cross-sectional view of a manufacturing process of a diffused resistor in which the base diffusion layer of an npn bipolar transistor is a resistance layer, showing an embodiment of the present invention.

【0011】まず、p型Si基板1に周知の技術を用い
て、n+埋め込み層2、nーエピ層3を形成する。次に
、酸化膜4を約50nm形成し、例えばレジストをマス
クにしてB+を30kevで1.5E13cmー2の条
件で注入することにより、p型拡散層5を形成する。次
に、Si3N4膜6を約50nm堆積した後、例えばレ
ジストをマスクにして酸化膜4及びSi3N4膜6をド
ライエッチングして電極部となる開口窓を形成する。
First, an n+ buried layer 2 and an n- epilayer 3 are formed on a p-type Si substrate 1 using a well-known technique. Next, an oxide film 4 of about 50 nm is formed, and a p-type diffusion layer 5 is formed by, for example, implanting B+ at 30 keV and 1.5E13 cm-2 using a resist as a mask. Next, after depositing the Si3N4 film 6 to a thickness of about 50 nm, the oxide film 4 and the Si3N4 film 6 are dry-etched using, for example, a resist as a mask to form an opening window that will become an electrode portion.

【0012】次に、ポリシリコン膜を約300nm形成
し、ポリシリコン膜を例えばレジストをマスクにしてド
ライエッチングし、電極部にポリシリコン膜パターン7
を形成し、電極部以外のp型拡散層5の上部にポリシリ
コン膜パターン12を形成する。次に、ポリシリコン膜
パターン7に、例えばレジストをマスクにしてB+を4
0kevで2E16cmー2の条件で注入した後、90
0℃60分間N2雰囲気中で熱処理を行うことにより、
コンタクト拡散領域となるp++型拡散層8を形成する
(図1(a))。
Next, a polysilicon film is formed to a thickness of approximately 300 nm, and the polysilicon film is dry-etched using, for example, a resist as a mask to form a polysilicon film pattern 7 on the electrode portion.
A polysilicon film pattern 12 is formed on the p-type diffusion layer 5 other than the electrode portion. Next, apply 4 B+ to the polysilicon film pattern 7 using, for example, a resist as a mask.
After injection under the conditions of 2E16cm-2 at 0keV, 90
By performing heat treatment at 0°C for 60 minutes in N2 atmosphere,
A p++ type diffusion layer 8 which will become a contact diffusion region is formed (FIG. 1(a)).

【0013】次に、CVDSiO2膜9を約400nm
堆積する。この場合、ポリシリコン膜パターン7とポリ
シリコン膜パターン12の間隔が狭い場合、例えば約0
.8μm以下の時、ポリシリコン膜パターン7とポリシ
リコン膜パターン12の間を、堆積したCVDSiO2
膜9で埋めることができ、ポリシリコン膜パターンによ
る段差を低減することができる。
Next, the CVDSiO2 film 9 is coated with a thickness of about 400 nm.
accumulate. In this case, if the distance between the polysilicon film pattern 7 and the polysilicon film pattern 12 is narrow, for example, about 0.
.. When the thickness is 8 μm or less, the deposited CVDSiO2 is removed between polysilicon film pattern 7 and polysilicon film pattern 12.
This can be filled with the film 9, thereby reducing the step difference caused by the polysilicon film pattern.

【0014】次に、CVDSiO2膜9を例えばレジス
トをマスクにしてドライエッチングし、ポリシリコン膜
パターン7の上にコンタクト窓を形成する。次に、例え
ば厚さが約100nm/5nmのTiN/Tiからなる
バリアメタル10を形成した後、厚さが約800nmの
Al膜11をスパッタ蒸着で形成する。その後、バリア
メタル10及びAl膜11を例えばレジストをマスクに
してドライエッチングして所望のAl膜パターン11を
形成し、ポリシリコン膜7とAl膜11とを電気的に接
続してこの半導体装置は完成する(図1(b))。
Next, the CVDSiO2 film 9 is dry-etched using, for example, a resist as a mask to form a contact window on the polysilicon film pattern 7. Next, for example, after forming a barrier metal 10 made of TiN/Ti with a thickness of about 100 nm/5 nm, an Al film 11 with a thickness of about 800 nm is formed by sputter deposition. Thereafter, the barrier metal 10 and the Al film 11 are dry-etched using, for example, a resist as a mask to form a desired Al film pattern 11, and the polysilicon film 7 and the Al film 11 are electrically connected to form this semiconductor device. Completed (Figure 1(b)).

【0015】以上のように、本実施例はnpnバイポー
ラトランジスタのベース拡散層を抵抗層とした拡散抵抗
を形成する場合の一例であり、ポリシリコン膜パターン
12がp型拡散層5の上部に形成されているために、抵
抗層の上にAl配線が通っても、抵抗層とAl配線との
距離が、ポリシリコン膜パターン12(約300nm)
の厚みだけ従来例の場合と比べて大きくなるために、A
lバイアス効果による抵抗値の変動を抑制することがで
きる。特に、ペアの抵抗の場合には、一方の抵抗層の上
にのみAl配線が通っても、ペアの抵抗値のバラツキが
抑制でき、デバイスの高精度化を図ることができる。
As described above, this embodiment is an example of forming a diffused resistor using the base diffusion layer of an npn bipolar transistor as a resistance layer, and the polysilicon film pattern 12 is formed on the top of the p-type diffusion layer 5. Therefore, even if the Al wiring passes over the resistive layer, the distance between the resistive layer and the Al wiring is limited to the polysilicon film pattern 12 (approximately 300 nm).
Since the thickness of A is larger than that of the conventional example,
It is possible to suppress fluctuations in resistance value due to l bias effect. In particular, in the case of a pair of resistors, even if the Al wiring runs over only one of the resistor layers, variations in the resistance value of the pair can be suppressed, and high precision of the device can be achieved.

【0016】なお、上記実施例においてはp型拡散抵抗
の場合について説明したが、本発明はn型拡散抵抗等他
の拡散抵抗に対しても適用できることはいうまでもない
[0016] In the above embodiment, the case of a p-type diffused resistor has been explained, but it goes without saying that the present invention can be applied to other diffused resistors such as an n-type diffused resistor.

【0017】[0017]

【発明の効果】以上の実施例から明らかなように、本発
明によれば抵抗層の上に厚いポリシリコン膜パターンを
形成するために、従来例の場合に比べて抵抗層とAl膜
との距離が大きくなるので、Alバイアス効果による抵
抗値の変動を抑制することができる。特に、ペアの抵抗
の場合には、一方の抵抗層の上にのみAl配線が通って
も、ペアの抵抗値のバラツキが抑制でき、高精度のデバ
イスを提供できる。
As is clear from the above embodiments, according to the present invention, in order to form a thick polysilicon film pattern on the resistance layer, the connection between the resistance layer and the Al film is improved compared to the conventional example. Since the distance is increased, fluctuations in resistance value due to the Al bias effect can be suppressed. In particular, in the case of a pair of resistors, even if the Al wiring runs over only one resistor layer, variations in the resistance values of the pair can be suppressed, and a highly accurate device can be provided.

【0018】さらに、電極部に堆積したポリシリコン膜
と、電極部以外の抵抗層の上に堆積したポリシリコン膜
との間隔を小さくすることにより、ポリシリコン膜上に
CVD絶縁膜を形成した時の電極部周辺における段差を
なくすことができ、平坦性も兼ね備えた構造をもったデ
バイスを提供できるという点も大きな効果である。
Furthermore, by reducing the distance between the polysilicon film deposited on the electrode part and the polysilicon film deposited on the resistive layer other than the electrode part, when a CVD insulating film is formed on the polysilicon film, Another major effect is that it is possible to eliminate the step difference around the electrode portion of the device and provide a device with a structure that also has flatness.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例における拡散抵抗の製造工程
断面図である。
FIG. 1 is a cross-sectional view of the manufacturing process of a diffused resistor in one embodiment of the present invention.

【図2】従来の実施例を説明するための製造工程断面図
である。
FIG. 2 is a sectional view of a manufacturing process for explaining a conventional example.

【符号の説明】[Explanation of symbols]

1  p型Si基板 2  n+埋め込み層 3  nーエピ層 4  酸化膜 5  p型拡散層 6  Si3N4膜 7  ポリシリコン膜(電極部) 8  p++型拡散層 9  CVDSiO2膜 10  バリアメタル 11  Al膜 1 p-type Si substrate 2 n+ buried layer 3 n-epi layer 4 Oxide film 5 p-type diffusion layer 6 Si3N4 film 7 Polysilicon film (electrode part) 8 p++ type diffusion layer 9 CVDSiO2 film 10 Barrier metal 11 Al film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  一導電型半導体基板の一主表面に、逆
導電型の拡散層を形成する工程と、前記半導体基板表面
に第一の絶縁膜を形成する工程と、前記第一の絶縁膜を
選択的に除去し、前記拡散層上の所定の位置に第一の開
口窓を形成する工程と、前記第一の開口窓及び前記拡散
層上部に、各々独立した第一及び第二の半導体膜パター
ンを形成する工程と、前記半導体基板上に第二の絶縁膜
を形成する工程と、前記第二の絶縁膜を選択的に除去し
、前記第一の半導体膜パターン上に第二の開口窓を形成
する工程と、金属膜を形成し、前記第一の半導体膜パタ
ーンと前記金属膜とを電気的に接続する工程とを少なく
とも有することを特徴とする半導体装置の製造方法。
1. A step of forming a diffusion layer of an opposite conductivity type on one main surface of a semiconductor substrate of one conductivity type, a step of forming a first insulating film on the surface of the semiconductor substrate, and a step of forming the first insulating film on the surface of the semiconductor substrate. selectively removing and forming a first opening window at a predetermined position on the diffusion layer, and forming independent first and second semiconductors on the first opening window and the upper part of the diffusion layer, respectively. forming a film pattern; forming a second insulating film on the semiconductor substrate; selectively removing the second insulating film and forming a second opening on the first semiconductor film pattern; A method for manufacturing a semiconductor device, comprising at least the steps of forming a window, forming a metal film, and electrically connecting the first semiconductor film pattern and the metal film.
【請求項2】  半導体膜がポリシリコン膜であること
を特徴とする請求項1記載の半導体装置の製造方法。
2. The method of manufacturing a semiconductor device according to claim 1, wherein the semiconductor film is a polysilicon film.
JP12074891A 1991-05-27 1991-05-27 Production of semiconductor device Pending JPH04348560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12074891A JPH04348560A (en) 1991-05-27 1991-05-27 Production of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12074891A JPH04348560A (en) 1991-05-27 1991-05-27 Production of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04348560A true JPH04348560A (en) 1992-12-03

Family

ID=14794011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12074891A Pending JPH04348560A (en) 1991-05-27 1991-05-27 Production of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04348560A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158290A (en) * 2000-08-30 2002-05-31 Agere Systems Guardian Corp Field plate resistor having route formation region increased above

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158290A (en) * 2000-08-30 2002-05-31 Agere Systems Guardian Corp Field plate resistor having route formation region increased above

Similar Documents

Publication Publication Date Title
US3899372A (en) Process for controlling insulating film thickness across a semiconductor wafer
JPS5946107B2 (en) Manufacturing method of MIS type semiconductor device
JPS5922380B2 (en) Handout Taisoshino Seizouhouhou
JPH07114210B2 (en) Method for manufacturing semiconductor device
US4885261A (en) Method for isolating a semiconductor element
US4283235A (en) Dielectric isolation using shallow oxide and polycrystalline silicon utilizing selective oxidation
JPH0410222B2 (en)
JPH04348560A (en) Production of semiconductor device
JPS63207177A (en) Manufacture of semiconductor device
KR20000075706A (en) Semiconductor and method relating to semiconductors
JPS6161539B2 (en)
JPH1140573A (en) Manufacture of semiconductor device
JPS5815944B2 (en) semiconductor equipment
JPH05102059A (en) Manufacture of semiconductor device
JPH04299564A (en) Manufacture of semiconductor device and semiconductor device
JP2830295B2 (en) Method for manufacturing semiconductor device
JP3147930B2 (en) Method for manufacturing polycrystalline silicon high resistance element
JPH03231431A (en) Manufacture of semiconductor device and semiconductor device
JPH04307966A (en) Manufacture of semiconductor device
JPS6038874B2 (en) Method for manufacturing insulator gate field effect transistor
JPH0244142B2 (en) HANDOTAISOCHINOSEIZOHOHO
JPS6316655A (en) Manufacture of semiconductor device
JPS6312389B2 (en)
JPS5947756A (en) Manufacture of semiconductor resistance element
JPS61158174A (en) Semiconductor device and manufacture thereof