JPH02121366A - Current mirror circuit - Google Patents

Current mirror circuit

Info

Publication number
JPH02121366A
JPH02121366A JP63275012A JP27501288A JPH02121366A JP H02121366 A JPH02121366 A JP H02121366A JP 63275012 A JP63275012 A JP 63275012A JP 27501288 A JP27501288 A JP 27501288A JP H02121366 A JPH02121366 A JP H02121366A
Authority
JP
Japan
Prior art keywords
misfets
misfet
anisotropy
current mirror
mirror circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63275012A
Other languages
Japanese (ja)
Inventor
Toshiki Hanaoka
花岡 歳樹
Akira Nakada
章 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP63275012A priority Critical patent/JPH02121366A/en
Publication of JPH02121366A publication Critical patent/JPH02121366A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make each total area of a drain and a source region constant so as to eliminate the anisotropy of an element due to asymmetry by a method wherein two active elements in a current mirror circuit are composed of two MISFETs, one has a shadow region on a source electrode side and the other has a shadow region on a drain electrode, connected with each other in parallel. CONSTITUTION:A MISFET is used as an active element, in a current mirror. A phenomenon such as a shadow region occurs even in the MISFET, and it occurs on the same side toward channels 21 and 22. For instance, provided that the shadow regions occur on the left side of the channels, they occur on a drain electrode side in the channel 21 and a source electrode side in the channel 22, so that an active element is composed of two MISFETs, which are different from each other in electric characteristics due to anisotropy, connected in parallel. As the anisotropy is caused by the asymmetry of the MISFETs in structure, all the anisotropies are gathered through two kinds of MISFETs, and the MISFETs are connected together in parallel, so that all the anisotropy of an active element can be canceled out.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は、電子回路技術に関するもので、特に、半導体
集積回路に使用して好適なものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application 1] The present invention relates to electronic circuit technology, and is particularly suitable for use in semiconductor integrated circuits.

「従来の技術J 従来、カレントミラー回路に用いられたMISFETは
第2図(a)に示すようなパターンにより作成していた
。lの矩形はイオン打込み領域であり、2の矩形はゲー
ト電極を形成する領域である。イオン打込みは、チャネ
リングによって不純物濃度がウェハの深部で高くなるこ
とを防ぐために、ウェハの表面に垂直な結晶軸に対し約
7度の角度をもって行なわれる。
``Prior art J'' Conventionally, MISFETs used in current mirror circuits have been fabricated with a pattern as shown in Figure 2(a).The rectangle 1 is the ion implantation region, and the rectangle 2 is the gate electrode. The ion implantation is performed at an angle of about 7 degrees with respect to the crystal axis perpendicular to the wafer surface in order to prevent the impurity concentration from increasing deep in the wafer due to channeling.

セルファラインのプロセスにおいて、イオン打込みはゲ
ート電極が形成された後に行われる。この時の状態を第
2図(b)に示す、第2図(b)は第2図(a)のA−
A’の断面に相当する。第2図(a)の11.12の拡
散電極領域は第2図(b)の11’   12’に相当
する。また、第2図(a)21のチャネル上部のゲート
部は第2図(b)の21’ に相当し、31はゲート酸
化膜である。
In the Selfaline process, ion implantation is performed after the gate electrode is formed. The state at this time is shown in Fig. 2(b). Fig. 2(b) is A-
This corresponds to the cross section of A'. The diffusion electrode area 11.12 in FIG. 2(a) corresponds to 11' and 12' in FIG. 2(b). The gate portion above the channel 21 in FIG. 2(a) corresponds to 21' in FIG. 2(b), and 31 is a gate oxide film.

イオン打込み領域のパターンは第2図(a) 1のよう
に矩形であっても、ゲート電極とゲート酸化膜がイオン
流をシールドするために、第2図(a)の1は11と1
2の領域、すなわち第2図Tb)の11′と12′の領
域に分割される。
Even if the pattern of the ion implantation region is rectangular as shown in Figure 2(a) 1, 1 in Figure 2(a) is similar to 11 and 1 because the gate electrode and gate oxide film shield the ion flow.
It is divided into two regions, ie, regions 11' and 12' in FIG. 2 Tb).

しかし、イオン打込みが前記のごとく角度をもっている
ために、第2図(b)の12′と21’の境界部分に4
1のようにシャドウ領域が生じる。その結果、パターン
は第2図(a)のごとく左右対称であっても、実際の素
子構造は第2図(b)のごとく非対称的となり、電気的
特性も電流の方向によって異方性を示すことになる。
However, since the ion implantation has an angle as described above, there are 4
A shadow area as shown in 1 occurs. As a result, even though the pattern is symmetrical as shown in Figure 2(a), the actual device structure becomes asymmetrical as shown in Figure 2(b), and the electrical characteristics also exhibit anisotropy depending on the direction of the current. It turns out.

それゆλに、基準電流大力側MISFETと定電流出力
側MISFETの電気的特性(閾値電圧、β)が完全に
同一でなければならないカレントミラー回路では、前記
異方性により、MISFETのパターンが同一であって
も、電気的特性が同一ではなくなり、基lit流に対し
て定電流出力は約10%の差異を生ずる。特に、基4電
流入力側MISFETと定電流出力側MISFETのソ
ース領域を共通にしたものは、必然的に前記2個のMI
SFETでシャドウ領域が生ずる電極が異なるため、差
異が大きくなる。
Therefore, in a current mirror circuit in which the electrical characteristics (threshold voltage, β) of the reference current large output side MISFET and the constant current output side MISFET must be completely the same, due to the anisotropy, the MISFET patterns are the same. Even so, the electrical characteristics are no longer the same, and the constant current output differs by about 10% from the base lit current. In particular, if the base 4 current input side MISFET and the constant current output side MISFET have a common source region, the above two MISFETs will inevitably
The difference is large because the electrodes where the shadow regions occur in the SFETs are different.

また、電気的特性の異方性はリソグラフィーによるバタ
ーニングの際のパターンずれによっても生じる。この場
合の異方性はソース領域とトレイン領域の面積差による
Furthermore, anisotropy in electrical properties is also caused by pattern deviation during patterning by lithography. The anisotropy in this case is due to the difference in area between the source region and the train region.

[発明が解決しようとする課題] しかし、従来技術はMISFET構造の異方性により1
期待する正確なカレントミラー効果が得難いという欠点
を有する。
[Problem to be solved by the invention] However, the conventional technology
The drawback is that it is difficult to obtain the desired accurate current mirror effect.

本発明は、従来技術にみられるような欠点を解決しよう
とするもので、MISFETの電気的特性の異方性がイ
オン打込み角とパターンずれに起因することに着目し、
MISFETの形状を改良することによって、MISF
ETの電気的特性の異方性をなくし、正確なカレントミ
ラー効果を得ることを目的とする。
The present invention aims to solve the drawbacks seen in the prior art, and focuses on the fact that the anisotropy of the electrical characteristics of MISFET is caused by the ion implantation angle and pattern misalignment.
By improving the shape of MISFET, MISF
The purpose is to eliminate the anisotropy of the electrical characteristics of ET and obtain an accurate current mirror effect.

〔課題を解決するための手段1 同一の電気的特性を有する第一と第二のMISFETか
ら成り、第一のMISFETはソース電極を共通電源端
子に接続し、ゲート電極とドレイン電極を基準電流入力
端子に接続し、第二のMISFETはソース電極を共通
電源端子に接続し。
[Means for Solving the Problem 1] Consisting of first and second MISFETs having the same electrical characteristics, the first MISFET has its source electrode connected to a common power supply terminal, and its gate electrode and drain electrode connected to a reference current input. The second MISFET has its source electrode connected to the common power supply terminal.

ゲート電極を前記基準電流入力端子に接続し、ドレイン
電極を定電流出力端子に接続したカレントミラー回路の
各々のMISFETにおいて、中央にトレイン領域を配
置し、該ドレイン領域をはさみ同電位のゲート電極を設
け、この構造をはさむように同電位のソース領域を設け
たことを特徴とする。
In each MISFET of the current mirror circuit in which the gate electrode is connected to the reference current input terminal and the drain electrode is connected to the constant current output terminal, a train region is arranged in the center, and gate electrodes of the same potential are placed between the drain regions. The structure is characterized in that source regions of the same potential are provided so as to sandwich this structure.

[作 用] 本発明の上記の構成によれば、カレントミラー回路内の
2個の能動素子はシャドウ領域をソース電極側にもつM
ISFETとドレイン電極側にもつMISFETの並列
接続により構成されるため、電気的特性が前記2種のM
iSFETの和となり、また、ドレイン領域及びソース
領域の各総面積が不変となって、カレントミラー回路内
の2個の能動素子の特性から素子の非対称性による異方
性が消失する。
[Function] According to the above configuration of the present invention, the two active elements in the current mirror circuit have a shadow region on the source electrode side.
Since it is configured by parallel connection of ISFET and MISFET on the drain electrode side, the electrical characteristics are different from those of the two types of M
The total area of the drain region and the source region remains unchanged, and the anisotropy due to the asymmetry of the elements disappears from the characteristics of the two active elements in the current mirror circuit.

[実 施 例] 第1図は本発明の一実施例である。1はイオン打込み領
域のパターンであり、2はゲート電極を形成するための
伝導体素材(以下、ゲート電極材という)を残す部分を
示すパターンである。ゲート電極材にポリシリコンを用
い、イオン打込みを行うと、11.ll’、12が拡散
電極となる。
[Example] FIG. 1 shows an example of the present invention. 1 is a pattern of an ion implantation region, and 2 is a pattern showing a portion where a conductive material for forming a gate electrode (hereinafter referred to as gate electrode material) is left. When polysilicon is used as the gate electrode material and ion implantation is performed, 11. ll', 12 becomes a diffusion electrode.

電圧の高低、あるいは電流の方向によって、11、ll
′、12のどれがドレイン電極になるかが決まるが、1
2がドレイン電極になるように配線した方が浮遊容量が
小さくなる。本例では12をドレイン電極とし、11と
11’ を同電位のソース電極とする。したがって、2
1と22がチャネルとなり、2個のMISFETから成
る。
Depending on the voltage level or the direction of the current, 11, ll
', 12 determines which one becomes the drain electrode, but 1
Stray capacitance will be smaller if wiring is made such that 2 becomes the drain electrode. In this example, 12 is a drain electrode, and 11 and 11' are source electrodes having the same potential. Therefore, 2
Channels 1 and 22 are composed of two MISFETs.

以下、カレントミラー回路を構成する基準電流入力側と
定電流出力側の2個のMISFETを各々、能動素子と
称し、前記21と22のチャネルからなるMISFET
を単にMISFETと称して、区別して呼称することに
する。
Hereinafter, the two MISFETs on the reference current input side and the constant current output side that constitute the current mirror circuit are respectively referred to as active elements, and the MISFETs consisting of the channels 21 and 22 described above are referred to as active elements.
will be simply referred to as MISFET to distinguish between them.

カレントミラー回路の能動素子に前記MISFETを用
いる。前記MISFETにおいてもシャドウ領域が生じ
る現象はあるが、21と22のチャネルに対し同一の側
に生じる。たとえば、第1図において、チャネルの左側
に生じたとすると、21ではドレイン電極側であり、2
2ではソース電極側であり、1個の能動素子は異方性に
よる異なった電気的特性を持つ2種のMI 5FETの
並列接続により構成されることになる。異方性はMIS
FET構造の非対称性によるものであるため、前記2種
のMISFETによりすべての異方性が網羅され、かつ
、該2種が並列に接続されるため、すべての能動素子の
異方性が消失することになる。したがって、すべての能
動素子が同一の電気的特性となり、正確なカレントミラ
ー効果を呈する。
The MISFET is used as an active element of a current mirror circuit. Although there is a phenomenon in which shadow regions occur in the MISFET, they occur on the same side with respect to channels 21 and 22. For example, in FIG. 1, if it occurs on the left side of the channel, 21 is on the drain electrode side, and 2
2 is on the source electrode side, and one active element is constituted by parallel connection of two types of MI 5FETs having different electrical characteristics due to anisotropy. Anisotropy is MIS
Since this is due to the asymmetry of the FET structure, all the anisotropy is covered by the two types of MISFETs, and since the two types are connected in parallel, the anisotropy of all active elements disappears. It turns out. Therefore, all active elements have the same electrical characteristics and exhibit a precise current mirror effect.

また、第1図のパターンは2 lが左右にパターンずれ
を生じても、12のドレイン領域の面積と11と11′
のソース領域の総面積は変化しないため、パターンずれ
を起しても電気的特性に与えろ影響はきわめて小さい。
Furthermore, even if the pattern in Fig. 1 causes pattern shift in the left and right directions, the area of the drain region 12 and the areas 11 and 11'
Since the total area of the source region does not change, even if a pattern shift occurs, the effect on the electrical characteristics is extremely small.

[発明の効果] 以上の説明のように、上記の作用により、カレントミラ
ー回路を構成する素子の特性に於て、イオン打込み角と
パターンずれによる異方性を消失せしめることができ、
きわめて正確なカレントミラー効果を得ることができる
[Effects of the Invention] As explained above, the above action makes it possible to eliminate the anisotropy caused by the ion implantation angle and pattern deviation in the characteristics of the elements constituting the current mirror circuit.
A highly accurate current mirror effect can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を示すMISFETのパタ
ーンを示す図である。 第2図(a)〜(b)は従来技術によるパターン図と該
パターンによるMISFETのA−A’における断面図
である。 1・・・イオン打込み領域を示す矩形 2・・・ゲート電極を形成するためのパターン 11  ・ 11 ′ l 2 ・ 12゛ 21 ゛ 31 ・ 41 ・ ソース領域 ・11と同電位のソース領域 ・ドレイン領域 ・ドレイン領域 ・チャネル領域 ゲート電極 ・チャネルfIlI域 ・ゲート酸化膜 ・シャドウ領域 以 上 出願人 セイコーエプソン株式会社 代理人 弁理士 上 を卯 雅 誉(@1名)第2図(
a) 第2図(b)
FIG. 1 is a diagram showing a pattern of a MISFET showing an embodiment of the present invention. FIGS. 2(a) and 2(b) are a pattern diagram according to the prior art and a sectional view taken along line AA' of a MISFET according to the pattern. 1... Rectangle indicating ion implantation region 2... Pattern for forming gate electrode 11 ・ 11 ′ l 2 ・ 12゛ 21 ゛ 31 ・ 41 ・ Source region ・ Source region / drain region at the same potential as 11・Drain region ・Channel region Gate electrode ・Channel fIlI region ・Gate oxide film ・Shadow region Above Applicant Seiko Epson Co., Ltd. Representative Patent Attorney 1 Masaori Uma (@1 person) Figure 2 (
a) Figure 2(b)

Claims (1)

【特許請求の範囲】[Claims] 同一の電気的特性を有する第一と第二のMISFETか
ら成り、第一のMISFETはソース電極を共通電源端
子に接続し、ゲート電極とドレイン電極を基準電流入力
端子に接続し、第二のMISFETはソース電極を共通
電源端子に接続し、ゲート電極を前記基準電流入力端子
に接続し、ドレイン電極を定電流出力端子に接続したカ
レントミラー回路の各々のMISFETにおいて、中央
にドレイン領域を配置し、該ドレイン領域をはさみ同電
位のゲート電極を設け、この構造をはさむように同電位
のソース領域を設けたことを特徴とするカレントミラー
回路。
Consisting of first and second MISFETs having the same electrical characteristics, the first MISFET has its source electrode connected to a common power supply terminal, its gate electrode and drain electrode connected to a reference current input terminal, and the second MISFET In each MISFET of the current mirror circuit, the source electrode is connected to the common power supply terminal, the gate electrode is connected to the reference current input terminal, and the drain electrode is connected to the constant current output terminal, a drain region is arranged in the center, A current mirror circuit characterized in that gate electrodes having the same potential are provided sandwiching the drain region, and source regions having the same potential are provided sandwiching this structure.
JP63275012A 1988-10-31 1988-10-31 Current mirror circuit Pending JPH02121366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63275012A JPH02121366A (en) 1988-10-31 1988-10-31 Current mirror circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63275012A JPH02121366A (en) 1988-10-31 1988-10-31 Current mirror circuit

Publications (1)

Publication Number Publication Date
JPH02121366A true JPH02121366A (en) 1990-05-09

Family

ID=17549651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63275012A Pending JPH02121366A (en) 1988-10-31 1988-10-31 Current mirror circuit

Country Status (1)

Country Link
JP (1) JPH02121366A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6833595B1 (en) 1999-02-02 2004-12-21 Nec Electronics Corporation Semiconductor device having an improved layout pattern of pair transistors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6833595B1 (en) 1999-02-02 2004-12-21 Nec Electronics Corporation Semiconductor device having an improved layout pattern of pair transistors

Similar Documents

Publication Publication Date Title
CN100388493C (en) Semiconductor device
JPH08213638A (en) Mosfet on soi substrate and its manufacture
JPH05121738A (en) Semiconductor device having misfets
JPH02121366A (en) Current mirror circuit
JP2944869B2 (en) Thin film transistor and method for measuring contact resistance thereof
JP2964157B2 (en) Semiconductor device
JPS59228759A (en) Mos type hall element
JP2598446B2 (en) MIS-FET
JPH01286367A (en) Vertical field effect transistor
JPH03101166A (en) Ac control element
JPH07263689A (en) Double gate transistor
JPS62265763A (en) Semiconductor integrated circuit device
JP3738369B2 (en) Semiconductor integrated circuit device
JPH02121364A (en) Current mirror circuit
JPS63150957A (en) Semiconductor device
KR100192958B1 (en) Method of fabricating a high withstand voltage mos transistor
JPH01264269A (en) Field-effect transistor
JPH02137235A (en) Charge transfer element and manufacture thereof
KR960015323B1 (en) Mos transistor structure
JPH04225569A (en) Semiconductor device
JPH0810766B2 (en) Static induction semiconductor device and manufacturing method thereof
JPS61210672A (en) Semiconductor device
JPH0251278A (en) Manufacture of double diffusion type field effect semiconductor device
JPH0243740A (en) Manufacture of mos semiconductor element
JPH03136377A (en) Mos transistor