JPS6372869A - Stainless steel foil having superior heat conductivity - Google Patents

Stainless steel foil having superior heat conductivity

Info

Publication number
JPS6372869A
JPS6372869A JP21593386A JP21593386A JPS6372869A JP S6372869 A JPS6372869 A JP S6372869A JP 21593386 A JP21593386 A JP 21593386A JP 21593386 A JP21593386 A JP 21593386A JP S6372869 A JPS6372869 A JP S6372869A
Authority
JP
Japan
Prior art keywords
stainless steel
thickness
foil
steel foil
heat conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21593386A
Other languages
Japanese (ja)
Inventor
Misao Hashimoto
橋本 操
Toru Ito
叡 伊藤
Shunpei Miyajima
俊平 宮嶋
Wataru Ito
渉 伊藤
Isao Ito
功 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP21593386A priority Critical patent/JPS6372869A/en
Publication of JPS6372869A publication Critical patent/JPS6372869A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the heat conductivity and heat radiating characteristics of stainless steel foil having a specified thickness by coating the surface of the foil with a film having high heat conductivity to a thickness corresponding to a specified percentage of the thickness of the foil. CONSTITUTION:The surface of stainless steel foil having <=0.2mm thickness is coated with a film having high heat conductivity such as an Ag, Au or Cu film to a thickness corresponding to <=10% of the thickness of the foil. The coating is carried out by vacuum deposition, sputtering, ion plating or other method. Thus, the heat conductivity of the foil can be improved with a slight increase in the thickness.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は熱伝導特性に優れたステンレスフォイルに関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a stainless steel foil with excellent heat conduction properties.

従来の技術 近年ステンレスフォイルは、特にメツシュならびにセグ
メント電極など電子機器の部品として用いられる様にな
ってきた。ステンレス鋼は耐食性、耐候性に優れており
、電子部品の様に小型かつ精密であり、高度の信頼性の
要求される部分として優れた耐久性を示す、またアルミ
フォイルに比較して強度的にも優れ、リードフレーム、
シリコンスライサー、ダイヤフラムなど機械的ストレス
を受ける部品としても利用されてきた。また、太陽電池
基板、フロッピィディスクベルト、複写機用部品、スイ
ッチ接点用バネ、リールスプリングなど0.2mm以下
の板厚のステンレスフォイルの用途は、拡大しつつある
BACKGROUND OF THE INVENTION In recent years, stainless steel foils have come to be used as parts of electronic devices, particularly meshes and segment electrodes. Stainless steel has excellent corrosion resistance and weather resistance, is small and precise like electronic parts, and exhibits excellent durability as parts that require a high degree of reliability.It also has superior strength compared to aluminum foil. Also excellent, lead frame,
It has also been used for parts that are subject to mechanical stress, such as silicon slicers and diaphragms. In addition, the uses of stainless steel foil with a thickness of 0.2 mm or less are expanding, such as solar cell substrates, floppy disk belts, parts for copying machines, springs for switch contacts, and reel springs.

しかしながら、ステンレス鋼の熱伝導率は室温テ15〜
18Ill/IKテあり、炭素鋼の約50w/曹にト比
較してもかなり低いものである。この様に熱伝導性の劣
るステンレス鋼、特に厚みが0.2−1以下の様なフォ
イルの場合、放熱部からの伝熱性が悪く、フォイル自身
の温度が上昇したり、特に電子機器の様な熱に弱い部品
では、電子素子自身へも悪影響を及ぼし、寿命の低下な
ども懸念されるところであった。
However, the thermal conductivity of stainless steel is 15~
It has a power consumption of 18W/IK, which is considerably lower than carbon steel's approximately 50W/IK. In this way, stainless steel with poor thermal conductivity, especially foils with a thickness of 0.2-1 or less, has poor heat conductivity from the heat dissipation part, causing the temperature of the foil itself to rise, especially in electronic devices. There were concerns that heat-sensitive parts could have a negative effect on the electronic elements themselves, leading to a reduction in their lifespan.

発明が解決しようとする問題点 本発明は、厚みが0.2讃層以下の伝熱性に劣るステン
レスフォイルの熱伝導性を改善し、放熱特性を向上させ
ようとするものである。
Problems to be Solved by the Invention The present invention aims to improve the thermal conductivity of a stainless steel foil having a thickness of 0.2 layers or less, which has poor heat conductivity, and to improve its heat dissipation characteristics.

問題点を解決するための手段 本発明は厚さ3.2mm以下のステンレス鋼表面に、前
記ステンレス鋼の厚さの10%以下の熱伝導性の良好な
皮膜をコーティングし、ステンレスフォイルの熱伝導性
を飛躍的に改善するものである。
Means for Solving the Problems The present invention coats the surface of stainless steel with a thickness of 3.2 mm or less with a film having good thermal conductivity and having a thickness of 10% or less of the thickness of the stainless steel, thereby improving the heat conduction of the stainless steel foil. It dramatically improves sex.

ある温度差での熱流は、そこで考えている部材の断面積
、温度勾配、並びに熱伝導率に比例する。
Heat flow at a given temperature difference is proportional to the cross-sectional area, temperature gradient, and thermal conductivity of the member under consideration.

Q=−kA (dT/dx)” −”(1)ここで、Q
は熱流、Aは断面積、kは熱伝導率、Tは温度、Xは距
離である。従って、ステンレス自身の熱伝導性の悪さに
加えて、フォイルの場合にはその断面積が小さいことか
ら、さらに伝導特性が悪化する。厚さ0.2謹鵬超のス
テンレスフォイルの場合には、その熱伝導特性はあまり
問題とならない、また1本発明で対象としているステン
レスフォイルの使用先から考えても、ステンレスフォイ
ルの厚さは0.2mm以下のものが殆どであり、 0.
2mm以下のフォイルを考慮すれば充分である。より薄
手のフォイルはど熱伝導性が慈くなるので、この発明の
効果は薄手のフォイルの方が大きくなる。厚さとしては
0.1腸−以下が好ましい。
Q=-kA (dT/dx)"-"(1) Here, Q
is heat flow, A is cross-sectional area, k is thermal conductivity, T is temperature, and X is distance. Therefore, in addition to the poor thermal conductivity of stainless steel itself, in the case of foil, the conductive characteristics are further deteriorated due to its small cross-sectional area. In the case of stainless steel foil with a thickness of more than 0.2 mm, its thermal conductivity is not much of a problem.Also, considering the intended use of the stainless steel foil targeted by the present invention, the thickness of the stainless steel foil is Most of them are 0.2mm or less, and 0.
It is sufficient to consider foils of 2 mm or less. Thinner foils have better thermal conductivity, so the effectiveness of this invention is greater with thinner foils. The thickness is preferably 0.1 mm or less.

ところで、本質的に熱伝導特性に劣るステンレスフォイ
ルの伝熱特性を向上させる一つの方法として、フォイル
の厚みを増加させることが考えられる。しかしこの場合
重量が増加するなど、薄板としてのフォイルのメリット
が失われる。また、ステンレス自身の熱伝導性を、その
機械的性質、化学的安定性を損なわずに向上させること
は、現在の技術では、はとんど不可能である。そこで、
我々は薄板としてのフォイルの厚みを余り変化させない
範囲で、熱伝導性の良好な皮膜を、コーティングし、そ
の良熱伝導性物質の部分でフォイルの伝導性の悪さを補
うことを考えた。
By the way, one way to improve the heat transfer properties of stainless steel foil, which is inherently poor in heat transfer properties, is to increase the thickness of the foil. However, in this case, the merits of the foil as a thin plate are lost, such as increased weight. Further, with current technology, it is almost impossible to improve the thermal conductivity of stainless steel itself without impairing its mechanical properties and chemical stability. Therefore,
We thought of coating the foil with a film with good thermal conductivity within a range that does not significantly change the thickness of the foil as a thin plate, and using the good thermal conductive material to compensate for the poor conductivity of the foil.

熱伝導率の高い金属としては1例えばAg (430W
l■に)、Au (320M/+*K)、Cu (40
0w/mK)などが用いられる。その他の熱伝導率の高
いものとしては、カーボン(C)皮膜、ダイヤモンド状
のカーボン(1000w/mK) ナトも使用でき、マ
タ黄銅(120W/mK)などの様な合金でもよい。
Examples of metals with high thermal conductivity include Ag (430W
), Au (320M/+*K), Cu (40
0w/mK) etc. are used. Other materials with high thermal conductivity that can be used include carbon (C) films, diamond-like carbon (1000 W/mK), and alloys such as Mata brass (120 W/mK).

機械的にストレスをうけることが少ない、リードフレー
ム、セグメント電極の様な部位には、金属被覆で充分で
あるが、ステンレスフォイル自身が機械的ストレスを受
けるシリコンスライサーなどの場合には、ダイヤモンド
被覆が耐摩耗性の観点からも有効である。
Metal coating is sufficient for parts that are not subject to mechanical stress, such as lead frames and segment electrodes, but diamond coating is sufficient for parts such as silicon slicers where the stainless steel foil itself is subject to mechanical stress. It is also effective from the viewpoint of wear resistance.

例えば、熱伝導率151/mWの101鳳X10mmX
0.1腸層の大きさを持ったステンレスフォイルで、向
かい合う10層−両辺に100にの温度差がある場合、
厚みに直角の方向への熱流は、前記(1)式より、Q=
0.15Wとなる。一方、このステンレスフォイルの1
0m5+X 10層層の一面に、厚さ10層肩のCuを
被覆したとする。この場合の熱流は、o、sswとなり
、フォイル厚さを被覆金属であるCuで10%増加させ
ただけで、熱流は、370%に増加する。この様に、フ
ォイルのサイズを大幅に変えることなく、フナイル全体
としての熱伝導性を格段に改善することができる。
For example, 101x10mmx with thermal conductivity of 151/mW
If there is a temperature difference of 100 on both sides of 10 opposing layers of stainless steel foil with a size of 0.1 intestinal layer,
From equation (1) above, the heat flow in the direction perpendicular to the thickness is Q=
It becomes 0.15W. On the other hand, this stainless steel foil 1
Assume that one surface of the 0m5+X 10-layer layer is coated with Cu to a thickness of about 10 layers. The heat flow in this case is o, ssw, and by increasing the foil thickness by only 10% with the coating metal Cu, the heat flow increases to 370%. In this way, the thermal conductivity of the foil as a whole can be significantly improved without significantly changing the size of the foil.

Cuなどの熱伝導性皮膜の効果は、その厚さが大きい方
がよいが、もともと薄板であるところのフォイルとして
の特性を考慮すれば、もとの板厚の10%以下の増加に
抑えることが好ましい、前述の説明からも明らかな様に
、0.1層層のステンレスフォイルに厚さlQ#Ls+
のCuを被覆した場合、熱流は0.55Wとなり、これ
は厚さ約0.1ms+の普通鋼の熱流に等しい、すなわ
ち、ステンレス鋼の板厚の10%のCuを被覆すること
で、熱伝導特性からは、汀通鋼なみに改良することがで
きる。
The effect of a thermally conductive film such as Cu is better when its thickness is larger, but considering the characteristics of a thin plate as a foil, the increase should be kept to no more than 10% of the original thickness. As is clear from the above explanation, 0.1 layer of stainless steel foil with thickness lQ#Ls+
When coated with Cu, the heat flow is 0.55 W, which is equivalent to the heat flow of ordinary steel with a thickness of approximately 0.1 ms+.In other words, by coating 10% of the thickness of stainless steel with Cu, the heat flow is improved. In terms of properties, it can be improved to the same level as Teitong Steel.

以上述べた熱伝導性皮膜をステンレスフォイルにコーテ
ィングする方法としては、金属皮膜については湿式メッ
キなどの方法が考えられるが、膜質、均一性、密着性の
観点からみて真空蒸着、スパッタリング、イオンブレー
ティング、などのPVD法あるいは、プラズマ、光、マ
イクロ波CvDなどのCVD法が適している。
As a method for coating stainless steel foil with the thermally conductive film described above, methods such as wet plating can be considered for metal films, but from the viewpoint of film quality, uniformity, and adhesion, vacuum evaporation, sputtering, and ion blating are considered methods. A PVD method such as , or a CVD method such as plasma, light, or microwave CVD is suitable.

実施例 長さ10cm、幅1cm、厚さ0.1mmノ5O943
0ステンレスフォイルにCuおよびAuを各々10絡■
の厚みでスバッタリジグ法により被覆した。また、前記
ステンレスフォイルにダイヤモンド状カーボンを厚み1
0gg+でプラズマ−CVD法により被覆した試験片も
作成した。比較のため熱伝導性の良好な皮膜を施さない
前記ステンレスフォイルままの比較材についても試験を
行った。伝熱特性は、長手方向の一端を100℃に加熱
した鉄ブロックに接し、その端から5C■離れた板中心
の場所での温度を熱電対により測定し、その場所での温
度が80℃に上昇するまでに要した時間(t、但し比較
材での所要時間を1とした)により評価した。なお、室
温は20℃であった。実験は各々の条件で4回行った。
Example length 10 cm, width 1 cm, thickness 0.1 mm 5O943
0 stainless steel foil with 10 wires each of Cu and Au■
It was coated to a thickness of In addition, diamond-like carbon is applied to the stainless steel foil to a thickness of 1
A test piece coated with 0 gg+ by plasma-CVD method was also prepared. For comparison, a test was also conducted on a comparative material made of the stainless steel foil without a coating having good thermal conductivity. The heat transfer characteristics were determined by measuring the temperature at the center of the plate, which was 5C away from the edge with a thermocouple, when one longitudinal end was in contact with an iron block heated to 100℃, and the temperature at that point reached 80℃. The evaluation was based on the time required to rise (t, however, the time required for the comparative material was set as 1). Note that the room temperature was 20°C. The experiment was conducted four times under each condition.

Cu被覆材のtは0.03〜0.04であり、 Aq被
覆材のtは0.04〜0.05であった。ダイヤモンド
状カーボンを施したステンレスフォイルの場合にはさら
に小さく、tは0.01−0.02であった。このよう
に、試験片の板中央での温度が60℃まで上昇するのに
要した時間は1本発明による熱伝導性の良好な皮膜を施
したステンレスフォイルの方が、比較材よりも著しく短
かった。すなわち、熱伝導性の良好な皮膜を施したステ
ンレスフォイルの熱伝導特性が、未被覆材と比べ著しく
改善されたことを示した。
The t of the Cu coating material was 0.03 to 0.04, and the t of the Aq coating material was 0.04 to 0.05. In the case of stainless steel foil coated with diamond-like carbon, t was even smaller, 0.01-0.02. In this way, the time required for the temperature at the center of the test piece to rise to 60°C was significantly shorter for the stainless steel foil coated with the highly thermally conductive film of the present invention than for the comparative material. Ta. In other words, it was shown that the thermal conductivity characteristics of the stainless steel foil coated with a coating having good thermal conductivity were significantly improved compared to the uncoated material.

発明の効果 本発明により、フォイルの厚みをそれほど増加させるこ
となく、その熱伝導性を大幅に改善でき、従って放熱特
性に優れ、メツシュならびにセグメント電極、リードフ
レーム、太陽電池基板、複写機用部品などの様に熱的に
弱い部位を発熱源から守ることができる。また、スイッ
チ接点用バネ、シリコンスライサー、フロッピィディス
クベルトなど機械的に接触している部分からの発熱も、
速やかに冷却でき、これら部品のみならず。
Effects of the Invention According to the present invention, the thermal conductivity of the foil can be greatly improved without significantly increasing the thickness of the foil. Therefore, it has excellent heat dissipation properties, and can be used for meshes, segment electrodes, lead frames, solar cell substrates, parts for copying machines, etc. It can protect thermally weak areas such as from heat sources. In addition, heat generation from parts that are in mechanical contact, such as switch contact springs, silicon slicers, and floppy disk belts, can also be avoided.
It can quickly cool down not only these parts.

これらの部品の接している部材の熱的な劣化をも防止し
、寿命を延長することができる。
It is also possible to prevent thermal deterioration of the members in contact with these parts and extend their lifespan.

Claims (1)

【特許請求の範囲】[Claims] 厚さ0.2mm以下のステンレス鋼の表面に、前記ステ
ンレス鋼の厚みの10%以下の厚みの熱伝導性の良好な
皮膜をコーティングしたことを特徴とする熱伝導性に優
れたステンレスフォイル。
A stainless steel foil having excellent thermal conductivity, characterized in that the surface of stainless steel having a thickness of 0.2 mm or less is coated with a film having good thermal conductivity and having a thickness of 10% or less of the thickness of the stainless steel.
JP21593386A 1986-09-16 1986-09-16 Stainless steel foil having superior heat conductivity Pending JPS6372869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21593386A JPS6372869A (en) 1986-09-16 1986-09-16 Stainless steel foil having superior heat conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21593386A JPS6372869A (en) 1986-09-16 1986-09-16 Stainless steel foil having superior heat conductivity

Publications (1)

Publication Number Publication Date
JPS6372869A true JPS6372869A (en) 1988-04-02

Family

ID=16680661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21593386A Pending JPS6372869A (en) 1986-09-16 1986-09-16 Stainless steel foil having superior heat conductivity

Country Status (1)

Country Link
JP (1) JPS6372869A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005042797A1 (en) 2003-11-04 2005-05-12 Sandvik Intellectual Property Ab A stainless steel strip coated with a metallic layer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5882578A (en) * 1981-11-11 1983-05-18 Takashi Mori Solar cell
JPS5988874A (en) * 1982-11-13 1984-05-22 Agency Of Ind Science & Technol Amorphous semiconductor thin film solar battery
JPS60130848A (en) * 1983-12-20 1985-07-12 Kawasaki Steel Corp Parent plate for lead frame of semiconductor apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5882578A (en) * 1981-11-11 1983-05-18 Takashi Mori Solar cell
JPS5988874A (en) * 1982-11-13 1984-05-22 Agency Of Ind Science & Technol Amorphous semiconductor thin film solar battery
JPS60130848A (en) * 1983-12-20 1985-07-12 Kawasaki Steel Corp Parent plate for lead frame of semiconductor apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005042797A1 (en) 2003-11-04 2005-05-12 Sandvik Intellectual Property Ab A stainless steel strip coated with a metallic layer
JP2007510809A (en) * 2003-11-04 2007-04-26 サンドビック インテレクチュアル プロパティー アクティエボラーグ Stainless steel strip coated with metal layer
JP4819688B2 (en) * 2003-11-04 2011-11-24 サンドビック インテレクチュアル プロパティー アクティエボラーグ Stainless steel strip coated with metal layer

Similar Documents

Publication Publication Date Title
US20210088289A1 (en) Vapor chamber
SE0302206D0 (en) New metal strip product
KR20030086610A (en) Radiating fin and radiating method using the radiating fin
JP6407857B2 (en) Target suitable for indirect cooling system
Lv et al. Performance studies of Ag, Ag‐graphite, and Ag‐graphene coatings on Cu substrate for high‐voltage isolation switch
US20040200599A1 (en) Amorphous carbon layer for heat exchangers and processes thereof
JPS6372869A (en) Stainless steel foil having superior heat conductivity
CN207678068U (en) A kind of ultra-high conducting heat type ceramic substrate
JPH0215631B2 (en)
JPS61166987A (en) Fin material for radiator
Shen et al. Highly Conductive and Fatigue‐Free Flexible Copper Film Electrode Fabricated by a Facile Dry Transfer Technique
CN110511729B (en) High-heat-conduction sheet and preparation method thereof
JP2570560Y2 (en) Electron beam evaporation source
JP2008241267A (en) Thermocouple and its manufacturing method
CN110863175A (en) Surface treatment method of metal mask plate
Ayala et al. Modeling of the effect of substrate temperature on Na diffusion through molybdenum films
Wang et al. Effect of single Si1− xCx coating and compound coatings on the thermal conductivity and corrosion resistance of Mg–3Sn alloy
JPS644581B2 (en)
TW202314996A (en) Heat-dissipating substrate structure with high adhesion strength
WO2023216467A1 (en) Metal structural member used in cooperation with gallium-based liquid metal, manufacturing method therefor, and application thereof
JPH029457B2 (en)
JPS61172690A (en) Heat exchanger fin material and its production
CN102356450A (en) Deposition apparatus with high temperature rotatable target and method of operating thereof
JPH0348267B2 (en)
JP2000133421A (en) Heating device