JPS61172690A - Heat exchanger fin material and its production - Google Patents

Heat exchanger fin material and its production

Info

Publication number
JPS61172690A
JPS61172690A JP1355785A JP1355785A JPS61172690A JP S61172690 A JPS61172690 A JP S61172690A JP 1355785 A JP1355785 A JP 1355785A JP 1355785 A JP1355785 A JP 1355785A JP S61172690 A JPS61172690 A JP S61172690A
Authority
JP
Japan
Prior art keywords
alloy
fin material
base plate
heat exchanger
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1355785A
Other languages
Japanese (ja)
Other versions
JPH07116634B2 (en
Inventor
Shoji Shiga
志賀 章二
Hideo Suda
須田 英男
Nobuyuki Shibata
宣行 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP60013557A priority Critical patent/JPH07116634B2/en
Publication of JPS61172690A publication Critical patent/JPS61172690A/en
Publication of JPH07116634B2 publication Critical patent/JPH07116634B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laminated Bodies (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To reduce the weight of a product and to improve corrosion resistance by forming a specific weight % of an alloy layer of Zn on the surface of a Cu base plate as a fin material. CONSTITUTION:Zn or Zn alloy is coated by an electroplating mechanical cladding method, etc. on the Cu alloy plate consisting of Cu-Zn, Cu-Cr, etc. having high conductivity. The base plate is then heated to the diffusion temp. of Zn or above to diffuse the Zn on the surface of the base plate or the base plate is passed through the inside of the vapor of the Zn to coat the Zn on the surface of the base plate and to diffuze the Zn into the surface layer of the base plate. The base plate is further subjected to rolling and tempering to form >=1% Zn alloy layer on the surface. The corrosion resistance of the fin material is improved by the formation of the surface layer of the Zn and the reduction in the weight of the product is made possible by the reduced thickness.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は熱交換器フィン材とその製造法に関し、特にフ
ィンとしての伝熱性を低下することなく耐食性を改善し
てフィンの薄肉化を可能にしたもので特に、自動車など
の腐食環境の激しい条件に使用される熱交換器に好適で
ある。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a heat exchanger fin material and a method for manufacturing the same, and in particular, it is possible to improve corrosion resistance and thin the fin without reducing the heat conductivity of the fin. It is especially suitable for heat exchangers used in highly corrosive environments such as automobiles.

〔従来の技術〕[Conventional technology]

シェルアンドチューブ型熱交換器に使用される放熱用フ
ィンとしては伝熱性と共に強度や耐食性が要求される。
Heat dissipation fins used in shell-and-tube heat exchangers are required to have heat conductivity, strength, and corrosion resistance.

例えば、自動車用熱交換器としてはエンジン冷却用のラ
ジェーターと、空調用ヒーターが用いられており、何れ
も熱交媒体を流通する複数個のチューブ間にフィンを装
着した銅製コアーを用い、該コアーの両端に座板を介し
てタンクを取付けたものである。例えばラジェーターは
第1図に示すように熱交媒体を流通する上下方向の複数
個のチューブ(1)間にフルゲート状フィン(2)を装
着してコアー(3)を構成し、該コアー(3)のチュー
ブ〈1)両端に座板(4a) 、  (4b)を設け、
該当座板(4a) 、  (4b)にタンク(5a) 
、  (5b)を取付けている。尚図において(6)、
(7)は熱媒体の還流用出入口、(8)、(9)は熱交
媒体の注排出口を示す。
For example, radiators for engine cooling and heaters for air conditioning are used as heat exchangers for automobiles, and both use a copper core with fins installed between multiple tubes through which a heat exchange medium flows. A tank is attached to both ends of the tank via seat plates. For example, in a radiator, as shown in Fig. 1, a core (3) is constructed by installing full-gate fins (2) between a plurality of vertical tubes (1) through which a heat exchange medium flows. ) tube〈1) Seating plates (4a) and (4b) are provided at both ends,
Tank (5a) on the corresponding seat plate (4a), (4b)
, (5b) is installed. In the figure (6),
(7) indicates an inlet/outlet for refluxing the heat medium, and (8) and (9) indicate inlets/outlets for the heat exchange medium.

このようなラジェーターのCU性ココア−、通常黄銅製
チューブとCu又はCu合金製のコルゲート状フィンを
用い、チューブ間にフィンをコアー焼き称する半田付け
により装着している。フィンには厚さ0.025〜0.
060#IlのCu又はCu合金条を用い、強度及び耐
熱性を向上させるために伝熱性を低下させない範囲内で
、Sn 、 Ag、Cd 、P等を少量添加している。
The CU type cocoa of such a radiator usually uses a tube made of brass and a corrugated fin made of Cu or Cu alloy, and the fin is attached between the tubes by soldering to heat the core. The fins have a thickness of 0.025 to 0.
060#Il Cu or Cu alloy strip is used, and small amounts of Sn, Ag, Cd, P, etc. are added to improve strength and heat resistance within a range that does not reduce heat conductivity.

またCLI製コアーを用いたラジェーターでは防眩の目
的で黒色塗装を行なっているが、この処理はラジェータ
ーの外表面部のみに限定され、その厚さも10μm以下
で、これより厚い塗膜はフィン部の放熱に有害である。
In addition, radiators using CLI cores are painted black for anti-glare purposes, but this treatment is limited to the outer surface of the radiator, and the thickness is less than 10 μm, and thicker coatings are applied to the fins. harmful to heat dissipation.

〔発明が解決しようとする問題点〕 近年道路には融雪等の目的でNaCl2などの塩化物が
多量に散布されるようになり、これ等塩化物による車体
の腐食が重大視されており、ラジェーターや空調器等の
自動車用熱交換器においてもフィンの損耗が激しく、放
熱性の低下  ・が問題になっている。このためフィン
にCu −Ni系などの耐食合金を用いることが検討さ
れたが、伝熱性が低く、所定の性能を得るためには厚肉
化が必要となり、コスト高と重量増加につながる。また
従来材について腐食式を見込んだ厚肉化や防食のための
塗装も同様の結果をまねき、実用化できないものである
[Problems to be solved by the invention] In recent years, large amounts of chlorides such as NaCl2 have been sprayed on roads for the purpose of melting snow, etc., and corrosion of car bodies due to these chlorides has become a serious issue, and radiator In automobile heat exchangers such as air conditioners and air conditioners, the fins are subject to severe wear and tear, causing a reduction in heat dissipation. For this reason, it has been considered to use a corrosion-resistant alloy such as a Cu--Ni alloy for the fins, but the heat conductivity is low, and in order to obtain the desired performance, it is necessary to increase the thickness, leading to increased cost and weight. Further, thickening of conventional materials in anticipation of corrosion or coating for anti-corrosion results in similar results and cannot be put to practical use.

一方省エネルギーの見地から自動車の軽量化が望まれ、
自動車の一部品である熱交換器においても軽量化が望ま
れているが、前記塩害対策と軽量化の要求を同時に満す
ことは技術的に困難であった。
On the other hand, from the standpoint of energy conservation, it is desired that automobiles be made lighter.
Although it is desired to reduce the weight of a heat exchanger, which is a component of an automobile, it has been technically difficult to simultaneously satisfy the requirements for preventing salt damage and reducing weight.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はこれに鑑み種々検討の結果、上記過酷な環境に
も長期間に渡り耐える優れた耐食性と、十分な伝熱性を
有し、軽量化のために薄肉化しても腐食摩滅し難く、長
期に渡り放熱性を発揮できる熱交換器フィン材とその製
造法を開発したものである。
In view of this, as a result of various studies, the present invention has excellent corrosion resistance that can withstand the above-mentioned harsh environments for a long period of time, sufficient heat conductivity, and is resistant to corrosion and wear even when thinned to reduce weight. We have developed a heat exchanger fin material that can exhibit heat dissipation properties over a long period of time, and a method for manufacturing it.

即ち本発明フィン材は、Cu系基板の表面に、Zn1w
t%以上の合金層を形成したことを特徴とするものであ
る。
That is, the fin material of the present invention has Zn1w on the surface of the Cu-based substrate.
It is characterized by forming an alloy layer of t% or more.

また本発明製造法は、Cu系基板の表面にZn又はZn
合金を被覆してからZnを熱拡散させるか、又は熱拡散
後に圧延調質を行なって、表面にZn1wt%以上の合
金層を形成することを特徴とするものである。
In addition, the manufacturing method of the present invention provides Zn or Zn on the surface of the Cu-based substrate.
It is characterized in that an alloy layer containing 1 wt % or more of Zn is formed on the surface by coating the alloy and then thermally diffusing Zn, or by performing rolling tempering after the thermal diffusion.

Cu系基板としては純Cuの外、Cu −Zn 。In addition to pure Cu, Cu-Zn is used as the Cu-based substrate.

Cu −Cr 、 Cu −Ao 、 Cu −8n 
、 Cu −Cd  、   Cu  −Pb  −8
n  、   Cu−In  、   Cu  −■e
等の高導電性(高熱伝導性)で合金効果により強度を向
上することができる希薄銅合金板、例えば導電率にして
85%lAC3以上、望ましくは90〜98%lAC3
の高導電性合金板を用い、これ等基板上にZn又はZn
合金、例えば純Zn又はCu −Zn 、 Zn −8
n 、 ln −Cd 。
Cu-Cr, Cu-Ao, Cu-8n
, Cu-Cd, Cu-Pb-8
n, Cu-In, Cu-■e
A dilute copper alloy plate with high electrical conductivity (high thermal conductivity) that can improve strength due to the alloy effect, such as a dilute copper alloy plate with an electrical conductivity of 85% lAC3 or more, preferably 90 to 98% lAC3
Zn or Zn is coated on these substrates using highly conductive alloy plates.
Alloys, such as pure Zn or Cu-Zn, Zn-8
n, ln-Cd.

Zn −Ni 、 Zn −Fe 、 Zn −Ply
 、 Zn −Bi −Pb 、Zn −Ni−Co等
の合金を電気メッキ、ホットデツプ、PVD、機械的な
りラッド法等により被覆し、これをZnの拡散温度以上
に加熱して基板表面にZnを拡散させるか、或いは基板
をZnの蒸気中に通して基板表面にZnを被覆すると同
時にこれを基板表層中に拡散させる。これに必要に応じ
て圧延加工と焼鈍等の調質を行なって所望寸法に仕上げ
、表面にZn1wt%以上、望ましくは3 wt%以上
の合金層を形成するもので、合金層の厚さは5μm以上
とすることが望ましい。
Zn-Ni, Zn-Fe, Zn-Ply
, Zn-Bi-Pb, Zn-Ni-Co, and other alloys are coated by electroplating, hot-dipping, PVD, mechanical or rad methods, etc., and this is heated to a temperature higher than the Zn diffusion temperature to diffuse Zn onto the substrate surface. Alternatively, the substrate may be passed through Zn vapor to coat the surface of the substrate with Zn and simultaneously diffuse it into the surface layer of the substrate. If necessary, this is subjected to heat treatment such as rolling and annealing to finish it to the desired dimensions, and an alloy layer containing Zn of 1wt% or more, preferably 3wt% or more is formed on the surface, and the thickness of the alloy layer is 5μm. It is desirable to set the above.

通常フィン材は厚さ0.05〜0.025.の条材とし
て使用されるところから、厚さ1.0履前後の基板上に
上記Zn拡散層を形成し、しかる後圧延加工と焼鈍等の
調質を施して所望寸法に仕上げるとよい。
Usually the fin material has a thickness of 0.05 to 0.025. Since the Zn diffusion layer is used as a strip material, it is preferable to form the above-mentioned Zn diffusion layer on a substrate with a thickness of about 1.0 mm, and then perform heat treatment such as rolling and annealing to obtain a desired size.

〔作 用〕[For production]

本発明フィン材はQu系基板の表面にZn1 wt%以
上の合金層を形成することにより、前記塩害条件におけ
る耐食性を向上し、Zn1wt%以下の合金からなる芯
部により高導電性(高伝熱性)として、前記塩害対策と
軽壷化を可能にしたものである。
The fin material of the present invention improves corrosion resistance under the above-mentioned salt damage conditions by forming an alloy layer containing Zn1wt% or more on the surface of a Qu-based substrate, and has high conductivity (high heat conductivity) due to the core made of an alloy containing Zn1wt% or less. ), this made it possible to take measures against salt damage and make the jar lighter.

即ちCuに対するZnの添加が塩害腐食の防止に有効で
あることを実験的に知見したもので、I[iZnは塩害
条件で最も腐食され易い金属であるが、CIJとの合金
化により始めて優れた耐食性を発揮する。
In other words, it was experimentally found that the addition of Zn to Cu is effective in preventing salt damage corrosion. Demonstrates corrosion resistance.

Znの正確な作用、メカニズムは不明であるが、Zn分
が塩素のCIJに対するアタックを選択的に停止するた
めと考えられる。
Although the exact action and mechanism of Zn is unknown, it is thought that the Zn component selectively stops the attack of chlorine on CIJ.

一方Cuに対するZnの添加は、特にZnを固溶させる
とQuの導電率を低下させることが知られており、例え
ば導電率はZn1wt%の添加で80〜85%lAC3
,3wt%の添加で10%lAC3前後に低下する。従
って単にZnの添加により所望の耐食性を得ようとする
と、導電性(伝熱性)を低下し、フィンには適さないも
のとなる。そこで本発明はCu系基板の表面に、Zn1
wt%、望ましくは3 wt%以上の合金層を5μm以
上の厚さに形成し、前記塩害条件における耐食性を向上
させ、高Zn量の合金層を表層に限定することにより導
電率の低下を防止したものである。更に本発明材に於い
ては、表面の合金層は下層の合金層特に芯部のCu合金
に比べ、一般にアノ−デックであるので、芯部を貫通す
る孔食状腐食が起り難く、フィンの強度低下を有効に抑
止できる。
On the other hand, it is known that the addition of Zn to Cu lowers the electrical conductivity of Cu, especially when Zn is dissolved in solid solution.
, 3 wt% decreases to around 10% lAC3. Therefore, if an attempt is made to obtain the desired corrosion resistance simply by adding Zn, the conductivity (thermal conductivity) will decrease, making it unsuitable for fins. Therefore, the present invention provides Zn1 on the surface of a Cu-based substrate.
wt%, preferably 3 wt% or more, is formed to a thickness of 5 μm or more to improve corrosion resistance under the salt damage conditions, and to prevent a decrease in electrical conductivity by limiting the alloy layer with a high Zn content to the surface layer. This is what I did. Furthermore, in the material of the present invention, since the surface alloy layer is generally anodic compared to the lower alloy layer, especially the Cu alloy in the core, pitting corrosion that penetrates the core is less likely to occur, and the fins are Strength reduction can be effectively suppressed.

また本発明フィン材は工業的に簡単な電気メッキ、ホッ
トデツプ、PVD、II械的クりッド法等による被覆と
熱拡散により表面にZn拡敢層を形成することができる
。特に電気メッキによれば正確な厚さの均一なZn又は
Zn合金の被覆ができる。また所定の厚さの合金層とす
るためには、250〜100℃又はこれ以上の温度で加
熱処理すればよい。また500℃以上のln蒸気中にC
LI系基板基板すことによりZn被覆とその拡散を一挙
に行うことができる。
Further, the fin material of the present invention can be coated with industrially simple methods such as electroplating, hot-deep coating, PVD, II mechanical hybridization, etc., and a Zn spreading layer can be formed on the surface thereof by thermal diffusion. In particular, electroplating provides a uniform coating of Zn or Zn alloy with a precise thickness. Further, in order to form an alloy layer with a predetermined thickness, heat treatment may be performed at a temperature of 250 to 100°C or higher. In addition, C in ln steam at 500°C or higher
By using the LI-based substrate, Zn coating and its diffusion can be carried out all at once.

〔実施例(1)〕 厚さ0.07 sのQd O,O6wt%を含有する耐
熱CIJ条(導電率95.9%IAC8)を用い、該条
に下記浴を用いてZnを第1表に示す厚さに電気メッキ
し、これを第1表に示す条件で拡散処理した後、圧延加
工して厚さ0.038as+のフィン材とした。
[Example (1)] Using a heat-resistant CIJ strip (conductivity 95.9% IAC8) containing 6 wt% QdO,O with a thickness of 0.07 s, Zn was added to the strip using the bath shown in Table 1. After electroplating to the thickness shown in Table 1, this was subjected to a diffusion treatment under the conditions shown in Table 1, and then rolled to obtain a fin material having a thickness of 0.038 as+.

これ等のフィンについて導電率を測定すると共に、断面
をX線マイクロアナライザーにより分析し、表面及び表
面下5μmの深さにおける70分を分析した。また下記
の腐食試験を行ない、重量法により平均腐食量を求め、
更に腐食前後のフィンについて引張り試験を行ない、腐
食による強度減少率を求めた。これ等の結果を単にZn
メッキした耐熱01条及び無処理の耐熱01条と比較し
て第1表に示す。
The electrical conductivity of these fins was measured, and the cross section was analyzed using an X-ray microanalyzer to analyze the surface and 70 minutes at a depth of 5 μm below the surface. In addition, the following corrosion test was conducted, and the average amount of corrosion was determined by gravimetric method.
Furthermore, a tensile test was conducted on the fins before and after corrosion to determine the rate of strength reduction due to corrosion. Simply convert these results into Zn
Table 1 shows a comparison between the plated heat-resistant 01 strip and the untreated heat-resistant 01 strip.

メッキ浴 NaCN       50g/I Zn  (CN)2   709/J2NaO8100
g/J! 浴  温            30℃電流密度  
    3 A / de2腐食試験 J I S Z2371に基づく塩水噴霧を1時間行、
  った後、60℃、95%の恒温恒湿槽中に23時 
′間保持することを30回繰返した。
Plating bath NaCN 50g/I Zn (CN)2 709/J2NaO8100
g/J! Bath temperature 30℃Current density
3 A/de2 corrosion test: Salt water spray based on JIS Z2371 for 1 hour,
After that, it was placed in a constant temperature and humidity chamber at 60℃ and 95% at 23:00.
This was repeated 30 times.

第1表から明らかなようにZnメッキフィン11Q4及
び無処理フィン順5では腐食量が平均8〜9μ?FL(
片面)、強度減少率は85%前後、即ちほとんどぼろぼ
ろの状態となった。これに対し表面にZn1wt%以上
の合金層を形成した本発明フィン順1〜2は軽微な腐食
劣化にとどまっていることが判る。特に腐食量と強度減
少率が小さくなっているのは強度劣化に大きく働く孔食
腐食が表層のZnの拡散により停止されるためである。
As is clear from Table 1, the average amount of corrosion for Zn plated fins 11Q4 and untreated fins in order 5 is 8 to 9μ? FL(
(one side), the strength reduction rate was around 85%, that is, it became almost tattered. On the other hand, it can be seen that fins 1 and 2 of the present invention, in which an alloy layer containing 1 wt % or more of Zn was formed on the surface, suffered only slight corrosion deterioration. In particular, the reason why the amount of corrosion and the rate of decrease in strength are small is that pitting corrosion, which greatly affects strength deterioration, is stopped by the diffusion of Zn in the surface layer.

一方表層5μm深さの合金層のZn分が1wt%未満で
あるフィンNQ3では腐食量と強度減少率が前記NQ1
・ 2に比べ劣っており、過酷な条件では改良が不十分
であることが判る。
On the other hand, in fin NQ3, in which the Zn content in the alloy layer at a depth of 5 μm in the surface layer is less than 1 wt%, the amount of corrosion and the rate of decrease in strength are lower than those of NQ1.
- It is inferior to 2, and it can be seen that the improvement is insufficient under severe conditions.

〔実施例(2)〕 実施例(1)においてZnメッキに代えて下記メッキ浴
を用い、第2表に示す厚さにZローSwt%Ni合金と
Zn−10wt%Cd合金を電気メッキし、これを第2
表に示す条件で拡散処理した後、圧延加工して厚さ0.
038am+のフィン材とした。これについて実施例(
1)と同様の試験を行ない、その結果を単にZn−sw
t%N1合金、 Zn−10wt%Cd合金をメッキし
たフィン材と比較した。
[Example (2)] Using the following plating bath instead of Zn plating in Example (1), Z-low Swt%Ni alloy and Zn-10wt%Cd alloy were electroplated to the thickness shown in Table 2, This is the second
After diffusion treatment under the conditions shown in the table, it is rolled to a thickness of 0.
The fin material was 038am+. Examples of this (
A test similar to 1) was carried out, and the results were simply compared to Zn-sw.
A comparison was made with fin materials plated with t%N1 alloy and Zn-10wt%Cd alloy.

Zn−5wt%Ni合金メッキ浴 Zn5O+         759/12Ni  S
o十        609/、eCH5COONa 
  209/A H5BOs      159/、e pH3 浴  瀧           45℃電流密度   
   7.5A / di2Zn−10wt%Cd合金
メッキ浴 Zn  (CN)2   76SF/lCd0    
    49/l NaCN       45g/l NaO880g/l! 浴  温            35℃電流密度  
    2A/d■2 第2表から明らかなようにZn−5wt%Ni合金とZ
n−10wt%Cd合金をメッキした後、拡散処理して
表面にZn1wt%以上の合金層を形成した本発明フィ
ンIIQ6〜7は軽微な腐食劣化にとどまっていること
が判る。これに対し表面の70分が1wt5以上でも5
μ部で1%未満のフィンNα8では耐食性の改善が馳6
,7に比べ劣っているので過酷な使用条件では不十分で
あることが判る。
Zn-5wt%Ni alloy plating bath Zn5O+ 759/12Ni S
o 10 609/, eCH5COONa
209/A H5BOs 159/, e pH3 bath Waterfall 45℃ current density
7.5A/di2Zn-10wt%Cd alloy plating bath Zn (CN)2 76SF/lCd0
49/l NaCN 45g/l NaO880g/l! Bath temperature 35℃ Current density
2A/d■2 As is clear from Table 2, Zn-5wt%Ni alloy and Z
It can be seen that the fins IIQ6 to IIQ7 of the present invention, which were plated with n-10wt% Cd alloy and then subjected to diffusion treatment to form an alloy layer containing 1wt% or more Zn on the surface, suffered only slight corrosion deterioration. On the other hand, even if the surface 70 minutes is 1wt5 or more, 5
When the fin Nα8 is less than 1% in the μ part, the corrosion resistance is improved6.
, 7, it can be seen that it is insufficient under severe usage conditions.

(実施例(3)〕 厚さ0.06 mのA O0909wt%を含有する耐
熱00条(導電率98%IAC8)を用い、該条をH2
雰囲気中で溶融した590℃のZn浴上に15秒間さら
して中間焼鈍を兼ねてZn拡散処理を行なった。これを
0.035履の厚さまで圧延してフィン材とした。これ
について実施例と同様の試験を行ない、その結果を上記
処理を省略したフィンと比較して第3表に示す。
(Example (3)) Using a heat-resistant 00 strip (conductivity 98% IAC8) containing 0.06 m thick A O0909wt%, the strip was heated at H2
Zn diffusion treatment was performed by exposing the material to a molten Zn bath at 590° C. for 15 seconds in an atmosphere, which also served as intermediate annealing. This was rolled to a thickness of 0.035 mm to obtain a fin material. Regarding this, the same tests as in the examples were conducted, and the results are shown in Table 3 in comparison with the fins in which the above treatment was omitted.

震Laj! 第3表から明らかなように本発明フィンは無処理のフィ
ンに比較し、耐食性が著しく改善されていることが判る
Shocking Laj! As is clear from Table 3, the corrosion resistance of the fins of the present invention is significantly improved compared to untreated fins.

〔発明の効果〕〔Effect of the invention〕

このように本発明フィンは優れた耐゛食性と伝熱性を有
し、過酷な環境でも長期間フィンとしての機能を喪失す
ることがなく、薄肉軽量を可能にし、特に自動車用熱交
換器に使用し軽量化は勿論、耐用年数を向上することが
できる等、工業上顕著な効果を奏するものである。
As described above, the fins of the present invention have excellent corrosion resistance and heat conductivity, do not lose their function as fins for a long period of time even in harsh environments, and can be made thin and lightweight, making them particularly suitable for use in automobile heat exchangers. This has significant industrial effects, including not only weight reduction but also improved service life.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は自動車用ラジェーターの一例を示す正面図であ
る。 1・・・ チューブ 2・・・ フィン 3・・・ コアー 4a、4b・・・  座  板 5a、 5b・・・ タンク
FIG. 1 is a front view showing an example of an automobile radiator. 1... Tube 2... Fin 3... Core 4a, 4b... Seat plate 5a, 5b... Tank

Claims (5)

【特許請求の範囲】[Claims] (1)Cu系基板の表面に、Zn1wt%以上の合金層
を形成したことを特徴とする熱交換器フイン材。
(1) A heat exchanger fin material characterized in that an alloy layer containing 1wt% or more of Zn is formed on the surface of a Cu-based substrate.
(2)Zn1wt%以上の合金層の厚さを5μm以上と
する特許請求の範囲第1項記載の熱交換器のフイン材。
(2) The fin material for a heat exchanger according to claim 1, wherein the thickness of the alloy layer containing 1 wt % or more of Zn is 5 μm or more.
(3)Cu系基板の表面にZn又はZn合金を被覆して
からZnを熱拡散させるか、又は熱拡散後に圧延調質を
行なって、表面にZn1wt%以上の合金層を形成する
ことを特徴とする熱交換器フイン材の製造法。
(3) The surface of the Cu-based substrate is coated with Zn or a Zn alloy and then the Zn is thermally diffused, or after the thermal diffusion, rolling tempering is performed to form an alloy layer containing 1 wt% or more of Zn on the surface. A method for manufacturing heat exchanger fin material.
(4)Zn又はZn合金を電気メツキにより被覆した後
、熱拡散処理する特許請求の範囲第3項記載の熱交換器
フイン材の製造法。
(4) The method for manufacturing a heat exchanger fin material according to claim 3, wherein Zn or Zn alloy is coated by electroplating and then subjected to heat diffusion treatment.
(5)Cu系基板をZn蒸気中に通してZnを被覆する
と同時に熱拡散させる特許請求の範囲第3項記載の熱交
換器フイン材の製造法。
(5) A method for manufacturing a heat exchanger fin material according to claim 3, in which a Cu-based substrate is passed through Zn vapor to coat Zn and simultaneously perform thermal diffusion.
JP60013557A 1985-01-29 1985-01-29 Heat exchanger fin material and its manufacturing method Expired - Lifetime JPH07116634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60013557A JPH07116634B2 (en) 1985-01-29 1985-01-29 Heat exchanger fin material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60013557A JPH07116634B2 (en) 1985-01-29 1985-01-29 Heat exchanger fin material and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS61172690A true JPS61172690A (en) 1986-08-04
JPH07116634B2 JPH07116634B2 (en) 1995-12-13

Family

ID=11836477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60013557A Expired - Lifetime JPH07116634B2 (en) 1985-01-29 1985-01-29 Heat exchanger fin material and its manufacturing method

Country Status (1)

Country Link
JP (1) JPH07116634B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259194A (en) * 1988-04-11 1989-10-16 Hitachi Metals Ltd Corrosion resistant piping parts
JPH024997A (en) * 1988-03-11 1990-01-09 Furukawa Electric Co Ltd:The Production of copper in material for heat exchanger
JPH02200794A (en) * 1989-01-30 1990-08-09 Furukawa Electric Co Ltd:The Fin material for heat exchanger made of copper and its production
US5176812A (en) * 1988-12-27 1993-01-05 The Furukawa Electric Co., Ltd. Copper fin material for heat-exchanger and method of producing the same
JP2009106980A (en) * 2007-10-30 2009-05-21 Denso Corp Metallic material for brazing, brazing method and heat exchanger

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155398A (en) * 1980-04-30 1981-12-01 Nippon Radiator Co Ltd Method for preventing aluminum heat exchanger from corrosion
JPS5839795A (en) * 1981-09-03 1983-03-08 Mitsubishi Electric Corp Brass plating method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155398A (en) * 1980-04-30 1981-12-01 Nippon Radiator Co Ltd Method for preventing aluminum heat exchanger from corrosion
JPS5839795A (en) * 1981-09-03 1983-03-08 Mitsubishi Electric Corp Brass plating method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024997A (en) * 1988-03-11 1990-01-09 Furukawa Electric Co Ltd:The Production of copper in material for heat exchanger
JPH01259194A (en) * 1988-04-11 1989-10-16 Hitachi Metals Ltd Corrosion resistant piping parts
US5176812A (en) * 1988-12-27 1993-01-05 The Furukawa Electric Co., Ltd. Copper fin material for heat-exchanger and method of producing the same
JPH02200794A (en) * 1989-01-30 1990-08-09 Furukawa Electric Co Ltd:The Fin material for heat exchanger made of copper and its production
JP2009106980A (en) * 2007-10-30 2009-05-21 Denso Corp Metallic material for brazing, brazing method and heat exchanger

Also Published As

Publication number Publication date
JPH07116634B2 (en) 1995-12-13

Similar Documents

Publication Publication Date Title
JPS61172690A (en) Heat exchanger fin material and its production
EP1159466A1 (en) Article exhibiting improved resistance to galvanic corrosion
US5063117A (en) Copper fin material for heat-exchanger and method of producing the same
EP0254779B1 (en) Fin of heat exchanger and method of making it
CN112522689A (en) Alloying galvanized steel sheet surface treatment agent, preparation method, alloying galvanized steel sheet and hot forming parts
JPS621856A (en) Corrosion resistant copper-base member and its manufacture
JPS60194062A (en) Surface treatment of copper and copper alloy
US5176812A (en) Copper fin material for heat-exchanger and method of producing the same
JPS60194296A (en) Material for heat exchanger, which is prominent in anticorrosion
JPS63213797A (en) Heat exchanger for automobile
CA1284923C (en) Fin of heat exchanger and method of making it
JPS62138695A (en) Fin material for radiator
JPS60122896A (en) Radiator fin
KR910006779B1 (en) Fin of heat exchanger and method of making it
JPH04121598A (en) Automobile heat exchanger
JP2726549B2 (en) Heat exchanger with excellent corrosion resistance and method of manufacturing the same
JPH01191770A (en) Production of fin material for copper alloy radiator
JPH0219489A (en) Surface treatment of aluminum material
JPS61291979A (en) Corrosion-proof copper or copper alloy tube
JPS6291796A (en) Heat exchanger
KR0146874B1 (en) Method for manufacturing zn-cr/zn alloy coated steel sheet with 2-layers
JPS63127096A (en) Automotive heat exchanger and its fin material and manufacture thereof
JPS64466B2 (en)
JPS6243000B2 (en)
JPH03255895A (en) Manufacture of heat exchanger for vehicle

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term