JPH01225761A - Member for metal hot dipping bath tank - Google Patents

Member for metal hot dipping bath tank

Info

Publication number
JPH01225761A
JPH01225761A JP63049846A JP4984688A JPH01225761A JP H01225761 A JPH01225761 A JP H01225761A JP 63049846 A JP63049846 A JP 63049846A JP 4984688 A JP4984688 A JP 4984688A JP H01225761 A JPH01225761 A JP H01225761A
Authority
JP
Japan
Prior art keywords
coating
porosity
thermal spray
bath tank
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63049846A
Other languages
Japanese (ja)
Other versions
JPH0255502B2 (en
Inventor
Yoshio Harada
良夫 原田
Kazumi Tani
和美 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tocalo Co Ltd
Original Assignee
Tocalo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tocalo Co Ltd filed Critical Tocalo Co Ltd
Priority to JP63049846A priority Critical patent/JPH01225761A/en
Publication of JPH01225761A publication Critical patent/JPH01225761A/en
Publication of JPH0255502B2 publication Critical patent/JPH0255502B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0034Details related to elements immersed in bath
    • C23C2/00342Moving elements, e.g. pumps or mixers
    • C23C2/00344Means for moving substrates, e.g. immersed rollers or immersed bearings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating With Molten Metal (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To manufacture a member for metal hot dipping bath tank excellent in erosion resistance by forming a thermally sprayed layer of a specific porosity on the surface of a member by using a WC-Co-type cermet material in which specific percentage of Co is mixed. CONSTITUTION:A thermally sprayed layer of <=1.8% porosity is formed on the surface of a member for plating bath tank to 0.040-<0.10mm thickness by a thermal spraying method by using a WC-Co-type cermet material in which Co is mixed by 5-28wt.%. Since this thermally sprayed layer has about 1,100-1,300 hardness HV and has superior wear resistance, the inexpensive member for plating bath tank free from wear even if brought into contact with hot dipped steel sheets and excellent in erosion resistance can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、溶融金属めっき浴用部材に関し、特に溶融ア
ルミニウム、溶融亜鉛またはこれらの溶融合金に対して
優れた耐侵食性を示す溶融金属めっき浴用部材に関して
の提案である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a member for a molten metal plating bath, and particularly to a member for a molten metal plating bath that exhibits excellent corrosion resistance against molten aluminum, molten zinc, or molten alloys thereof. This is a proposal regarding parts.

〔従来の技術〕[Conventional technology]

溶融アルミニウムおよび溶融亜鉛めっき鋼板は、自動車
や建築資材用の耐熱、耐食部材として賞用されているが
、これらは主として連続めっき処理によって製造されて
いる。
Molten aluminum and hot-dip galvanized steel sheets are used as heat-resistant and corrosion-resistant members for automobiles and construction materials, but these are mainly manufactured by continuous plating.

その連続めっき処理装置には、溶融金属中に浸漬されて
いる浸漬ロールや溶融金属表面近傍に設置されているめ
っきロールあるいはこれらのロールを通過した後のめっ
き鋼板をガイドするガイドロールなどが配設しである。
The continuous plating processing equipment is equipped with immersion rolls immersed in molten metal, plating rolls installed near the molten metal surface, and guide rolls that guide the plated steel sheet after passing through these rolls. It is.

これらのロール類は、溶融金属中に浸漬されているか、
溶融金属を被覆した高温の鋼板と接触するため、次に示
すような性能が要求されているものである。
These rolls are either immersed in molten metal or
Since it comes into contact with a high-temperature steel plate coated with molten metal, the following performance is required.

[1)  溶融金属による侵食が起こりにくいこと、(
2)通板する鋼板と接触しても摩耗しにくいこと、(3
)付着した溶融金属のjv1離ならびに保守点検が容易
なこと、 (4)  ロールとしての寿命が長いこと、(5)低コ
ストであること、 これらの要求に応えられるロール、すなわちめっき浴用
部材の提供を目的にした従来技術としては、■ロール表
面にJIS H8303(1976)制定の自溶合金を
溶射したもの、■特開昭61−117260号公報に開
示のようなZrO□とA1.0.からなるセラミック被
覆層を施したもの、■特公昭58−37386号公報に
開示のようなWC,CrC,Ticの1種または2種以
上で残部が熱間耐食性金属またはその酸化物からなる0
、1〜2.4fi厚さの表面被覆層を形成させたロール
などが提案されている。
[1] Less likely to be eroded by molten metal, (
2) Resistant to wear even if it comes into contact with the steel plate being passed; (3)
) Easy separation of adhering molten metal and easy maintenance and inspection; (4) Long life as a roll; (5) Low cost. Providing a roll that meets these requirements, that is, a member for plating bath. Conventional techniques aimed at this include: (1) thermal spraying of a self-fluxing alloy specified by JIS H8303 (1976) on the roll surface; (2) ZrO□ and A1.0. (1) One or more of WC, CrC, and Tic as disclosed in Japanese Patent Publication No. 58-37386, with the remainder being a hot corrosion-resistant metal or its oxide.
, a roll having a surface coating layer formed with a thickness of 1 to 2.4 fi has been proposed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記各従来技術については、例えば■、■の場合、それ
以前の無処理ロールに比べると寿命が長くはなっている
ものの、2週間程度の使用によって自溶合金皮膜やセラ
ミック皮膜が局部的に剥離し、これがめつき鋼板表面に
変色模様として転写される結果、商品価値を甚だしく低
下させるという欠点があった。また、■の場合、WC,
CrC,TiCなどの炭化物は要求に対しすぐれた耐侵
食性を示すものの、炭化物だけでは被覆層を形成できな
いため、これと共存させる金属の種類によっては甚だし
く性能が低下し、実用に供し得ないという欠点があった
。すなわち、この従来技術において、炭化物にNiやS
iを混合させて用いると、溶射法で被覆層を形成させて
も前記溶融金属に対して全く効果がないのである。
Regarding each of the above conventional technologies, for example, in the case of ■ and ■, although the lifespan is longer than that of previous untreated rolls, the self-fusing alloy coating and ceramic coating may peel off locally after about two weeks of use. However, as a result of this being transferred to the surface of the plated steel plate as a discolored pattern, there was a drawback that the commercial value was significantly reduced. In addition, in the case of ■, WC,
Although carbides such as CrC and TiC exhibit excellent corrosion resistance that meets the requirements, carbides alone cannot form a coating layer, so depending on the type of metal coexisting with the carbide, the performance may deteriorate significantly, making it impossible to put it to practical use. There were drawbacks. That is, in this prior art, Ni and S are added to the carbide.
If i is used in combination, even if a coating layer is formed by thermal spraying, it will have no effect on the molten metal.

ただ、炭化物にCoを混合させたサーメット材料につい
ては、溶融金属に対して比較的良く耐えるが、それでも
0.1鶴以上の膜厚を必要とし、これ以下では被覆の効
果がないということを報告している。
However, it has been reported that cermet materials made by mixing carbide with Co can withstand molten metal relatively well, but still require a film thickness of 0.1 or more, and that the coating is not effective below this. are doing.

ところが、WC,Coなどは非常に高価な材料であるか
ら、かように厚膜を形成させると必然的にコストアップ
となる。しかも、この種の炭化物と金属からなるサーメ
ット材料は、基材の鉄鋼材料とは膨張係数が異なるため
、高温の溶融金属中では、  。
However, since WC, Co, etc. are very expensive materials, forming such a thick film inevitably increases the cost. Moreover, this type of cermet material consisting of carbide and metal has a different coefficient of expansion from that of the base steel material, so in high-temperature molten metal, it will expand.

両者の熱膨張差に基づく内部応力による母材からの剥離
が懸念されるところであ゛す、この点からも該従来技術
のような厚膜は不利であり、薄膜で耐溶融金属侵食性に
優れた被覆部材の開発が強く要望されている。
There is a concern that the film may peel off from the base material due to internal stress due to the difference in thermal expansion between the two.From this point of view as well, the thick film used in the prior art is disadvantageous; There is a strong demand for the development of coated members.

本発明の目的は、めっき浴用部材に対し、サーメット材
料とくにWC−Co系サーメット材料を溶射被覆する従
来技術が抱えている上述した欠点を克服することにある
。すなわち、特開昭58−37386号公報に開示の技
術は、溶融金属めっき浴浸漬部材に対し、その表面に炭
化物と金属からなる被覆材料を0.1〜2.4mmの厚
さに溶射被覆処理したものを提案するものであるが、そ
の被覆厚について0.1f1以上の厚膜にしなければ被
覆効果がないとしていることの弊害を解決せんとするも
のである。
SUMMARY OF THE INVENTION An object of the present invention is to overcome the above-mentioned drawbacks of the prior art of thermally spray coating a plating bath member with a cermet material, particularly a WC-Co cermet material. That is, the technique disclosed in JP-A No. 58-37386 involves thermally spraying a coating material made of carbide and metal onto the surface of a member immersed in a hot-dip metal plating bath to a thickness of 0.1 to 2.4 mm. However, the purpose is to solve the problem of the fact that the coating is not effective unless the coating thickness is 0.1f1 or more.

要するに、0.1〜2.4鶴のような厚膜の被覆では、
高温の溶融金属浴中に浸漬したり、引上げたりする際の
熱的変化に伴い、被覆層と母材との間の膨張係数差に基
づく内部応力が発生しやすくなり、とくにこの値が被覆
と母材の密着力より大きくなると、被覆が剥離を起こす
ことになる。一般に、被覆層の厚さが大きくなると、両
者間の膨張差が大きくなると共に母材との密着力が低下
する傾向のあることはよく知られたことである。
In short, in a thick film coating such as 0.1 to 2.4 Tsuru,
Due to thermal changes when immersed in or pulled up from a high-temperature molten metal bath, internal stress is likely to occur due to the difference in expansion coefficient between the coating layer and the base material, and this value is particularly If the adhesion is greater than that of the base material, the coating will peel off. Generally, it is well known that as the thickness of the coating layer increases, the expansion difference between them increases and the adhesion to the base material tends to decrease.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上述した従来技術の欠点を解決するため次の
ような手段を用いる。すなわ゛ち、めっき浴用部材の表
面に、炭化物としてWCおよび混合すべき金属としてC
oを用いたものから成るサーメット材料を、溶射法によ
って被覆形成させるに際し、溶射被覆層中の気孔率が1
.8%以下を示す被覆層にする。このような被覆層(以
下「皮膜」という)は、従来技術では不可能とされてい
た0、11厘以下の薄膜であるが、本発明者らが知見し
たところによれば、卓越した耐溶融金属性能を発揮する
ことが判明した。なお、本発明においては上記皮膜の厚
さは0.040〜0.10m未満の範囲に制御すること
が好ましく、またWCに混合すべきCoの量は5〜28
wt%とすることが好ましい。
The present invention uses the following means to solve the above-mentioned drawbacks of the prior art. In other words, WC as a carbide and C as a metal to be mixed are added to the surface of the plating bath member.
When forming a coating using a thermal spraying method using a cermet material made using
.. The coating layer should be 8% or less. Such a coating layer (hereinafter referred to as "film") is a thin film with a thickness of 0.11 mm or less, which was considered impossible with conventional technology, but according to the findings of the present inventors, it has excellent melting resistance. It was found that it exhibited metal performance. In the present invention, the thickness of the film is preferably controlled within the range of 0.040 to less than 0.10 m, and the amount of Co to be mixed in the WC is 5 to 28 m.
It is preferable to set it as wt%.

〔作 用〕[For production]

本発明において溶融金属めっき浴中に浸漬され、溶融ま
たは軟化金属と接触する部材表面に形成させるWC−C
oサーメット材料溶射皮膜は、硬さHvが1100〜1
300程度で耐摩耗性に優れており、溶融めっき鋼板と
接触しても摩耗することのないものである。このような
サーメット溶射材料は、高硬質のWC粒子と金属(Co
)との混合体であり、これおプラズマ溶射して得られた
皮膜は、WC粒子のまわりに金属粒子(Co)が包囲し
たMi織を有している。しかし、WC粒子は硬質で塑性
変形しないため、溶射時の衝突によって自身が破壊した
り、その衝突エネルギーによって既成膜にクランクを発
生したりするため、溶射皮膜中に気孔が発生しやすい。
In the present invention, WC-C is formed on the surface of a member that is immersed in a molten metal plating bath and comes into contact with molten or softened metal.
o The cermet material thermal spray coating has a hardness Hv of 1100 to 1
It has excellent wear resistance at about 300, and does not wear out even when it comes into contact with hot-dip plated steel sheets. Such cermet thermal spray materials are composed of highly hard WC particles and metal (Co
), and the film obtained by plasma spraying has a Mi weave in which WC particles are surrounded by metal particles (Co). However, since WC particles are hard and do not undergo plastic deformation, they can be destroyed by collisions during thermal spraying, or the impact energy can cause cranks in the already formed film, so that pores are likely to occur in the thermal sprayed coating.

一方、溶射皮膜中に気孔が存在すると、溶融金属がこの
気孔を通して内部に侵入し、母材の鉄鋼材料と冶金反応
を起こして体積を膨張させ、溶射皮膜を下部から剥離さ
せる現象が見られる。また、貫通に至らない気孔であっ
ても、溶融金属が内部に溜り、これが環境の温度変化に
伴って膨張、収縮を繰返すことによって溶射皮膜を破壊
させることが考えられる。
On the other hand, if pores exist in the thermal spray coating, molten metal enters the interior through the pores, causes a metallurgical reaction with the base steel material, expands the volume, and causes the thermal spray coating to peel off from the bottom. Furthermore, even if the pores do not penetrate through the pores, molten metal may accumulate inside and repeatedly expand and contract as the temperature changes in the environment, thereby destroying the sprayed coating.

そこで、本発明者らは、まず緻密な溶射皮膜を得るため
の溶射条件について検討し、(1)雰囲気温度の上昇に
よる溶射粒子の軟質化、(2)被溶射体表面への衝突エ
ネルギーの増大、に着目した。しかし、前記(1)の方
法は、高温化するためにWCが酸化物に変質し、炭化物
としての高硬度を利用することができなくなる。従って
、本発明者らは第(2)の方法についてさらに検討した
Therefore, the present inventors first studied the thermal spraying conditions for obtaining a dense thermal sprayed coating, and found that (1) the thermal spray particles become softer due to an increase in the ambient temperature, and (2) the impact energy on the surface of the object to be thermally sprayed increases. , we focused on However, in the method (1), the high temperature changes the WC into an oxide, making it impossible to utilize the high hardness of the carbide. Therefore, the present inventors further investigated method (2).

具体的には、酸素−水素ガスを熱源とし、溶射ガンへの
供給圧力を上昇させることによって、燃焼ガスの噴射速
度(燃料ガスの供給圧力を変動因子とした。この場合、
供給圧力が高いほど燃焼ガスの噴射速度が速くなり、こ
れに伴い溶射皮膜の気・孔率減少を目指した。)を大き
くし、溶射粒子の衝突エネルギーを高くした。第1図は
酸素−水素ガスの溶射ガンへの供給圧力と得られた溶射
皮膜の気孔率との関係を示したものである。この第1図
に示す結果からも明らかなように、燃料ガスの供給圧力
が高くなるほど、気孔率の低い溶射皮膜が得られること
が判明した。
Specifically, by using oxygen-hydrogen gas as a heat source and increasing the supply pressure to the thermal spray gun, the injection velocity of combustion gas (fuel gas supply pressure was used as a variable factor. In this case,
The higher the supply pressure, the faster the combustion gas injection speed, and the aim was to reduce the air and porosity of the sprayed coating. ) was increased to increase the collision energy of sprayed particles. FIG. 1 shows the relationship between the supply pressure of oxygen-hydrogen gas to the thermal spray gun and the porosity of the obtained thermal spray coating. As is clear from the results shown in FIG. 1, it was found that the higher the fuel gas supply pressure, the more a sprayed coating with a lower porosity could be obtained.

そこで、燃料ガスの供給圧力を調整することによって種
々の気孔率を有する、厚さ0.094〜0.098龍(
平均0.096鰭)と1.80〜1.90(平均1.8
5tm)のWC−Coサーメット溶射皮膜を形成させた
直径3.Q鶴。
Therefore, by adjusting the supply pressure of fuel gas, the thickness of 0.094 to 0.098 dragon (
average 0.096 fins) and 1.80-1.90 (average 1.8
5tm) with a WC-Co cermet thermal spray coating formed on the diameter 3. Q crane.

長さ100 mmの軟鋼製の円柱試験片を準備し、これ
を480℃の溶融亜鉛浴中に1時間浸漬した後引上げて
室温まで冷却する操作を1工程とし、この工程を繰返す
ことによって溶射皮膜の破壊状況を観察した。
A cylindrical test piece made of mild steel with a length of 100 mm is prepared, and one step is to immerse it in a 480°C molten zinc bath for 1 hour, then pull it out and cool it to room temperature. By repeating this process, the thermal spray coating is formed. The state of destruction was observed.

第2図は、WC−Coサーメット溶射皮膜の気孔率と皮
膜が破壊した浸漬回数との関係を示したものである。こ
の結果から明らかなように、溶射皮膜が厚くても気孔率
が高いと少ない浸漬回数で破壊し、逆に皮膜が薄くても
気孔率が低いものは多くの浸漬回数に耐えることが確認
された。しかも、この第2図に示すところに明らかなよ
うに、皮膜の気孔率が1.8%を限界として優れた耐侵
食性を示すことが明らかであり、このことから本発明に
おいては溶射皮膜の気孔率を1.8%以下のものにげん
ていした。このような気孔率にすると良好な耐溶融亜鉛
性を示す。なお、この試験に用いた溶射材料は、W C
(88%)−Co(12%)重量比のものであり、溶射
皮膜の気孔率は皮膜の断面を光学顕微鏡で写真記録し、
空孔部を着色後これを画像解析装置によって着色部の占
める割合を面積率として求めたものである。
FIG. 2 shows the relationship between the porosity of the WC-Co cermet sprayed coating and the number of immersions at which the coating was destroyed. As is clear from these results, it was confirmed that even if the thermal sprayed coating is thick but has a high porosity, it will break after a small number of immersions, and conversely, even if the coating is thin but has a low porosity, it can withstand many immersions. . Moreover, as shown in FIG. 2, it is clear that the coating exhibits excellent erosion resistance up to a porosity of 1.8%, and from this fact, in the present invention, the thermal sprayed coating is The porosity was increased to 1.8% or less. With such a porosity, good resistance to molten zinc is exhibited. The thermal spray material used in this test was W C
(88%)-Co (12%) weight ratio, and the porosity of the sprayed coating was determined by photographing the cross section of the coating using an optical microscope.
After the pores were colored, the area occupied by the colored portions was determined using an image analysis device.

次に、本発明において、部材表面に溶射被覆するサーメ
ット材料中に混合するCoの量は5〜28wt%とする
が、その理由は5wt%未満だと皮膜を構成するWC粒
子間の結合力が低下すると共に、皮膜と被溶射体との密
着力が弱くなるためであり、一方28−L%を超えると
溶融金属に強いCoといえども、WCに比べれば侵食さ
れ易いので、皮膜の耐溶融金属性が低下するからである
Next, in the present invention, the amount of Co mixed in the cermet material to be thermally sprayed onto the surface of the member is set at 5 to 28 wt%.The reason for this is that if it is less than 5 wt%, the bonding force between the WC particles constituting the film will be reduced. This is because as the amount decreases, the adhesion between the coating and the object to be thermally sprayed becomes weaker.On the other hand, if it exceeds 28-L%, even though Co is strong against molten metal, it is more easily corroded than WC, so the melting resistance of the coating decreases. This is because the metallicity decreases.

さらに、本発明においては、溶射皮膜の厚さを0.04
0〜0.1(bm未溝にすることが望ましいが、その理
由は0.040 w未満だと皮膜中の気孔率が高く耐溶
融金属性に劣るからであり、一方0.101■以上の厚
さになると溶射皮膜中の内部応力が高(なって剥離しや
すく、また経済的に得策でないからである。
Furthermore, in the present invention, the thickness of the thermal spray coating is 0.04
0 to 0.1 (bm) It is desirable to have no grooves, but the reason for this is that if it is less than 0.040 w, the porosity in the film will be high and the molten metal resistance will be poor; This is because if the thickness increases, the internal stress in the sprayed coating becomes high, making it easy to peel off, and it is not economically advisable.

〔実施例〕〔Example〕

実施例−1 この実施例では、連続溶融めっき装置の浸漬ロール、め
っきロール、ガイドロール(材質はそれぞれJIS G
3445(1983) STKM13A)に、第1表の
欄外に示すようなWC−Coサーメット材料を、厚さ0
.096〜0.098鶴、気孔率0.6.1.0.1.
8.2.2゜2.8%の溶射被覆し、この溶射皮膜つき
ロールを用いて巾900鶴、厚さ0.35鶴の鋼板を、
470〜480℃に維持した溶融亜鉛(JIS H21
07(1957)蒸留亜鉛特種相当)めっき浴に通板さ
せて連続溶融めっき処理を施し、そのときの溶射皮膜の
特性を調べた。
Example-1 In this example, the immersion roll, plating roll, and guide roll (materials are JIS G
3445 (1983) STKM13A), a WC-Co cermet material as shown in the margin of Table 1 was added to a thickness of 0.
.. 096-0.098 Tsuru, porosity 0.6.1.0.1.
8.2.2゜2.8% thermal spray coating, using this thermal spray coated roll, a steel plate with a width of 900 mm and a thickness of 0.35 mm,
Molten zinc maintained at 470-480°C (JIS H21
07 (1957) (equivalent to a special type of distilled zinc) was passed through a plating bath to undergo continuous hot-dip plating treatment, and the characteristics of the sprayed coating were investigated.

第1表は、こうして連続20日間溶融Znめっき処理を
した後の各ロール表面に処理した溶射皮膜の観察結果を
示したものである。この第1表に示す結果から明らかな
ように、本発明にがかる溶射皮膜は、Co含有量の如何
にかかわらず、しかもたとえ0.1mm未満の薄膜であ
っても、その気孔率を1゜8%以下に制御すれば長期間
にわたって優れた溶融亜鉛に対する耐侵食特性を示すこ
とが確認された。これに対し、比較例である気孔率の高
い(2,2%、2.8%)のものについては、溶射皮膜
が30%以上脱落しており、耐溶融亜鉛性に劣ることが
明らかである。
Table 1 shows the observation results of the thermal spray coatings treated on the surfaces of each roll after the hot-dip Zn plating treatment was carried out for 20 consecutive days. As is clear from the results shown in Table 1, the thermal sprayed coating according to the present invention has a porosity of 1°8 regardless of the Co content and even if it is a thin film of less than 0.1 mm. % or less, it was confirmed that excellent corrosion resistance against molten zinc can be exhibited over a long period of time. On the other hand, for the comparative examples with high porosity (2.2%, 2.8%), more than 30% of the thermal sprayed coating had fallen off, and it is clear that the molten zinc resistance was inferior. .

第1表 〈備考〉 溶射材料 G)  WC(95Z)−Co(5X)  ■ WC(
887:) −Co (127:)■ WC(82Z)
 −Co (18Z)  ■ WC(72Z) −Co
 (2B7:)評価 ○ 溶射皮膜健全  × 皮膜30%以上剥離実施例−
2 実施例−1と同じ溶射材料、溶射皮膜厚さ、気孔率のロ
ールを用い、鋼板(巾9001鳳×厚0.22m會)を
700〜710℃に維持した溶融アルミニウムめっき浴
中にて連続めっき処理を行った。溶融めっき金属として
は、JIS H2102(196B)アルミニウム1種
を使用した。
Table 1〈Remarks〉 Thermal spray material G) WC(95Z)-Co(5X) ■ WC(
887:) -Co (127:)■ WC (82Z)
-Co (18Z) ■ WC (72Z) -Co
(2B7:) Evaluation ○ Thermal spray coating soundness × Example of peeling off 30% or more of the coating -
2 Using a roll with the same thermal spraying material, thermal spray coating thickness, and porosity as in Example-1, a steel plate (width 9001mm x thickness 0.22m) was continuously coated in a hot-dip aluminum plating bath maintained at 700 to 710°C. Plating treatment was performed. JIS H2102 (196B) aluminum type 1 was used as the hot-dip plating metal.

第2表は、こうして15日間連続溶融Alめっきを施し
た後の溶射ロールの外観検査結果を示したものである。
Table 2 shows the results of the visual inspection of the thermal spray rolls after continuous hot-dip Al plating for 15 days.

この結果から本発明の溶射ロールは、浸漬ロール、めっ
きロール、ガイドロール全て健全な状態を維持していた
が、比較例のロールは、浸漬ロールは殆ど溶射皮膜が剥
離し、めっきロールでは50%以上、ガイドロールでも
35%以上の剥離が認められた。
From this result, the thermal spray roll of the present invention maintained a healthy state in all of the dipping roll, plating roll, and guide roll, but in the roll of the comparative example, most of the thermal spray coating peeled off on the dipping roll, and 50% on the plating roll. As mentioned above, peeling of 35% or more was observed even with the guide roll.

第2表 〈備考〉 溶射材料 G)  WC(95り−Co(5z)  ■ WC(8
8Z) −Co (12Z)■WC(82Z)−Co(
18Z)  ■ WC(72z) −Co (28Z)
評価 ○ 溶射皮膜健全  × 皮膜35%以上剥離実施例−
3 この実施例では、実施例−1の要領で溶射ロールを製作
するに際し、溶射皮膜厚さを0.020−0.100鶴
の範囲内で変動させ、溶融亜鉛および溶融アルミニウム
めっき装置における浸漬ロールとしての特性を試験した
。溶融亜鉛めっき温度は470〜480℃、20日間、
溶融アルミニウムめっき温度は700〜710℃、15
日間それぞれ連続めっき処理した後、浸漬ロールを引上
げて点検した。
Table 2 <Remarks> Thermal spray material G) WC (95 Ri-Co (5z)) ■ WC (8
8Z) -Co (12Z)■WC(82Z)-Co(
18Z) ■ WC (72z) -Co (28Z)
Evaluation ○ Thermal spray coating soundness × Example of peeling of 35% or more of the coating -
3 In this example, when manufacturing a thermal spray roll according to the procedure of Example 1, the thickness of the thermal spray coating was varied within the range of 0.020 to 0.100 mm, and the coating was applied to an immersion roll in a hot-dip zinc and hot-dip aluminum plating machine. The properties of the material were tested. Hot-dip galvanizing temperature is 470-480℃ for 20 days.
Hot-dip aluminum plating temperature is 700-710℃, 15
After continuous plating treatment for each day, the immersion roll was pulled up and inspected.

第3表は、こうして溶融亜鉛浴中で使用した浸漬ロール
の結果を示したもので、溶射皮膜の気孔率が低いものほ
ど耐侵食性に優れていることが判るが、気孔率1.8%
を超えるものでは最低0.040mmの皮膜厚ささえあ
れば日常業務に十分耐えられることが判明した。これに
対し、比較例の皮膜は膜厚の大小に関係なくすべて剥離
した。
Table 3 shows the results of the immersion rolls used in the molten zinc bath, and it can be seen that the lower the porosity of the sprayed coating, the better the erosion resistance, but the porosity is 1.8%.
It has been found that a coating thickness of at least 0.040 mm is sufficient to withstand daily work. On the other hand, all the films of Comparative Examples were peeled off regardless of the film thickness.

第4表は、溶融アルミニウム浴中で使用した浸漬ロール
についての結果を示したもので、この場合でも溶射皮膜
の気孔率が小さいものほど良好な耐侵食性を示し、気孔
率1.8%以下で0 、040 mm以上の皮膜厚さが
あれば15日間の使用に耐えることが確認された。なお
、比較例の皮膜はすべて剥離し、耐侵食性は全く認めら
れなかった。
Table 4 shows the results for immersion rolls used in a molten aluminum bath. Even in this case, the smaller the porosity of the sprayed coating, the better the erosion resistance, and the porosity is 1.8% or less. It was confirmed that if the film thickness was 0.040 mm or more, it could withstand use for 15 days. In addition, all the films of the comparative examples were peeled off, and no corrosion resistance was observed at all.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、めっき浴用部材の表面に
、0.04〜0.10龍未満の薄膜の気孔率1.8%以
下のWC−Coサーメット熔射皮膜が形成した結果、溶
融亜鉛や溶融アルミニウムなどに対して優れた耐侵食性
を示す安価なめっき浴用部材を提供できる。しかも、こ
のような部材を用いることによって、安定した溶融めっ
き作業、高生産性、めっき鋼板の品質の向上を保障する
ことができる。
As explained above, in the present invention, as a result of forming a WC-Co cermet spray coating with a porosity of 1.8% or less and a thin film of less than 0.04 to 0.10x on the surface of a plating bath member, molten zinc It is possible to provide an inexpensive plating bath member that exhibits excellent corrosion resistance against aluminum and molten aluminum. Moreover, by using such a member, stable hot-dip plating work, high productivity, and improvement in the quality of plated steel sheets can be guaranteed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、溶射熱源用燃料ガスの溶射ガンへの供給圧力
とその燃焼ガスによって形成された皮膜中の気孔率との
関係を示すグラフ、 第2図は、溶射皮膜中の気孔率と溶融亜鉛浴中に浸漬に
引上げ冷却の繰返しによる皮膜の剥離回数との関係を示
すグラフである。
Figure 1 is a graph showing the relationship between the supply pressure of the fuel gas for thermal spray heat source to the spray gun and the porosity in the coating formed by the combustion gas. Figure 2 is the graph showing the relationship between the porosity in the sprayed coating and the melting It is a graph showing the relationship between the number of times a film is peeled off due to repeated immersion in a zinc bath, followed by pulling up and cooling.

Claims (1)

【特許請求の範囲】 1、表面にサーメットの被覆層を有する部材において、
上記被覆層を、Coを5〜28wt%混合してなるWC
−Co系サーメット材料による気孔率が1.8%以下の
溶射被覆層としたことを特徴とする溶融金属めっき浴用
部材。 2、前記溶射被覆層の厚さが0.040−0.10mm
未満のものであることを特徴とする請求項1に記載の溶
融金属めっき浴用部材。
[Claims] 1. A member having a cermet coating layer on its surface,
The above coating layer is made of WC mixed with 5 to 28 wt% of Co.
- A member for a hot-dip metal plating bath, comprising a thermal spray coating layer made of a Co-based cermet material and having a porosity of 1.8% or less. 2. The thickness of the thermal spray coating layer is 0.040-0.10mm.
The member for a molten metal plating bath according to claim 1, wherein the member is less than or equal to
JP63049846A 1988-03-04 1988-03-04 Member for metal hot dipping bath tank Granted JPH01225761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63049846A JPH01225761A (en) 1988-03-04 1988-03-04 Member for metal hot dipping bath tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63049846A JPH01225761A (en) 1988-03-04 1988-03-04 Member for metal hot dipping bath tank

Publications (2)

Publication Number Publication Date
JPH01225761A true JPH01225761A (en) 1989-09-08
JPH0255502B2 JPH0255502B2 (en) 1990-11-27

Family

ID=12842432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63049846A Granted JPH01225761A (en) 1988-03-04 1988-03-04 Member for metal hot dipping bath tank

Country Status (1)

Country Link
JP (1) JPH01225761A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0394048A (en) * 1989-09-06 1991-04-18 Nittetsu Hard Kk Immersion member for molten zinc bath and the like excellent in corrosion resistance and wear resistance
JPH04116147A (en) * 1990-09-04 1992-04-16 Tocalo Co Ltd Improvement of service life of film on member coated with sprayed deposit for galvanizing bath
JPH055850U (en) * 1991-07-08 1993-01-26 住友金属工業株式会社 Melting bath pump
US5316859A (en) * 1992-03-30 1994-05-31 Tocalo Co., Ltd. Spray-coated roll for continuous galvanization
EP0603797A1 (en) * 1992-12-21 1994-06-29 Praxair S.T. Technology, Inc. Silicide coating having good resistance to molten metals
US5360675A (en) * 1992-05-14 1994-11-01 Praxair S.T. Technology, Inc. Molten zinc resistant alloy and its manufacturing method
US5397650A (en) * 1991-08-08 1995-03-14 Tocalo Co., Ltd. Composite spray coating having improved resistance to hot-dip galvanization
JPH0724969U (en) * 1992-06-26 1995-05-12 プラクスエア工学株式会社 Conveyor roll for galvanizing equipment
US5472793A (en) * 1992-07-29 1995-12-05 Tocalo Co., Ltd. Composite spray coating having improved resistance to hot-dip galvanization
EP0712939A2 (en) 1994-10-24 1996-05-22 Praxair S.T. Technology, Inc. Pot roll for continuous hot-dip galvanizing
US6129994A (en) * 1995-03-08 2000-10-10 Tocalo Co., Ltd. Member having composite coating and process for producing the same
KR100445453B1 (en) * 2001-12-11 2004-08-21 현대하이스코 주식회사 Spindle excellent in resistance to adhesive property and to fusion damage in zinc and zinc dross
JP2007211293A (en) * 2006-02-09 2007-08-23 Fujimi Inc Spray deposit film, and powder for thermal spraying
JP2013082978A (en) * 2011-10-12 2013-05-09 Jfe Steel Corp Method for manufacturing roll for iron-making facility
US8507105B2 (en) 2005-10-13 2013-08-13 Praxair S.T. Technology, Inc. Thermal spray coated rolls for molten metal baths

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0394048A (en) * 1989-09-06 1991-04-18 Nittetsu Hard Kk Immersion member for molten zinc bath and the like excellent in corrosion resistance and wear resistance
JPH04116147A (en) * 1990-09-04 1992-04-16 Tocalo Co Ltd Improvement of service life of film on member coated with sprayed deposit for galvanizing bath
JPH055850U (en) * 1991-07-08 1993-01-26 住友金属工業株式会社 Melting bath pump
US5397650A (en) * 1991-08-08 1995-03-14 Tocalo Co., Ltd. Composite spray coating having improved resistance to hot-dip galvanization
US5316859A (en) * 1992-03-30 1994-05-31 Tocalo Co., Ltd. Spray-coated roll for continuous galvanization
US5456950A (en) * 1992-05-14 1995-10-10 Praxair S.T. Technology, Inc. Molten zinc resistant alloy and its manufacturing method
US5360675A (en) * 1992-05-14 1994-11-01 Praxair S.T. Technology, Inc. Molten zinc resistant alloy and its manufacturing method
JPH0724969U (en) * 1992-06-26 1995-05-12 プラクスエア工学株式会社 Conveyor roll for galvanizing equipment
US5472793A (en) * 1992-07-29 1995-12-05 Tocalo Co., Ltd. Composite spray coating having improved resistance to hot-dip galvanization
EP0603797A1 (en) * 1992-12-21 1994-06-29 Praxair S.T. Technology, Inc. Silicide coating having good resistance to molten metals
US5389454A (en) * 1992-12-21 1995-02-14 Praxair S.T. Technology, Inc. Silicide coating having good resistance to molten metals
EP0712939A2 (en) 1994-10-24 1996-05-22 Praxair S.T. Technology, Inc. Pot roll for continuous hot-dip galvanizing
US6129994A (en) * 1995-03-08 2000-10-10 Tocalo Co., Ltd. Member having composite coating and process for producing the same
KR100445453B1 (en) * 2001-12-11 2004-08-21 현대하이스코 주식회사 Spindle excellent in resistance to adhesive property and to fusion damage in zinc and zinc dross
US8507105B2 (en) 2005-10-13 2013-08-13 Praxair S.T. Technology, Inc. Thermal spray coated rolls for molten metal baths
JP2007211293A (en) * 2006-02-09 2007-08-23 Fujimi Inc Spray deposit film, and powder for thermal spraying
JP2013082978A (en) * 2011-10-12 2013-05-09 Jfe Steel Corp Method for manufacturing roll for iron-making facility

Also Published As

Publication number Publication date
JPH0255502B2 (en) 1990-11-27

Similar Documents

Publication Publication Date Title
JPH01225761A (en) Member for metal hot dipping bath tank
US4526839A (en) Process for thermally spraying porous metal coatings on substrates
US8507105B2 (en) Thermal spray coated rolls for molten metal baths
US5098797A (en) Steel articles having protective duplex coatings and method of production
JP3007688B2 (en) Method for producing member having composite coating
KR20150052376A (en) HOT DIP Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT ANTI-CORROSION AND METHOD FOR MANUFACTURING THE STEEL SHEET USING THE SAME
US5316859A (en) Spray-coated roll for continuous galvanization
JPS6137955A (en) Roll for molten metal bath
KR101665912B1 (en) HOT DIP Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT ANTI-CORROSION AND METHOD FOR MANUFACTURING THE STEEL SHEET USING THE SAME
JP5596334B2 (en) Roll for hot metal plating bath
JP2826220B2 (en) Components for molten zinc bath
JPH0920975A (en) High adhesion terminal spraying roll
JP4224150B2 (en) Roll member for molten metal plating bath and method for producing the same
KR0166099B1 (en) Al-si-cr plated steel sheet excellent in corrosion resistance and production thereof
JP3502332B2 (en) Molten metal plating bath member and manufacturing method thereof
JP4259645B2 (en) Roll member for molten metal plating bath and method for producing the same
JP3500593B2 (en) Alloyed galvanized steel sheet for painting
JP3930652B2 (en) Roll member for hot dip zinc-aluminum alloy plating bath and manufacturing method thereof
JP3224166B2 (en) Material for molten metal bath
JPH10130803A (en) Hot-dip galvanized steel sheet excellent in flawing resistance and its production
JPH0748665Y2 (en) Roll for molten metal plating bath
CA2044763C (en) Process for producing spray-plated metal strip
KR20230093724A (en) Sink roll for galvanizing pot having excellent erosion and wear resistance and manufacturing method of the same
JP3220012B2 (en) Hard plating film coated member and method of manufacturing the same
JPS61257484A (en) Aluminized steel sheet having superior corrosion and heat resistance

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081127

Year of fee payment: 18

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081127

Year of fee payment: 18