JPH024997A - Production of copper in material for heat exchanger - Google Patents

Production of copper in material for heat exchanger

Info

Publication number
JPH024997A
JPH024997A JP2027489A JP2027489A JPH024997A JP H024997 A JPH024997 A JP H024997A JP 2027489 A JP2027489 A JP 2027489A JP 2027489 A JP2027489 A JP 2027489A JP H024997 A JPH024997 A JP H024997A
Authority
JP
Japan
Prior art keywords
soln
plating
alloy
metal
fin material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2027489A
Other languages
Japanese (ja)
Inventor
Hideo Suda
須田 英男
Yasushi Aiyoshizawa
相吉沢 康
Kadomasa Sato
佐藤 矩正
Sumio Susa
澄男 須佐
Katsuhiko Takada
高田 勝彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Denso Corp
Original Assignee
Furukawa Electric Co Ltd
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, NipponDenso Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2027489A priority Critical patent/JPH024997A/en
Publication of JPH024997A publication Critical patent/JPH024997A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To obtain a copper fin material having improved corrosion resistance without lowering heat conductivity by adding a specified amt. of a compd. such as Na2SO4, Al2(SO4)3 or H3BO3 to an Ni-Zn alloy plating soln. having a prescribed compsn., adjusting the pH of the resulting soln. and using the soln. as an electrolytic soln. CONSTITUTION:A plating soln. contg. 39-77g/l (expressed in terms of metallic Ni) water soluble Ni compd. and 6-68g/l (expressed in terms of metallic Zn) water soluble Zn compd. is prepd. One or more among 5-120g/l Na2SO4, 5-60g/l Al22(SO4)3.14-18H2O, 5-60g/l H3BO3, 3-15 g/l sodium naphthalenedisulfonate and 90-250g/l NH4Cl are added to the aq. soln. and dissolved. The pH of the resulting soln. is adjusted to 0.9-5.8 and the soln. is used as an electrolytic soln. A Cu (alloy) bar as the cathode is plated with a Zn-Ni alloy by electrolysis in the electrolytic soln. to produce a fin material for a heat exchanger. The thickness of this copper fin material can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 自動車などの腐食環境の激しい条件で使用される熱交換
器に好適な銅製熱交換器用フィン材の製造方法に関する
もので、特にフィンとしての熱伝導性を低下させること
なく、耐食性を改善し、フィンの薄肉化を可能にしたも
のである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a method for manufacturing a fin material for a copper heat exchanger, which is suitable for heat exchangers used in highly corrosive environments such as automobiles. This improves corrosion resistance and allows thinner fins without reducing conductivity.

〔従来の技術及び発明が解決しようとする課題〕近年自
動車用熱交換器の軽量化に伴なう熱交換器用フィン材の
薄肉化の指向が高まる一方、NaCLl’等の塩化物を
融雪材として散布する地域や海岸地帯に於て、塩化物に
よる激しいフィンの腐食損耗に起因する放熱特性の低下
が問題となっている。
[Prior art and problems to be solved by the invention] In recent years, as the weight of automobile heat exchangers has been reduced, there has been an increasing trend toward thinner fin materials for heat exchangers. In spraying areas and coastal areas, deterioration of heat dissipation characteristics due to severe corrosion and wear of fins due to chloride has become a problem.

一般に熱交換器用フィン材には耐食性と共に熱伝導性や
強度等が要求されており、Cu−Ni系耐食合金の如く
、第2.第3の元素の添加によるフィン材そのものの合
金化によって塩害腐食に耐える耐食性を持たせた場合に
は、熱伝導性の大幅な低下を招き、熱交換器用フィン材
としては適さないものとなる。従って熱交換器用フィン
材には、薄肉化によっても十分な熱伝導性を示すと共に
、苛酷な環境下において優れた耐食性を示す材料が要望
されている。
In general, fin materials for heat exchangers are required to have not only corrosion resistance but also thermal conductivity, strength, etc. If the fin material itself is alloyed by adding a third element to give it corrosion resistance against salt corrosion, the thermal conductivity will be significantly reduced, making it unsuitable as a fin material for a heat exchanger. Therefore, there is a demand for a fin material for a heat exchanger that exhibits sufficient thermal conductivity even when made thinner, and also exhibits excellent corrosion resistance in harsh environments.

かかる状況において、高導電性Cu系材料の表面にZ 
nの拡散層を形成し、犠牲陽極的に内部の芯材を保護し
、熱伝導性は芯材にもたせた熱交換器用フィン材が提案
されている。しかしながらZn合金特有の脱亜鉛腐食に
よりZnが消失し、長期間に渡ってZnの犠牲陽極効果
を保持することができない問題がある。しかし表層に形
成されるZnの拡散層は熱伝導性との兼ね合いにより、
片側数μm程度に限定されてはいるがZnの拡散層の脱
亜鉛腐食が効果的に抑制防止できれば、更に耐食性に優
れた熱交換器用フィン材が期待でき薄肉化も可能となる
In such a situation, Z on the surface of the highly conductive Cu-based material
A fin material for a heat exchanger has been proposed in which a diffusion layer of n is formed to protect the internal core material as a sacrificial anode, and the core material has thermal conductivity. However, there is a problem in that Zn disappears due to dezincification corrosion peculiar to Zn alloys, and the sacrificial anode effect of Zn cannot be maintained for a long period of time. However, due to the thermal conductivity of the Zn diffusion layer formed on the surface layer,
If the dezincification corrosion of the Zn diffusion layer can be effectively suppressed and prevented, although it is limited to a few micrometers on one side, a fin material for heat exchangers with even better corrosion resistance can be expected, and thinner fins can be achieved.

黄銅特有の脱亜鉛腐食を抑制する元素としてSb、As
、Pが知られているが、これ等を湿式メッキ法でCu−
Zn拡散層中に添加することは比較的困難である。従っ
て湿式メッキ法によりCu−Zn拡散層中に耐食性の改
善に有効な第3元素を添加するには前記sb等等外外z
n−X合金メッキを施し、Zn拡散層自体の高耐食化を
計る必要がある。このようなZnX合金メッキとしては
種々のメッキが考えられ、特にZn−Ni合金メッキは
電位的に卑であるZnが優先析出する異常共析型合金メ
ッキとして古くから知られており、鉄鋼関係において自
動車鋼板等の一部で、その応用が見られるが、技術的に
十分確立しているとは必ずしも言い難い状況にあり、銅
系材料への応用という点においては未知の分野である。
Sb and As are elements that suppress dezincification corrosion peculiar to brass.
, P are known, but these can be coated with Cu-
It is relatively difficult to add Zn into the diffusion layer. Therefore, in order to add a third element effective for improving corrosion resistance into the Cu-Zn diffusion layer by wet plating, the above-mentioned sb etc.
It is necessary to perform n-X alloy plating to improve the corrosion resistance of the Zn diffusion layer itself. Various types of ZnX alloy plating can be considered. In particular, Zn-Ni alloy plating has long been known as an anomalous eutectoid alloy plating in which Zn, which is less noble in potential, precipitates preferentially, and is widely used in the steel industry. Although its application has been seen in some automobile steel sheets, it cannot necessarily be said that the technology is sufficiently established, and its application to copper-based materials is an unknown field.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はこれに鑑み種々検討の結果、銅系材料の表面に
形成したZn拡散層の脱亜鉛腐食を軽減し、耐食性を改
善するのに効果的なZnNi合金メッキが得られるメッ
キ液を知見し、更に検討の結果耐食性に優れた銅系熱交
換器用フィン材の製造方法を開発したものである。
In view of this, as a result of various studies, the present invention has discovered a plating solution that can provide ZnNi alloy plating that is effective in reducing dezincification corrosion of the Zn diffusion layer formed on the surface of copper-based materials and improving corrosion resistance. As a result of further research, we developed a method for producing fin materials for copper-based heat exchangers that have excellent corrosion resistance.

即ち本発明製造方法の一つは、水溶性Ni化合物を金属
Niとして39〜17g/’IIと水溶性Zn化合物を
金属Znとして6〜68g/4とを溶解した水溶液に、
更にNa25O,+を5〜120g/A’ 、 Aff
 2 (SO4) q・14.−18H20を5〜60
 g /、n 、 H31303を5〜40g/(1,
ナフタレンジスルホン酸ナトリウムを3〜15g/jl
’ 、 N’)(、CIを90〜250 g /IIの
範囲内で何れか1種又は2種以上を添加溶解したp I
(0,9〜5.8の電解液を用い、Cu又はCU合金条
を陰極とし電解することにより、Cu又はCu合金条の
表面にZn−Ni合金をメッキすることを特徴とするも
のである。
That is, one of the manufacturing methods of the present invention is to dissolve a water-soluble Ni compound in an aqueous solution of 39 to 17 g/'II as metal Ni and a water-soluble Zn compound in an amount of 6 to 68 g/4 as metal Zn,
Furthermore, 5 to 120 g/A' of Na25O,+, Aff
2 (SO4) q・14. -18H20 from 5 to 60
g/, n, H31303 at 5-40 g/(1,
3-15g/jl of sodium naphthalene disulfonate
' , N') (, p I in which one or more types of CI are added and dissolved within the range of 90 to 250 g/II
(It is characterized by plating a Zn-Ni alloy on the surface of a Cu or Cu alloy strip by electrolyzing using an electrolyte of 0.9 to 5.8 and using the Cu or CU alloy strip as a cathode. .

また本発明製造方法の他の一つは、水溶性Ni化合物を
金属Niとして39〜77g/A!と水溶性Zn化合物
を金属Znとして6〜[i8 g /l2とを溶解した
水溶液に、更にNa2SO4を5〜120g/l,A1
2  (SO4)* ・I4− +8H20を5〜60
g/l、H3BO,を5〜4Qg/l、ナフタレンジス
ルホン酸ナトリウムを3〜I 5g/ II 、 N 
H4C7+を90〜25[1g/7Iの範囲内で何れか
1種又は2種以上を添加溶解したpH0,9〜5.8の
電解液を用い、Cu又はCu合金条を陰極とし電解する
ことにより、Cu又はCu合金条の表面にZn−Ni合
金をメッキした後、加熱拡散処理又は加熱拡散処理と圧
延加工を施すことを特徴とするものである。
Another method of the present invention is to use a water-soluble Ni compound containing 39 to 77 g/A of metal Ni! In addition, 5 to 120 g/l of Na2SO4 was added to an aqueous solution containing 6 to [i8 g/l2 of a water-soluble Zn compound as metal Zn, A1
2 (SO4)* ・I4- +8H20 from 5 to 60
g/l, H3BO, 5-4Qg/l, sodium naphthalene disulfonate 3-I 5g/II, N
By electrolyzing H4C7+ using a Cu or Cu alloy strip as a cathode using an electrolytic solution with a pH of 0.9 to 5.8 in which one or more of H4C7+ is added and dissolved in the range of 90 to 25 [1g/7I]. The method is characterized in that after the surface of Cu or Cu alloy strip is plated with Zn-Ni alloy, it is subjected to heating diffusion treatment or heating diffusion treatment and rolling processing.

〔作用〕[Effect]

即ち本発明製造方法はCu又はCu合金条の表面に耐食
性の優れたZn−Ni合金をメッキすることにより、Z
n合金の脱亜鉛腐食を軽減し、かつZnの犠牲陽極効果
により、内部のCu又はCu合金を保護するもので、Z
n−Ni合金のメッキ液として使用する水溶性のZn化
合物及びNi化合物としては硫酸塩又は塩化物が使用で
きる。
That is, in the manufacturing method of the present invention, Zn-Ni alloy with excellent corrosion resistance is plated on the surface of Cu or Cu alloy strip.
Z
As the water-soluble Zn compound and Ni compound used as the plating solution for the n-Ni alloy, sulfates or chlorides can be used.

しかしてメッキ液の組成を上記の如く限定し、かつメッ
キ液中の金属Ni濃度を39〜11g/Ilと高濃度浴
としたのは、Zn−Ni合金メッキとすることで、単体
のZnメッキの場合に比し、カソード電流効率が低下し
てしまうため、これをある程度カバーする必要があるた
めである。
However, the composition of the plating solution was limited as described above, and the metal Ni concentration in the plating solution was made into a high-concentration bath of 39 to 11 g/Il. By using Zn-Ni alloy plating, single Zn plating This is because the cathode current efficiency is lower than in the case of , and it is necessary to compensate for this to some extent.

外観均一光沢性の良いメッキ膜を得るためには、電流密
度範囲により浴組成を変える必要があり、金属Zn濃度
6〜42g/lの範囲は電流密度5〜20 Aldd、
好ましくは5〜+5 A/d%。
In order to obtain a plating film with uniform appearance and good gloss, it is necessary to change the bath composition depending on the current density range.
Preferably 5 to +5 A/d%.

金属Zn濃度42〜68g/lては20 A/dd以上
、好ましくは30 A/dd以上で良好なメッキが得ら
れる。しかして金属Zn濃度が下限未満ではメッキ膜中
のNi含有率が多くなるが、耐食性改善効果は薄れ、経
済的にも不利となり、上限を超えるとメッキ膜中のZn
濃度が多くなり、耐食性改善効果が期待できない。
Good plating can be obtained at a metal Zn concentration of 42 to 68 g/l of 20 A/dd or more, preferably 30 A/dd or more. However, if the metal Zn concentration is less than the lower limit, the Ni content in the plating film will increase, but the corrosion resistance improvement effect will be diminished and it will be economically disadvantageous.
The concentration becomes too high and no improvement in corrosion resistance can be expected.

カソード電流効率は浴組成、電流密度等の条件によって
も異なるが、例えばZnSO47H2080g / A
!  (金属Znとして18g/l)。
The cathode current efficiency varies depending on conditions such as bath composition and current density, but for example, ZnSO47H2080g/A
! (18 g/l as metal Zn).

N15Oa ・6H20300g/n  (金属Niと
して67g/l)、Na25Oa  100g/l。
N15Oa 6H20300g/n (67g/l as metal Ni), Na25Oa 100g/l.

Al 2 (S O4) 3・1418H2030g/
V含有するp H1,3〜1.7のメッキ浴では電流密
度+OA/d%でカソード電流効率は約80〜85%で
あるが、N ] S O4・6H20を150g/n 
 (金属Niとして37g/j+)に減らすと、カソー
ド電流効率は約60%に減少する。またZnSO4・7
H20100g/I (金属Znとして34.2g/l
 ) 、N i S 04 ・6H20300g/A’
  (金属Niとして66g/Il ) 、Na2so
、l  Io(Ig/l,  AA’ 2  (S O
4)  3  ・14−18H2030g/l含有する
pH2,0〜2.5のメッキ浴では、5μのメッキ厚さ
に於て25 A/dd程度以下の電流密度では均一光沢
性の良いメッキ膜が得られるが30^/dn−r以上で
は光沢性が悪くなり無光沢となってしまう。ZnSO4
・7H20を250g/A’  (金属Znとして57
g/7)に増加させると2OA/drd以下では無光沢
となるが30 A/dd以上では均一光沢性の良いメッ
キ膜が得られる。
Al2 (S O4) 3・1418H2030g/
In a plating bath containing V and pH 1.3 to 1.7, the cathode current efficiency is about 80 to 85% at current density + OA/d%, but when N]SO4.6H20 is added at 150 g/n
(37 g/j+ as metallic Ni), the cathode current efficiency decreases to about 60%. Also ZnSO4/7
H20100g/I (34.2g/l as metal Zn
), N i S 04 ・6H20300g/A'
(66g/Il as metal Ni), Na2so
, l Io(Ig/l, AA' 2 (S O
4) In a plating bath with a pH of 2.0 to 2.5 containing 3 ・14-18H2030 g/l, a plating film with uniform glossiness can be obtained at a current density of about 25 A/dd or less at a plating thickness of 5 μ. However, if it exceeds 30^/dn-r, the glossiness deteriorates and becomes matte. ZnSO4
・7H20 at 250 g/A' (57 as metal Zn
g/7), the plated film becomes matte at 2OA/drd or less, but a plated film with uniform glossiness is obtained at 30A/dd or more.

耐食性の面ではZn−Ni合金メッキのNi含有率は約
8〜15wt%程度とすることが好ましく、このために
はメッキ洛中金属Nj濃度としては53〜73g/nと
し、5〜+5 Aldイの電流密度で外観的均一光沢性
の良いメッキ膜を得るためには浴中のZn/Ni重量比
を175〜415とし、30 A/dd以上の電流密度
で外観均一光沢性の良いメッキ膜を得るためには浴中の
Zn/N1重量比を415〜1/l とすることが望ま
しい。
In terms of corrosion resistance, the Ni content of Zn-Ni alloy plating is preferably about 8 to 15 wt%, and for this purpose, the metal Nj concentration during plating should be 53 to 73 g/n, and 5 to +5 Aldi. In order to obtain a plating film with a uniform appearance and good gloss at a current density, the Zn/Ni weight ratio in the bath should be 175 to 415, and a plating film with a uniform appearance and good gloss at a current density of 30 A/dd or higher. For this reason, it is desirable that the Zn/N1 weight ratio in the bath is 415 to 1/l.

Na2SO4の添加はメッキ液の導電性を改善し、Al
2  (SO4)3・14−+8H20及びナフタレン
ジスルホン酸ナトリウムの添加はメッキの光沢を改善し
、H3BO1及びNH4Clの添加はメッキ液のpHを
調整するもので、何れも前記範囲内に制御したのは、何
れも下限未満では効果がなく、上限を越えると改善効果
がなく、経済的に不利となるためである。またメッキ液
のpHを0.9〜5.8と規定したのは、この範囲内で
良好なZn−Ni合金メッキが得られ、この範囲を外れ
ると良好なZn−Ni合金メッキが得られないためであ
る。
The addition of Na2SO4 improves the conductivity of the plating solution and improves the conductivity of the Al
The addition of 2 (SO4)3.14-+8H20 and sodium naphthalene disulfonate improves the gloss of the plating, and the addition of H3BO1 and NH4Cl adjusts the pH of the plating solution, both of which were controlled within the above range. This is because there is no effect when the lower limit is less than the lower limit, and there is no improvement effect when the upper limit is exceeded, which is economically disadvantageous. In addition, the pH of the plating solution was specified as 0.9 to 5.8 because good Zn-Ni alloy plating can be obtained within this range, and good Zn-Ni alloy plating cannot be obtained outside this range. It's for a reason.

Zn−Ni合金メッキ後の加熱拡散処理はメッキ層と芯
材間の相互拡散により両者の密着を強固にすると共に、
犠牲陽極効果を向上するためであり、また圧延加工は加
熱拡散と相俟って密着性を改善し、寸法精度を向上する
と共にメッキ層を加工組織とすることにより、フィン祠
の強度を改善するためである。しかして加熱拡散処理と
圧延加工は何れを先に施しても未発明の効果が得られる
も、最終工程で圧延加工することが望ましい。
The heat diffusion treatment after Zn-Ni alloy plating strengthens the adhesion between the plating layer and the core material through mutual diffusion, and
This is to improve the sacrificial anode effect, and the rolling process, together with heating and diffusion, improves adhesion, improves dimensional accuracy, and improves the strength of the fin hole by making the plating layer a processed structure. It's for a reason. Although the uninvented effect can be obtained by performing either the heat diffusion treatment or the rolling process first, it is desirable to perform the rolling process in the final step.

〔実施例〕〔Example〕

厚さ0.038mmのM g O,02wt%を含有す
る耐熱銅条(導電率95%1^C8)を用い、下記メッ
キ浴を用いて厚さ1.2μのZn−Ni合金メッキを両
面に施したものについて、腐食試験を行ない、引張強度
の劣化率を測定した。その結果を厚さ1.2μの純Zn
をメッキした従来法と比較して第1表に示した。
Using a heat-resistant copper strip (conductivity 95% 1^C8) containing 0.038 mm thick MgO, 02 wt%, Zn-Ni alloy plating with a thickness of 1.2 μm was applied to both sides using the plating bath below. Corrosion tests were conducted on the applied specimens, and the rate of deterioration of tensile strength was measured. The result was a pure Zn film with a thickness of 1.2μ.
Table 1 shows a comparison with the conventional method of plating.

また5μの厚さにメッキした時の外観についも第1表に
示した。
Table 1 also shows the appearance when plated to a thickness of 5μ.

腐食試験はIts z237+に基づく塩水噴霧を1時
間行なった後、温度70℃、湿度95%の恒温恒湿層内
に23時間保持することを30回繰り返した。
The corrosion test consisted of spraying salt water based on Its Z237+ for 1 hour and then holding the sample in a constant temperature and humidity layer at 70° C. and 95% humidity for 23 hours, which was repeated 30 times.

メッキ浴(1) NiS()+  ・6 H20300g#(金属Niと
して67g/l) n504 ・7H2080g# (金属Znとして18g/l) aSO4 A42  (SO4)3  ・14 H 温度 電流密度 メッキ浴(2) N i C12 ・6 H20180g# (金属Niとして44g/V) 100g/il! 18H2030g/l 1.5 50℃ 5^/drrf nCn 2 80g、# (金属Znとして38g/l) H4CI 3 BO3 H 温度 電流密度 230g#+ 20g/l! 30℃ 5A/drrr メッキ浴(3) NiSO4・6H20300g#! (金属Niとして66g/l) Zn SO4’ 7H2080g/l (金属Znとして57g/l) Na S O4 An 2  (SO4)  3 ・14H 温度 電流密度 メッキ浴(4) 1Cn2 ・6 H202g3g/jl! (金属Niとして70g/A’) 100g/A’ 18H2030g# 1.5 50℃ 35^/dffl nC12 135g#! (金属Znとして51g/l) H4CI H’+  B O’+ H 温度 電流密度 230 g/I! 20g# 5.0 30℃ 35^/dnf メッキ浴(5) NiSO。
Plating bath (1) NiS()+ ・6 H20300g# (67g/l as metal Ni) n504 ・7H2080g# (18g/l as metal Zn) aSO4 A42 (SO4)3 ・14H Temperature current density plating bath (2) N i C12 ・6 H20180g# (44g/V as metal Ni) 100g/il! 18H2030g/l 1.5 50℃ 5^/drrf nCn 2 80g, # (38g/l as metal Zn) H4CI 3 BO3 H Temperature current density 230g#+ 20g/l! 30℃ 5A/drrr Plating bath (3) NiSO4・6H20300g#! (66g/l as metal Ni) Zn SO4' 7H2080g/l (57g/l as metal Zn) Na SO4 An 2 (SO4) 3 ・14H Temperature current density plating bath (4) 1Cn2 ・6H202g3g/jl! (70g/A' as metal Ni) 100g/A'18H2030g# 1.5 50℃ 35^/dffl nC12 135g#! (51 g/l as metal Zn) H4CI H'+ B O'+ H Temperature current density 230 g/I! 20g#5.0 30℃ 35^/dnf Plating bath (5) NiSO.

nSO4 ・6H2080g#! (金属Niとして18g/A’) ・7H20240g/A’ (金属Znとして55g/42) aSO4 A(12(SO4)  s  ・14 H 温度 電流密度 メッキ浴(6) 1SO4 ・6 H20150g# (金属Niとして33g/l) 100g#’ 18H,030g/l 50℃ 5 A/dイ Zn5Oa  ’ 7H20250g/l(金属Znと
して57g/A’) N a S Oa AA’ 2  (SOa  )  q  ・14H 温度 電流密度 100g/A’ 18H2030g# 2.5 50℃ 35^/drrr メッキ浴(7) Zn So4−7H20240g#! (金属Znとして55g/j+) Na、So。
nSO4 ・6H2080g#! (18g/A' as metal Ni) ・7H20240g/A' (55g/42 as metal Zn) aSO4 A(12(SO4) s ・14 H Temperature current density plating bath (6) 1SO4 ・6H20150g# (As metal Ni 33g/l) 100g#' 18H, 030g/l 50℃ 5 A/d-Zn5Oa' 7H20250g/l (57g/A' as metal Zn) N a S Oa AA' 2 (SOa ) q ・14H Temperature current density 100g /A'18H2030g#2.5 50℃ 35^/drrr Plating bath (7) Zn So4-7H20240g#! (55g/j+ as metal Zn) Na, So.

A12 (S04 H 温度 電流密度 100g# )3 ・14 18H2030g#2 1.5 20°C 35^/dイ 第1表から明らかなように、純Znをメッキした従来法
No、 7によるものは、腐食による強度劣化が著しい
のに対し、本発明法No、 1〜4によるものは強度劣
化が小さく、耐食性が向上していることが判る。
A12 (S04 H Temperature current density 100g#) 3 ・14 18H2030g#2 1.5 20°C 35^/d As is clear from Table 1, the conventional method No. 7, which plated pure Zn, It can be seen that while the strength deterioration due to corrosion is significant, the strength deterioration is small in the specimens according to the present invention methods No. 1 to 4, and the corrosion resistance is improved.

これに対しメッキ浴中の金属Ni分が少ない比較法No
、 3〜4によるものは強度劣化が著しいことが判る。
On the other hand, comparative method No. 1 has a lower metallic Ni content in the plating bath.
, 3 to 4, it can be seen that the strength deterioration is significant.

。 次に厚さ0.065mmのMgO102W(%を含む耐
熱銅条(導電率95.5%lAC3)を用い、前記メッ
キ浴 (1)〜(7)を用い、両面に厚さ2.4μのZ
n−Ni合金メッキを施した後、500℃で1分間加熱
拡散処理し、これを圧延加工して厚さ0.035+nm
のフィン材とした。
. Next, a heat-resistant copper strip (conductivity 95.5% lAC3) containing MgO102W (95.5% AC3) with a thickness of 0.065 mm was used, and using the plating baths (1) to (7) described above, a Z layer with a thickness of 2.4 μ was applied to both sides.
After applying n-Ni alloy plating, heat diffusion treatment was performed at 500℃ for 1 minute, and this was rolled to a thickness of 0.035+ nm.
It was used as a fin material.

これについて前記腐食試験と同様の試験を行なって、引
張り強度の劣化率を測定した。その結果を厚さ24μの
純Znをメッキした後、450℃で1分間加熱拡散処理
を行ない、しかる後圧延加工により、厚さ0.036m
mとした従来法と比較して第2表に示す。
A test similar to the corrosion test described above was conducted on this to measure the deterioration rate of tensile strength. After plating pure Zn with a thickness of 24μ, the result was heated and diffused at 450°C for 1 minute, and then rolled to a thickness of 0.036m.
Table 2 shows a comparison with the conventional method where m is used.

第2表から明らかなように、純Znをメッキした後、加
熱拡散と圧延加工を加えた従来法No、I4によるもの
は、脱亜鉛が著しく強度劣化が大きいのに対し、本発明
方法No、 8〜11によるものは、脱亜鉛が少なく、
強度劣化が小さいことが判る。
As is clear from Table 2, conventional methods No. and I4, in which pure Zn was plated and then heat-diffused and rolled, were dezinced and the strength deteriorated significantly, whereas inventive method No. Those according to 8 to 11 have less dezincing,
It can be seen that the strength deterioration is small.

これに対しメッキ浴中の金属Ni分が少ない比較法No
、12〜13によるものは脱亜鉛が著しく、強度劣化が
大きいことが判る。
On the other hand, comparative method No. 1 has a lower metallic Ni content in the plating bath.
, Nos. 12 and 13 show significant dezincing and significant strength deterioration.

〔発明の効果〕〔Effect of the invention〕

このように本発明によれば、銅製熱交換器用フィン材の
耐食性を効果的に改善すると共に、熱伝導性の低下を低
くおさえることが可能となり、放熱用フィンとしての使
用寿命を向上させ、かつ薄肉軽量化を可能にする等工業
上顕著な効果を奏するものである。
As described above, according to the present invention, it is possible to effectively improve the corrosion resistance of the copper heat exchanger fin material and to suppress a decrease in thermal conductivity, thereby improving the service life of the heat dissipation fin. This has significant industrial effects, such as making it possible to achieve thinner walls and lighter weight.

Claims (2)

【特許請求の範囲】[Claims] (1)水溶性Ni化合物を金属Niとして39〜77g
/lと水溶性Zn化合物を金属Znとし て6〜68g/lとを溶解した水溶液に、更にNa_2
SO_4を5〜120g/l,Al_2(SO_4)_
3・14−18H_2Oを5〜60g/l,H_3BO
_3を5〜40g/l,ナフタレンジスルホン酸ナトリ
ウムを3〜15g/l,NH_4Clを90〜250g
/lの範囲内で何れか1種又は2種以上を添加溶解した
pH0.9〜5.8の電解液を用い、Cu又はCu合金
条を陰極として電解することにより、Cu又はCu合金
条の表面にZn−Ni合金をメッキすることを特徴とす
る銅製熱交換器用フィン材の製造方法。
(1) 39 to 77 g of water-soluble Ni compound as metal Ni
In addition, Na_2
5 to 120 g/l of SO_4, Al_2(SO_4)_
3.14-18H_2O 5-60g/l, H_3BO
5 to 40 g/l of _3, 3 to 15 g/l of sodium naphthalene disulfonate, 90 to 250 g of NH_4Cl
By electrolyzing the Cu or Cu alloy strip as a cathode using an electrolytic solution with a pH of 0.9 to 5.8 in which one or more of them are added and dissolved within the range of A method for producing a fin material for a copper heat exchanger, the method comprising plating the surface with a Zn-Ni alloy.
(2)水溶性Ni化合物を金属Niとして39〜77g
/lと水溶性Zn化合物を金属Znとして6〜42g/
lとを溶解した水溶液に、更にNa_2SO_4を5〜
120g/l,Al_2(SO_4)_3・14−18
H_2Oを5〜60g/l,H_3BO_3を5〜40
g/l,ナフタレンジスルホン酸ナトリウムを3〜15
g/l,NH_4Clを90〜250g/lの範囲内で
何れか1種又は2種以上を添加溶解したpH0.9〜5
.8の電解液を用い、Cu又はCu合金条を陰極として
電解することにより、Cu又はCu合金条の表面にZn
−Ni合金をメッキした後、加熱拡散処理を施すか、又
は加熱拡散処理と圧延加工を施すことを特徴とする銅製
熱交換器用フィン材の製造方法。
(2) 39 to 77 g of water-soluble Ni compound as metal Ni
/l and water-soluble Zn compound as metal Zn 6 to 42g/l
In addition, 5 to 50% of Na_2SO_4 is added to the aqueous solution in which
120g/l, Al_2(SO_4)_3・14-18
H_2O 5-60g/l, H_3BO_3 5-40
g/l, sodium naphthalene disulfonate from 3 to 15
g/l, NH_4Cl in the range of 90 to 250 g/l, pH 0.9 to 5, with one or more types added and dissolved.
.. By electrolyzing the Cu or Cu alloy strip using the electrolytic solution No. 8 as a cathode, Zn is deposited on the surface of the Cu or Cu alloy strip.
- A method for producing a fin material for a copper heat exchanger, which comprises plating with a Ni alloy and then subjecting it to a heating diffusion treatment, or subjecting it to a heating diffusion treatment and a rolling process.
JP2027489A 1988-03-11 1989-01-30 Production of copper in material for heat exchanger Pending JPH024997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2027489A JPH024997A (en) 1988-03-11 1989-01-30 Production of copper in material for heat exchanger

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-56128 1988-03-11
JP5612888 1988-03-11
JP2027489A JPH024997A (en) 1988-03-11 1989-01-30 Production of copper in material for heat exchanger

Publications (1)

Publication Number Publication Date
JPH024997A true JPH024997A (en) 1990-01-09

Family

ID=26357184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2027489A Pending JPH024997A (en) 1988-03-11 1989-01-30 Production of copper in material for heat exchanger

Country Status (1)

Country Link
JP (1) JPH024997A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5751284A (en) * 1980-09-12 1982-03-26 Nippon Steel Corp Manufacture of zn-fe-ni alloy plated steel plate
JPS61133394A (en) * 1984-12-01 1986-06-20 Nisshin Steel Co Ltd Method for plating zn-ni alloy with high electric current
JPS61172690A (en) * 1985-01-29 1986-08-04 Furukawa Electric Co Ltd:The Heat exchanger fin material and its production
JPS62136590A (en) * 1985-12-10 1987-06-19 Kawasaki Steel Corp Production of zn-ni alloy plated steel sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5751284A (en) * 1980-09-12 1982-03-26 Nippon Steel Corp Manufacture of zn-fe-ni alloy plated steel plate
JPS61133394A (en) * 1984-12-01 1986-06-20 Nisshin Steel Co Ltd Method for plating zn-ni alloy with high electric current
JPS61172690A (en) * 1985-01-29 1986-08-04 Furukawa Electric Co Ltd:The Heat exchanger fin material and its production
JPS62136590A (en) * 1985-12-10 1987-06-19 Kawasaki Steel Corp Production of zn-ni alloy plated steel sheet

Similar Documents

Publication Publication Date Title
JP3045612B2 (en) High corrosion resistant nickel-plated steel strip and its manufacturing method
CN101426961B (en) Heat-resistant Sn-plated Cu-Zn alloy strip suppressed in whiskering
US5063117A (en) Copper fin material for heat-exchanger and method of producing the same
US3793162A (en) Electrodeposition of ruthenium
US4167459A (en) Electroplating with Ni-Cu alloy
JPH024997A (en) Production of copper in material for heat exchanger
JPH09263994A (en) Battery can material excellent in deep drawability and its production
Belt et al. Nickel-Cobalt Alloy Deposits from a Concentrated Sulphamate Electrolyte
US5176812A (en) Copper fin material for heat-exchanger and method of producing the same
JPH07116634B2 (en) Heat exchanger fin material and its manufacturing method
Wyszynski Electrodeposition on Aluminium Alloys
JPS5928598A (en) Insoluble anode made of pb alloy for electroplating
US4997492A (en) Method of producing anode materials for electrolytic uses
JPH02200794A (en) Fin material for heat exchanger made of copper and its production
JPH02228496A (en) Fin material for heat exchanger made of copper and production thereof
JPS61272389A (en) Steel sheet coated with al-si by hot dipping and having high corrosion resistance
JPH0219489A (en) Surface treatment of aluminum material
JPS58141398A (en) Corrosion-resistant steel plate electroplated with zinc alloy and having high deep drawability and its manufacture
KR0146880B1 (en) Method for manufacturing cr-zn-ni/zn-ni alloy coated steel sheet
JPH07278881A (en) Production of electrogalvanized steel plate having excellent surface appearance
JPH01201460A (en) Manufacture of heat-exchanger fin material made of copper
KR0146874B1 (en) Method for manufacturing zn-cr/zn alloy coated steel sheet with 2-layers
KR0146873B1 (en) Method for manufacturing cr-zn-fe/zn-fe alloy coated steel sheet
JP2630608B2 (en) Manufacturing method of nickel-plated copper alloy strips for terminals and connectors
JPS61257484A (en) Aluminized steel sheet having superior corrosion and heat resistance