JPS61133394A - Method for plating zn-ni alloy with high electric current - Google Patents

Method for plating zn-ni alloy with high electric current

Info

Publication number
JPS61133394A
JPS61133394A JP25471984A JP25471984A JPS61133394A JP S61133394 A JPS61133394 A JP S61133394A JP 25471984 A JP25471984 A JP 25471984A JP 25471984 A JP25471984 A JP 25471984A JP S61133394 A JPS61133394 A JP S61133394A
Authority
JP
Japan
Prior art keywords
plating
current density
alloy
bath
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25471984A
Other languages
Japanese (ja)
Other versions
JPH0352551B2 (en
Inventor
Yasusuke Irie
入江 泰佑
Yoshitaka Nakagawa
中川 善隆
Junichi Kotegawa
小手川 純一
Kazusada Miura
三浦 一完
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP25471984A priority Critical patent/JPS61133394A/en
Publication of JPS61133394A publication Critical patent/JPS61133394A/en
Publication of JPH0352551B2 publication Critical patent/JPH0352551B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

PURPOSE:To electroplate a Zn-Ni alloy having superior corrosion resistance by adding a specified amount of Na2SO4 to a plating bath contg. Zn<2+> and Ni<2+> acidified with sulfuric acid and by regulating the ratio between Zn<2+> and Ni<2+> to a specified value. CONSTITUTION:Na2SO4 is added to a plating bath contg. Zn<2+> and Ni<2+> acidified with sulfuric acid by 0.6-1.0mol/l, and the ratio between Zn<2+> and Ni<2+> is regulated so as to satisfy Ni<2+>/(Zn<2+>+Ni<2+>)=0.55-0.65. Electroplating is carried out with the resulting plating bath at about 0.6-0.8m/sec flow rate, about 50-70 deg.C bath temp. and 80-200A/dm<2> current density to obtain a Zn-Ni alloy layer having about 10-13wt% Ni content. The Zn-Ni alloy layer has improved corrosion resistance and is hardly microcracked.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はZn−旧糸合金の電気めっきにおいで、高電流
密度でめっきしでもめっき層中の旧含有率を耐食性のよ
い10〜13@t%にすることができるめっき方法に関
する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to the electroplating of Zn-former yarn alloy, in which the old content in the plating layer can be reduced to 10 to 13 with good corrosion resistance even when plated at high current density. t%.

(従来技術) 電気めっきの付着量は(電流密度)×(めっき時間)に
よって決まるので、連続電気めっきラインなどでフィン
スピードを逮(してぬつき付着量を同一にするには電流
密度を高くする必要がある。
(Prior art) The amount of electroplating deposited is determined by (current density) x (plating time), so in a continuous electroplating line, the current density must be increased to maintain the same amount of plating by reducing the fin speed. There is a need to.

しかしラインスピードに合わせて単に電流密度を高くし
ても濃度分極が生じたり、導電率が不足したりして電圧
の上昇を招く、このため従来高電流密度でめっきする場
合被めっき面上にめっき液を高速で噴射するとか、めっ
き液に電導剤[Na25Oa、(NH,hsO,、Na
Cl等1を添加するとか、さらには浴温を高くするとか
等種々の方法を講じで、を織密度の増加に応じて電圧の
上昇を抑制するようにしている。このことはZn−Ni
系合金を高電流密度マめっbする場合も同様である。
However, simply increasing the current density to match the line speed may cause concentration polarization or insufficient conductivity, resulting in an increase in voltage.For this reason, when plating with conventional high current densities, it is difficult to plate on the surface to be plated. The plating solution may be sprayed at high speed, or a conductive agent [Na25Oa, (NH, hsO,, Na
Various methods such as adding Cl or the like or increasing the bath temperature are used to suppress the increase in voltage as the weave density increases. This means that Zn-Ni
The same applies to the case where alloys are plated at high current density.

ところでZc+−Nij%合金を高電流密度でめっきす
る場合電導剤としてに1sO4や(Nlln)*SO4
を使用すると1計と溶解度の小さい複塩を形成し、浴組
成を目的とする組成にすることができないことからこの
ような問題のないNa5SO4が一般に使用さ跣ている
。二のNa1SO4の電導剤としての効果は第1図に示
すように添加量が約7091 (0,5モル/e)まで
は添加量とともに電気伝導度は向上するが、それ以上添
加しても効果は飽和してしまう、このため従来Na25
Onを添加する場合は多くても0.5モル/C以下であ
った[Zr+−Ni合會電気めっき鋼板の耐食性、渋谷
11 カ、鉄と鋼、!@66年7号(’80)参照J。
By the way, when plating Zc+-Nij% alloy at high current density, 1sO4 or (Nlln)*SO4 is used as a conductive agent.
When used, a double salt with low solubility is formed and the bath composition cannot be adjusted to the desired composition. Therefore, Na5SO4, which does not have such problems, is generally used. As shown in Figure 1, the effect of Na1SO4 as a conductive agent is that the electrical conductivity increases with the addition amount up to about 7091 (0.5 mol/e), but it is not effective even if it is added beyond that amount. becomes saturated, so conventional Na25
When adding On, the amount was at most 0.5 mol/C or less [Corrosion resistance of Zr+-Ni composite electroplated steel sheet, Shibuya 11 Ka, Iron and Steel,! @See No. 7 of 1966 ('80) J.

しかして従来11%と12+とを含むZn−旧糸合金め
っき浴にNatSOnを0.5モル/8以下添加して耐
食性の最も優れたNi含含有率1御〜13系合金めっき
(γ単相)を20^/da”以上の電流密度で行う場合
はめっき浴中の)lie 7(lnn +Ni2+)を
0.7〜0.75にし、かっ浴温を60℃以上にして被
めっき面にめっ!1液を0.6〜0.8s八eeの流速
で噴射しながら行っていた.これは旧”/CZn心十旧
計)が0.7未満または0.75超であるとめっき眉の
組成がめっ!液の流速の影響を受けやすく、流速分布が
乱れた部位で前者の場合(γ+η)の混相に、後者の場
合は(γ+α)の混相になり、耐食性の低下を招くから
であり、また浴温か60℃未満であると上記同様に流速
分布が6われだ部位で(7+η)の混相になるからであ
る。
However, conventionally, by adding 0.5 mol/8 or less of NatSOn to a Zn-old yarn alloy plating bath containing 11% and 12+, it is possible to obtain Ni content of 1 to 13 series alloy plating (γ single phase), which has the best corrosion resistance. ) in the plating bath at a current density of 20^/da" or more, set the value of )lie 7 (lnn +Ni2+) in the plating bath to 0.7 to 0.75, and set the bath temperature to 60°C or more to plate the surface to be plated. This was done while injecting 1 liquid at a flow rate of 0.6 to 0.8 s 8 ee. The composition is amazing! This is because they are easily affected by the flow rate of the liquid, and in areas where the flow velocity distribution is disturbed, a mixed phase of (γ + η) occurs in the former case, and a mixed phase of (γ + α) in the latter case, resulting in a decrease in corrosion resistance. This is because if the temperature is lower than 60° C., the flow velocity distribution becomes a mixed phase of (7+η) at the 6-fold portion, as described above.

(発明が解決しようとする問題点) しかしながらこのような浴組成および浴温で高電流密度
めっきを訂うべく電流密度を高くしても8 0 A /
dm”が限界で、8 0 A /ds”を超えるとめっ
き層はγ単相であるが、めっき層中の平均Ni含有率が
14−1%前後に増加し、かつ無数のマイクロクラック
がめつき層に発生して耐食性が低下してしまうものであ
った.このめっき層中の旧含有率が増加する原因として
はめっき浴中のNi2+濃度がZn’+濃度の約2.3
倍とNi計濃度の方が着しく高いのにもかかわらず、析
出するZn−N1系合金はNit有率10敗%と浴組成
とは逆になるのであるから、高電流密度では1計よQ 
Zn2+の拡散がZn−旧糸合金析出の律速となり、そ
の結果めっき浴中のNi含有率が高(なるものと推定さ
れる.また高電1t’a!F度でめっきした場合にめっ
き層中のNi含有率が増加すること゛は実際電流密度と
ZnおよびNiの析出量との関係を調査しでみると第2
図に示すように電m蜜度が増加する程旧の析出量は増加
するが、Zn     ’の析出量は逆に減少すること
からも容易に理解されろ.一方めっき層にマイクロクラ
ックが無数発生する原因については必ずしも明確ではな
いが、めっき層中の旧含有率の増加が関与しでいろもの
と考えられる。
(Problems to be Solved by the Invention) However, even if the current density is increased to correct high current density plating with such bath composition and bath temperature, 80 A/
dm" is the limit, and when it exceeds 80 A/ds", the plating layer is a single phase of γ, but the average Ni content in the plating layer increases to around 14-1%, and countless microcracks form in the plating. This occurs in the layer and reduces corrosion resistance. The reason why the old content in the plating layer increases is that the Ni2+ concentration in the plating bath is about 2.3 times higher than the Zn'+ concentration.
Even though the total Ni concentration is considerably higher, the precipitated Zn-N1 alloy has a Ni content of 10%, which is opposite to the bath composition, so at high current density, the Ni concentration is considerably higher. Q
It is assumed that the diffusion of Zn2+ becomes rate-determining for the Zn-old thread alloy precipitation, and as a result, the Ni content in the plating bath becomes high (it is assumed that the Ni content in the plating bath becomes high). An increase in the Ni content of the
As shown in the figure, the amount of precipitated Zn' increases as the electric density increases, but it is easy to understand that the amount of Zn' precipitated decreases. On the other hand, the reason why numerous microcracks occur in the plating layer is not necessarily clear, but it is thought that an increase in the old content in the plating layer is involved.

(問題点を解決するための手段) そこで本発明者らはめっき層中のNi含有率が安定して
耐食性の最も優れた10〜13wt%め範囲になり、か
つマイクロクラック発生が少ないめっきを行うことので
きる高電流密度めっき方法を開発すべく種々研究した結
果、Zn2+と1汁とを含む硫酸酸性めっき浴にHan
somをo.e〜i.oモル/e添加しで、lieとN
i2+とを旧%/(Zn”+1%)=0、55〜0.6
5に調整すれば高電流密度でめっきしても目的のめっき
層が得られろことを見出だしたのである。
(Means for solving the problem) Therefore, the present inventors conduct plating in which the Ni content in the plating layer is stable and in the range of 10 to 13 wt%, which has the best corrosion resistance, and the generation of microcracks is small. As a result of various researches to develop a high current density plating method that can
som o. e~i. By adding omol/e, lie and N
i2+ and old%/(Zn”+1%)=0, 55~0.6
They found that if the current density was adjusted to 5, the desired plating layer could be obtained even if plating was performed at a high current density.

本発明においてめっき浴にNatSo,を従来の0.5
モル/eより多い0.6モル/e以上添加するのは、N
atSOnの電析に討する作用機構は明らかではないが
、0.6モル/ン以上添加するとめっき層中の平均旧含
有率を2wt%前後増加させることができるという知見
にもとすくものであろ.すなわちNazSO−を0.6
モル/e以上添加することによりめっき液中のNi叶濃
度を減少させ、Zn計濃度を高くすることができる.言
いかえればNi” /(Zn” + Ni” )< 0
.7にすることができる.第2図に示したごとく高電流
密度になるとZnの析出量は減少し、逆にN;の析出量
は増加するので、高電流密度でのZnの析出量を増加さ
せるようにすればめっき層中のN1含有率を14wt%
゛以上から10〜13wt%に減少させることができる
.そこでZnの析出量を増加させる方法について種々検
討を行った結果上記のような方法を見出だしたのである
In the present invention, NatSo is added to the plating bath at a concentration of 0.5% compared to the conventional method.
Adding 0.6 mol/e or more of N
Although the mechanism of action of atSOn on electrodeposition is not clear, the knowledge that adding 0.6 mol/n or more can increase the average prior content in the plating layer by around 2 wt% may be helpful. That is, NazSO- is 0.6
By adding mol/e or more, the Ni concentration in the plating solution can be reduced and the Zn concentration can be increased. In other words, Ni” / (Zn” + Ni”) < 0
.. It can be set to 7. As shown in Figure 2, when the current density becomes high, the amount of Zn precipitated decreases, and conversely, the amount of N; N1 content in 14wt%
It can be reduced from more than 10 to 13 wt%. Therefore, as a result of various studies on ways to increase the amount of Zn precipitated, the above method was discovered.

このようにしてZn析出量を増加させることが可能にな
ったので、Zn計、Ni2+を含むめつ!浴にNazS
O<を0,6モル/C以上添加して、めっき液流速0、
6− 0.8m/see,浴温5 0 − 7 0 ℃
、電流密度80〜2 0 0 A/da”のめっき条件
範囲でめっき層中のNi含有率が10〜13wt%にな
り、かつめっき層のマイクロクラック発生が少くなるめ
っき浴組成を検討した結果、NazSO4a度を0.6
〜1.0モル/8にしで、Zn>と1計とはZn2+が
N1計に対して従来上り多くなるようにしてNi” /
(Zn” + Na計)=0.55〜0.65に、とく
に電流密度150〜200A /da”でめっきする場
合にはNazSO−濃度を0.8〜1.0モル/Cにし
て、旧” /(Zn2++ Ni” )= 0.55−
0.65にすればよいことを見出だしたのである。
In this way, it became possible to increase the amount of Zn precipitated, so it was possible to increase the amount of Zn and Ni2+. NazS in the bath
By adding 0.6 mol/C or more of O<, the plating solution flow rate is 0,
6-0.8m/see, bath temperature 50-70℃
As a result of studying a plating bath composition that would result in a Ni content of 10 to 13 wt% in the plating layer and less occurrence of microcracks in the plating layer under a plating condition range of current density 80 to 200 A/da'', NazSO4a degree 0.6
~1.0 mol/8, and Zn> and 1 total are Ni''/
(Zn" + Na total) = 0.55 to 0.65, especially when plating at a current density of 150 to 200 A/da", the NazSO- concentration should be set to 0.8 to 1.0 mol/C. "/(Zn2++ Ni")=0.55-
They found that it is sufficient to set it to 0.65.

ここでN12SO+1度を0.6−1.0モル/8にし
たのは0.6モル78未満であるとめっき層中のNi含
有率を高める効果が小さく、逆に1.0モル/eを超乏
ると冬季のように低温環境下にめっき液を保管しておい
た場合にN12SO+が再結晶化して、その溶解に時間
を要し、操業性を低下させるからである。またNi” 
/(Zn” + Ni” ) = 0.55−0.65
にしたのは0.55未満であるとめっき層組成がめつき
g流速の影響を受けやすくなって、流速分布の乱れた部
位が(γ+り)の混相になり、耐食性が低下するからで
ある。一方0.65を超えるとめっき層中の平均旧含有
車が増加して、めっき層に無数のマイクロクラックが発
生し、耐食性が低下するからである。
Here, the reason why N12SO+1 degree is set to 0.6-1.0 mol/8 is that if it is less than 0.6 mol/e, the effect of increasing the Ni content in the plating layer is small, and conversely, if it is less than 0.6 mol/e, the effect of increasing the Ni content in the plating layer is small. This is because if it is extremely depleted, N12SO+ will recrystallize when the plating solution is stored in a low-temperature environment such as in winter, and it will take time to dissolve, reducing operability. Also Ni”
/(Zn" + Ni") = 0.55-0.65
The reason for this is that if it is less than 0.55, the plating layer composition becomes susceptible to the influence of the plating g flow rate, and areas where the flow velocity distribution is disordered become a mixed phase of (γ+R), resulting in a decrease in corrosion resistance. On the other hand, if it exceeds 0.65, the average old content in the plating layer will increase, causing countless microcracks to occur in the plating layer and reducing corrosion resistance.

なおZn’+とNI2+どの濃度は(Zn”+12+)
で1.0〜1.4モル/eで十分である。
The concentration of Zn'+ and NI2+ is (Zn''+12+)
1.0 to 1.4 mol/e is sufficient.

本発明のめっき方法は鉄イオン、クロムイオン、コバル
トイオンなどZn’+やNiト以外のイオンを含むZn
−Ni1合金めっき浴においてら商電流密度でめっ!1
できるものである。
The plating method of the present invention uses Zn containing ions other than Zn'+ and Ni, such as iron ions, chromium ions, and cobalt ions.
- Plating at quotient current density in Ni1 alloy plating bath! 1
It is possible.

なおZn%と12+とを含むめっき浴にHa2SO<を
0.6〜1.0モル/e添加して高電流密度でめっきし
てめっき層中の平均旧含有率を10〜13w【%にする
方法としでNi” /(Zn” + Ni” )= 0
.7にして、かツZn′と1計の濃度を(Zn” + 
Ni” )= 1.4モル/Cを越えて高くする方法も
考えられるが、この方法はめっき液の粘性が増加し、被
めっき材によるめっ軽液の待ち出し量が増加して、高価
な1計が多く浪費されるぽかりでなく、めっき浴の建浴
前も高くなって好ましい方法とはい尤ない。
Note that 0.6 to 1.0 mol/e of Ha2SO< is added to the plating bath containing Zn% and 12+, and plating is performed at a high current density to make the average old content in the plating layer 10 to 13 w[%]. As a method, Ni” / (Zn” + Ni”) = 0
.. 7, and the concentration of Zn′ and 1 total is (Zn” +
It is possible to consider a method of increasing Ni") = 1.4 mol/C or more, but this method increases the viscosity of the plating solution and increases the amount of light plating solution drawn out by the material to be plated, making it expensive. Not only does it waste a lot of money, but it also increases the cost before the plating bath is built, so it is not a preferable method.

(実施例) 板厚0.8m峻の冷延鋼板を常法により脱脂、酸洗した
後NIL2SO,を添加したZn2+と12+とを含む
種々の硫酸酸性めっき浴でZn一層系合金を片面当たり
209/+s”電気めっきしで、めっき層のクラックの
発生状況と耐食性(JIS Z 2371に基づく塩水
雰n試験)とを調査した。第1表にめっ島条件と調査結
果とをまとめて示す。
(Example) After degreasing and pickling a cold-rolled steel plate with a thickness of 0.8 m by a conventional method, a Zn single-layer alloy was coated with 209% per side of a Zn single-layer alloy in various sulfuric acid acid plating baths containing Zn2+ and 12+ to which NIL2SO was added. /+s" electroplating to investigate the occurrence of cracks in the plating layer and the corrosion resistance (salt water atmosphere test based on JIS Z 2371). Table 1 summarizes the plating conditions and the investigation results.

第1表より明らかなように、本発明法でめっきすれば、
電流密度を80〜200 A/da”にしでもめっき層
中の旧含有率は10〜13−t%になり、めっき層にも
ほとんどクチツクが発生しない、また浴温を50〜70
℃に低下させることができるので経済的である。
As is clear from Table 1, if plating is performed using the method of the present invention,
Even if the current density is set to 80 to 200 A/da, the old content in the plating layer is 10 to 13-t%, and almost no scratches occur in the plating layer.
It is economical because the temperature can be lowered to ℃.

第3図は第1表の本発明法1〜4でめりきしためっき層
の組成を調査しで、電ml!F度によりZnとHiの析
出量がどのように変化するかを整理したもので、本発明
法の場合IJ421!lに示した従来法の場合より電流
密度増加によるZn析出量減少と1析出量増加とは共に
少なくなっており、高電流密度でめっきしてもめっ軽層
中の旧含有率が従来法のごとく高くならないことがわか
る。
Figure 3 shows the composition of the plating layer plated using methods 1 to 4 of the present invention shown in Table 1. This is a summary of how the precipitation amount of Zn and Hi changes depending on the degree of F, and in the case of the method of the present invention, IJ421! Both the reduction in the amount of Zn precipitated and the increase in the amount of Zn precipitated due to the increase in current density are smaller than in the case of the conventional method shown in Figure 1. Even when plating is performed at a high current density, the old content in the plating light layer is lower than that in the conventional method. You can see that it doesn't get very expensive.

(効果) 以上説明したごとく、本発明法によれぼ80A/−一2
以上の高電流密度でめっきしても耐食性の優れたZn−
旧糸合金をめっきすることが?さる。また浴温を70℃
以下にすることができろので、安価にぬつきすることが
できる。
(Effect) As explained above, the method of the present invention has a drop of 80A/-12
Zn- has excellent corrosion resistance even when plated at higher current densities than
Is it possible to plate old thread alloy? Monkey. Also, increase the bath temperature to 70℃.
Since it can be done as follows, it can be attached at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

#I1図は旧” /(Zi” + Ni” )= 0.
7、PH1,7、浴温55℃のめっIK浴にNatSO
−を添加した場合のHa、SO,添加量とめっき浴電気
伝導度との関係を示すグラフである。第2図は旧% /
(7n% +lli% )= Q。 フ、Na、5O4G、5モs、/e、浴温60℃のめっ
き俗で電流密度を変えてめっきした場合の電流密度とZ
nBよC/Niの析出量との関係を示すグツ7である。 #I3図はyl施例の本発明法1〜41%めっきした場
合の電流密度とZnおよび旧の析出量との関係を示すグ
ラフである。
#I1 diagram is old" / (Zi" + Ni") = 0.
7. NatSO in a plating IK bath with a pH of 1.7 and a bath temperature of 55°C.
- is a graph showing the relationship between Ha, SO, addition amount and plating bath electrical conductivity. Figure 2 shows the old %/
(7n% +lli%) = Q. F, Na, 5O4G, 5Mos, /e, current density and Z when plating with different current densities at a bath temperature of 60°C
Figure 7 shows the relationship between nB and the amount of C/Ni precipitation. Figure #I3 is a graph showing the relationship between the current density and the amount of Zn and old precipitation in the case of 1 to 41% plating according to the method of the present invention in the yl example.

Claims (2)

【特許請求の範囲】[Claims] (1)Zn^2^+とNi^2^+とを含む硫酸酸性め
っき浴にNa_2SO_4を0.6〜1.0モル/l添
加して、Zn^2^+とNi^2^+とをNi^2^+
/(Zn^2^+Ni^2^+)=0.55〜0.65
に調整して電気めっきすることを特徴とするZn−Ni
系合金の高電流めっき方法。
(1) Add 0.6 to 1.0 mol/l of Na_2SO_4 to a sulfuric acid acid plating bath containing Zn^2^+ and Ni^2^+, and add Zn^2^+ and Ni^2^+. Ni^2^+
/(Zn^2^+Ni^2^+)=0.55~0.65
Zn-Ni is characterized in that it can be electroplated after adjusting to
High current plating method for alloys.
(2)電流密度80〜200A/dm^2で電気めっき
することを特徴とする特許請求の範囲第1項に記載のZ
n−Ni系合金の高電流めっき方法。
(2) Z according to claim 1, characterized in that electroplating is performed at a current density of 80 to 200 A/dm^2
High current plating method for n-Ni alloy.
JP25471984A 1984-12-01 1984-12-01 Method for plating zn-ni alloy with high electric current Granted JPS61133394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25471984A JPS61133394A (en) 1984-12-01 1984-12-01 Method for plating zn-ni alloy with high electric current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25471984A JPS61133394A (en) 1984-12-01 1984-12-01 Method for plating zn-ni alloy with high electric current

Publications (2)

Publication Number Publication Date
JPS61133394A true JPS61133394A (en) 1986-06-20
JPH0352551B2 JPH0352551B2 (en) 1991-08-12

Family

ID=17268891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25471984A Granted JPS61133394A (en) 1984-12-01 1984-12-01 Method for plating zn-ni alloy with high electric current

Country Status (1)

Country Link
JP (1) JPS61133394A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63192891A (en) * 1987-02-06 1988-08-10 Kawasaki Steel Corp Production of zn-ni alloy plated steel sheet
JPH024997A (en) * 1988-03-11 1990-01-09 Furukawa Electric Co Ltd:The Production of copper in material for heat exchanger
JPH0230791A (en) * 1988-07-20 1990-02-01 Kawasaki Steel Corp Production of zn-ni alloy plated steel sheet
CN103898586A (en) * 2013-06-04 2014-07-02 无锡市锡山区鹅湖镇荡口青荡金属制品厂 Magnesium alloy surface electrochromism combination solution for pre-electroplated zinc-nickel alloy
CN103898575A (en) * 2013-06-04 2014-07-02 无锡市锡山区鹅湖镇荡口青荡金属制品厂 Pre-electrogalvanizing nickel alloy process for chemical plating of nickel on surface of magnesium alloy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204195A (en) * 1982-05-25 1983-11-28 Nippon Kokan Kk <Nkk> Manufacture of steel plate electroplated with ni-zn alloy and provided with superior workability and corrosion resistance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204195A (en) * 1982-05-25 1983-11-28 Nippon Kokan Kk <Nkk> Manufacture of steel plate electroplated with ni-zn alloy and provided with superior workability and corrosion resistance

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63192891A (en) * 1987-02-06 1988-08-10 Kawasaki Steel Corp Production of zn-ni alloy plated steel sheet
JPH0413436B2 (en) * 1987-02-06 1992-03-09 Kawasaki Steel Co
JPH024997A (en) * 1988-03-11 1990-01-09 Furukawa Electric Co Ltd:The Production of copper in material for heat exchanger
JPH0230791A (en) * 1988-07-20 1990-02-01 Kawasaki Steel Corp Production of zn-ni alloy plated steel sheet
CN103898586A (en) * 2013-06-04 2014-07-02 无锡市锡山区鹅湖镇荡口青荡金属制品厂 Magnesium alloy surface electrochromism combination solution for pre-electroplated zinc-nickel alloy
CN103898575A (en) * 2013-06-04 2014-07-02 无锡市锡山区鹅湖镇荡口青荡金属制品厂 Pre-electrogalvanizing nickel alloy process for chemical plating of nickel on surface of magnesium alloy

Also Published As

Publication number Publication date
JPH0352551B2 (en) 1991-08-12

Similar Documents

Publication Publication Date Title
US5215646A (en) Low profile copper foil and process and apparatus for making bondable metal foils
US4033835A (en) Tin-nickel plating bath
KR890001107B1 (en) Process for preparing zn - fe base alloy electroplated steel strips
CN103757672B (en) A kind of Zinc-tin alloy electro-plating method
JPS6119719B2 (en)
US4036709A (en) Electroplating nickel, cobalt, nickel-cobalt alloys and binary or ternary alloys of nickel, cobalt and iron
US2693444A (en) Electrodeposition of chromium and alloys thereof
US3878067A (en) Electrolyte and method for electrodepositing of bright nickel-iron alloy deposits
JPS61133394A (en) Method for plating zn-ni alloy with high electric current
CN105926010A (en) Composite brightener, nanocrystalline nickel electroplate liquid and method for nickel plating on surface of workpiece based on nanocrystalline electroplate liquid
JPH0424439B2 (en)
JPS5887289A (en) Chromium electroplating bath
CH636909A5 (en) METHOD FOR THE GALVANIC DEPOSITION OF AN IRON AND NICKEL AND / OR COBALT CONTAINING RAIN AND A SUITABLE BATH FOR THIS.
Crousier et al. Effect of nickel on the electrodeposition of copper
US1960029A (en) Electrodeposition of alloys
JPS635474B2 (en)
SE443162B (en) PUT TO PICTURE AN ESSENTIAL BLACK NICKEL COATING ON A SUBSTRATE JAMES BATHROOM
US3679381A (en) Novel composite
JPH0598488A (en) Copper-nickel alloy electroplating bath
JPS60200996A (en) Blackened rustproof steel sheet and its manufacture
JPS6215635B2 (en)
CN108559915B (en) A kind of dilval and preparation method thereof
JPS6130697A (en) Manufacture of zn-fe alloy electroplated steel sheet having fine appearance, color tone and superior adhesion to its plating
JPS61179890A (en) Hard chromium plating bath having amorphous structure
JPS5864393A (en) Plating bath for tin-zinc alloy