JPS58204195A - Manufacture of steel plate electroplated with ni-zn alloy and provided with superior workability and corrosion resistance - Google Patents

Manufacture of steel plate electroplated with ni-zn alloy and provided with superior workability and corrosion resistance

Info

Publication number
JPS58204195A
JPS58204195A JP8726682A JP8726682A JPS58204195A JP S58204195 A JPS58204195 A JP S58204195A JP 8726682 A JP8726682 A JP 8726682A JP 8726682 A JP8726682 A JP 8726682A JP S58204195 A JPS58204195 A JP S58204195A
Authority
JP
Japan
Prior art keywords
plating
plating bath
steel plate
corrosion resistance
workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8726682A
Other languages
Japanese (ja)
Other versions
JPS6138274B2 (en
Inventor
Tomihiro Hara
原 富啓
Takeshi Ataya
安谷屋 武志
Masaru Sagiyama
勝 鷺山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP8726682A priority Critical patent/JPS58204195A/en
Publication of JPS58204195A publication Critical patent/JPS58204195A/en
Publication of JPS6138274B2 publication Critical patent/JPS6138274B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture the titled plated steel plate by plating a steel plate at high current density in a plating bath having specified concns. of Zn<2+> and Ni<2+> and a pH below an upper limit value determined in accordance with the relative speed of the bath to the plate and the composition of the bath. CONSTITUTION:A plating bath contg. >=20g/l Zn<2+> while satisfying Ni<2+>/Zn<2+>+ Ni<2+>)=0.55-0.90 and having a pH below a valve defined by the equation [where v is the relative speed (m/sec) of the bath and a steel plate, Zn<2+> is the concn. of Zn<2+>, and Ni<2+> is the concn. of Ni<2+>] is used. A steel plate electroplated with an Ni-Zn alloy and provided with superior workability and corrosion resistance can be obtd. by carrying out plating in said plating bath at high current density.

Description

【発明の詳細な説明】 この発明は、加工性および耐食性に優れたNi−Zn 
 合金電気メツキ鋼板の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION This invention provides Ni-Zn with excellent workability and corrosion resistance.
The present invention relates to a method for manufacturing an alloy electroplated steel sheet.

工業用材料の主力である鉄鋼には省資源の見地から耐食
性の向上が求められている。特に鉄鋼需要の中で大きな
比重を占める自動車工業界では、北米や北欧に代表され
る降雪地帯で冬期に路面の凍結防止用に散布される岩塩
などの融雪剤による車体腐食が大きな問題になっており
、車体防錆力の強化が必要とされている。
Steel, the mainstay of industrial materials, is required to have improved corrosion resistance from the perspective of resource conservation. Particularly in the automobile industry, which accounts for a large proportion of steel demand, corrosion of car bodies caused by snow-melting agents such as rock salt, which are sprayed in winter to prevent roads from freezing in snowy regions such as North America and Northern Europe, has become a major problem. Therefore, it is necessary to strengthen the rust prevention ability of the car body.

車体防錆強化対策として表面処理鋼板の使用が急速に増
加している。車体防錆強化上、表面処理鋼板に要求され
る性能の主体は、塗装された部分と合わせ目部分環、塗
装されずに残った部分の耐食性および加工性である。
The use of surface-treated steel sheets is rapidly increasing as a measure to strengthen car body rust prevention. The main performance requirements for surface-treated steel sheets in order to strengthen the rust prevention of car bodies are the corrosion resistance and workability of the painted parts, seam rings, and parts that remain unpainted.

従来、上記表面処理鋼板としては、亜鉛メッキ鋼板が使
用されてきたが、亜鉛メッキは腐食速度が大きいために
厚メッキが必要となる。このためにスクラップ処理上問
題となる他、塗嘆下での腐2− 食反応に起因する塗膜のふくれが生じるので、亜鉛メッ
キ鋼板は、車体防錆材料として不十分である。
Conventionally, galvanized steel sheets have been used as the above-mentioned surface-treated steel sheets, but since zinc plating has a high corrosion rate, thick plating is required. This causes problems in scrap disposal, and also causes blistering of the paint film due to corrosion reaction under coating, making galvanized steel sheets insufficient as a rust-preventing material for car bodies.

このような状況下で、 Ni−Zn 、  Fe−zn
 、  co−cr−Znなどの合金電気メツキ鋼板が
優れた性能を持つ材料であることが明らかにされてきた
。特に、未塗装部分で従来の亜鉛メッキ鋼板の5〜10
倍の耐食性を有し、塗装後も優れた耐食性を示すNi−
Zn合金電気メツキ鋼板が車体防錆力強化に適した材料
として注目されている。
Under such circumstances, Ni-Zn, Fe-zn
, co-cr-Zn and other alloy electroplated steel sheets have been shown to be materials with excellent performance. In particular, in the unpainted areas, 5 to 10% of the conventional galvanized steel sheet
Ni-
Zn alloy electroplated steel sheets are attracting attention as a material suitable for strengthening the rust prevention ability of car bodies.

Ni−Zn合金電気メツキ鋼板は、N1含有率がlO係
係上上再結晶構造としてγ相が形成されると。
In Ni-Zn alloy electroplated steel sheets, the γ phase is formed as a recrystallized structure on the relationship between N1 and IO.

優れた裸耐食性を示すことが知られている。従って、高
耐食性を目的としたNi−Zn合金電気メツキ鋼板は上
記組成を持つように製造される。
It is known to exhibit excellent bare corrosion resistance. Therefore, a Ni-Zn alloy electroplated steel sheet intended for high corrosion resistance is manufactured to have the above composition.

電気メツキ鋼板の生産性からみると、高電流密度で操業
できることが望ましい。従来、 Ni−Zn合金電気メ
ッキに使用されている電流密度は最大30A/dm’程
度であり1通常の電気亜鉛メッキの電流密度に比べると
電流密度はまだ低く生産性3− は十分とは云えない。
From the viewpoint of productivity of electroplated steel sheets, it is desirable to be able to operate at high current density. Conventionally, the maximum current density used for Ni-Zn alloy electroplating is about 30 A/dm'1, which is still lower than the current density for normal electrogalvanizing, and productivity3- cannot be said to be sufficient. do not have.

高耐食性を保持しながら高電流密度で電気メッキを行な
う方法は、例えば、特開昭55−152194号公報に
開示されている。この方法は、メッキ浴と鋼板との相対
速度を20 mpm以上に維持し、これによって、メッ
キ皮膜組成を耐食性の優れた範囲に保ちながら、100
 A/drr? 程度の高電流密度で電気メッキを行な
う方法である。
A method of performing electroplating at high current density while maintaining high corrosion resistance is disclosed in, for example, Japanese Patent Laid-Open No. 152194/1983. This method maintains the relative speed between the plating bath and the steel plate at 20 mpm or higher, thereby maintaining the plating film composition within a range with excellent corrosion resistance.
A/drr? This method performs electroplating at a high current density of approximately

しかし、単に、メッキ浴と鋼板との相対速度を20 m
pm以上にするだけでは、メッキ皮膜組成を高耐食性の
優れたものにすることができないことは明らかであり、
メッキ浴の流速のみでなく、メッキ浴の組成やPHもメ
ッキ皮膜組成に影響を及ぼす。
However, simply increasing the relative speed between the plating bath and the steel plate to 20 m
It is clear that it is not possible to make the plating film composition excellent in high corrosion resistance simply by increasing the plating film composition to pm or more.
Not only the flow rate of the plating bath, but also the composition and pH of the plating bath affect the composition of the plating film.

別の方法として、日本鉄鋼協会発行の「鉄と鋼」第67
巻Nα48−333には、メッキ条件を電流密度を10
〜40 A/cl靜の範囲で検討し、メッキ浴組成、メ
ッキ浴流速を適宜選ぶことにより40A / (1??
+’までの電流密度範囲でγ相が得られることが記載さ
れている。しかし、円の許容上限がどこ4− かは明示されていない他+ PH許容上限とNi /Z
nとの関係の有無については全く不明であり、後述する
ようにメッキ皮膜の加工性が保障されない。
Another method is to use “Tetsu to Hagane” No. 67 published by the Japan Iron and Steel Institute.
Volume Nα48-333 has plating conditions with a current density of 10
40A/(1??) by considering the range of ~40A/cl and selecting the plating bath composition and plating bath flow rate appropriately.
It is stated that the γ phase can be obtained in the current density range up to +'. However, it is not specified where the permissible upper limit of the yen is 4- + PH permissible upper limit and Ni /Z
It is completely unclear whether there is any relationship with n, and as will be described later, the workability of the plating film is not guaranteed.

メッキ皮膜の加工性を考慮した製造技術としては、特公
昭49.−32172号公報にPH= 4.0〜4.5
とすることによりメッキ皮膜の内部応力を低下させ、こ
れによって延性を得る方法が記載されているが、電流密
度が4.3〜10.8 h/ddと低い。
As a manufacturing technology that takes into account the workability of plating films, there is a Japanese patent publication 1973. -32172 publication PH=4.0~4.5
A method has been described in which the internal stress of the plating film is lowered by increasing the ductility, but the current density is as low as 4.3 to 10.8 h/dd.

以上のように、従来、耐食性と加工性共に考慮しながら
高電流密度でNi −Zn合金電気メツキ鋼板を製造す
る技術は十分確立されていない。
As described above, the technology for manufacturing Ni--Zn alloy electroplated steel sheets at high current density while taking both corrosion resistance and workability into consideration has not been sufficiently established.

本願発明者等は、上述のような観点から、メッキ浴のP
H1メッキ浴と鋼板との相対速度、メッキ浴組成等のメ
ッキ条件が、Ni −Zn合金電気メツキ鋼板の耐食性
および加工性に及ぼす影響につき鋭意検討を重ねた。こ
の結果、次の如き知見を得た。
From the above-mentioned viewpoint, the inventors of the present application have determined that the P of the plating bath is
We have extensively studied the effects of plating conditions such as the relative speed between the H1 plating bath and the steel sheet and the composition of the plating bath on the corrosion resistance and workability of Ni--Zn alloy electroplated steel sheets. As a result, the following findings were obtained.

(1)、メッキ浴中のNi2+/(Zn2+十Ni2+
)を0.55以上とし。
(1), Ni2+/(Zn2+tenNi2+) in the plating bath
) shall be 0.55 or more.

〔2〕、メッキ浴のPHを、メッキ浴と鋼板との相対5
− 速度、メッキ浴組成に応じたPHの上限値以下のPHと
し、しかも、 (3)、メッキ浴のZn  濃度を20 f/を以上と
する条件でメッキを行なえば、30 A/d−以上の高
電流密度で耐食性および加工性の優れたNi−Zn合金
電気メツキ鋼板の製造が可能となる。
[2] The pH of the plating bath is set to 5 relative to the plating bath and the steel plate.
- 30 A/d- or more if plating is performed under the conditions that the PH is below the upper limit of PH depending on the speed and plating bath composition, and (3) the Zn concentration of the plating bath is 20 f/ or more. It becomes possible to manufacture a Ni-Zn alloy electroplated steel sheet with excellent corrosion resistance and workability at a high current density of .

この発明は、上記知見に基づきなされたものであって。This invention was made based on the above knowledge.

Ni−Zn合金電気メツキ鋼板を製造する方法において
、  PHが次式で表わされるPHL以下で。
In the method of manufacturing a Ni-Zn alloy electroplated steel sheet, PH is equal to or less than PHL expressed by the following formula.

但し、y:メッキ浴と鋼板との相対速度(m/S)。However, y: relative speed (m/S) between the plating bath and the steel plate.

Zn2+ が2 Of//を以上で、しかも−N12y
(Zn2+十Ni2+)が0.55から0.90の範囲
内であるメッキ、浴を使用して、高電流密度でメッキを
行なうことに特徴勿■する。
Zn2+ is 2 Of// or more, and -N12y
(2) The plating is performed at a high current density using a plating bath in which (Zn2++Ni2+) is in the range of 0.55 to 0.90.

この発明の詳細な説明する。This invention will be explained in detail.

=6= Ni−Zn合金電気メッキ浴は、硫酸浴、塩化浴、スル
ファミン酸浴などから得ることができるが、自溶性アノ
ード、不溶性アノードの何れも使用可能であり、経済性
もある点で硫酸塩を主体としたメッキ浴が実用的である
=6= Ni-Zn alloy electroplating baths can be obtained from sulfuric acid baths, chloride baths, sulfamic acid baths, etc., but both self-soluble anodes and insoluble anodes can be used, and sulfuric acid A salt-based plating bath is practical.

第1表に、次に示す条件で硫酸浴から電析したNi−Z
n合金メッキ皮皮膜加工性が、電流密度によってどのよ
う々影響を受けるか調べた結果を示す。
Table 1 shows Ni-Z electrodeposited from a sulfuric acid bath under the following conditions.
The results of an investigation into how the workability of an n-alloy plating film is affected by current density are shown.

条件 。Condition.

メッキ浴組成 硫酸亜鉛: 15011゜硫酸ニッケル
: 350 f/l。
Plating bath composition Zinc sulfate: 15011° Nickel sulfate: 350 f/l.

無水硫酸ナトリウム: 60 f/l (電導度補助剤)。Anhydrous sodium sulfate: 60 f/l (conductivity aid).

メッキ浴のPH:2.0゜ メッキ浴と鋼板との相対速度:O,’i’m/S。Plating bath pH: 2.0° Relative speed between plating bath and steel plate: O,'i'm/S.

メッキ浴の温度:50℃。Plating bath temperature: 50°C.

メッキ量: 2 Of//−0 7− 第1表 メッキ皮膜の加工性は、メッキ皮膜が外側に出るように
メッキ鋼板を1800 密着−げしたのち、セロテープ
による剥離程度を目視によシ評価したものであり、評価
基準は、第2表の通りである。
Amount of plating: 2 Of//-0 7- Table 1 The workability of the plating film was evaluated by visually evaluating the degree of peeling with Sellotape after peeling off the plated steel plate at 1800°C so that the plating film was exposed to the outside. The evaluation criteria are as shown in Table 2.

第2表 後述する説明において、メッキ皮膜の加工性は  1何
れも上記方法により試験評価したものである。
In the explanation given later in Table 2, the workability of the plating film is as follows: 1. All of the workability was tested and evaluated using the above method.

8− 第1表から明らかなように、メッキ電流密度が30A/
drr?を越えると、メッキ皮膜の加工性が低Fするこ
とがわかる。これは次の理由によるものと考えられる。
8- As is clear from Table 1, the plating current density is 30A/
drrr? It can be seen that when the value exceeds , the workability of the plated film becomes low. This is considered to be due to the following reasons.

すなわち、 (1)、一般に金属間化合物の変形能は純金属のそれに
比べて小さく、このために加工性が悪い。
That is, (1) Generally, the deformability of intermetallic compounds is smaller than that of pure metals, and therefore their workability is poor.

Ni −Zn合金のγ相は、状態図によれば室温でN1
含有率が13.5〜約20%の範囲で存在し、化学量論
的金属間化合物としては、N1含有率が17.6%のN
i、 Zn21  が存在することが示されている。N
1含有率が17.6%以下ではNip Zn2Hの結晶
格子中に空孔が存在するので、加工に際して金属原子は
ある程度移動可能と推定される。このことがらγ相のう
ちでN1含有率が低いものは相対的に加工が容易である
が、 Ni含有率の増加とともに加工性が低下してメッ
キ皮膜の剥離が起こる。
According to the phase diagram, the γ phase of the Ni-Zn alloy is N1 at room temperature.
The N1 content ranges from 13.5% to about 20%, and as a stoichiometric intermetallic compound, N1 content is 17.6%.
i, Zn21 has been shown to exist. N
Since vacancies exist in the crystal lattice of Nip Zn2H when the 1 content is 17.6% or less, it is presumed that metal atoms can move to some extent during processing. For this reason, among the γ phases, those with a low N1 content are relatively easy to process, but as the Ni content increases, the processability decreases and peeling of the plating film occurs.

(2)、後述するように、高電流密度を適用すると鉄地
(鋼板〕とメッキ浴との界面におけるメッキ浴のPH1
即ち、界面PHは上昇する。界面PHが5.1以上では
、Zn(OH)2が生成するのでzn(oH)2が共9
− 析する可能性がある。界面に析出したzn(oH)2は
(2) As will be described later, when a high current density is applied, the PH1 of the plating bath at the interface between the iron base (steel plate) and the plating bath
That is, the interface pH increases. When the interface pH is 5.1 or more, Zn(OH)2 is generated, so Zn(oH)2 becomes 9
- Possibility of analysis. zn(oH)2 precipitated at the interface.

鉄地とNi−Zn合金の金属結合を遮断するので。This is because it blocks the metallic bond between the iron base and the Ni-Zn alloy.

zn(OH)2による鉄地表面の被覆率が高捷ると、鉄
地とメッキ皮膜との結合力が弱まる。加工による力が加
わったときに結合力の弱い界面で剥離が起こる。
When the coverage of the iron substrate surface by zn(OH)2 becomes high, the bonding force between the iron substrate and the plating film becomes weak. When force from processing is applied, peeling occurs at interfaces with weak bonding strength.

Ni−Zn合金電析におけるメッキ皮膜のN1含有率は
、メッキ浴のPHが上昇するに伴って大きくなり−Zn
(OH)2の共析も促進されると考えられるが、電極反
応が実際に起るのは鋼板とメッキ浴との界面であり、 
Ni含有率、zn(oH)2の共析量を決定するのは界
面のPHである。界面PHはメッキ浴の拡散層の外側か
らのH+の供給と、 水素ガス発生とのバランスによっ
て決まる。肋の供給は物質移動の問題であシ、カソード
(鋼板)とメッキ浴の相対速度を高めることにより拡散
層を薄くすればH+の供給は容易に々り、界面PHが下
がる方向に向く。
The N1 content of the plating film in Ni-Zn alloy electrodeposition increases as the pH of the plating bath increases.
It is thought that the eutectoid of (OH)2 is also promoted, but the electrode reaction actually occurs at the interface between the steel sheet and the plating bath.
It is the pH of the interface that determines the Ni content and the eutectoid amount of zn(oH)2. The interface pH is determined by the balance between the supply of H+ from outside the diffusion layer of the plating bath and the generation of hydrogen gas. The supply of ribs is a matter of mass transfer, and if the diffusion layer is made thinner by increasing the relative velocity between the cathode (steel plate) and the plating bath, the supply of H+ is easily reduced, which tends to lower the interface PH.

また1本願発明者等の研究によれば、高電流密度でNi
 −Zn合金メッキを行なうと、優先析出するZn2+
 のカソードへの供給が不足し、その不足分10− のカソード反応が水素ガス発生反応となり、界面PHは
上昇する。
Furthermore, according to research by the present inventors, Ni
- When Zn alloy plating is performed, Zn2+ preferentially precipitates.
The supply of 10- to the cathode is insufficient, and the cathode reaction corresponding to the shortage becomes a hydrogen gas generating reaction, and the interface pH increases.

以上のことから、電流密度の増加によりメッキ皮膜の加
工性が低下する第1表の結果は、メッキ浴のバルク側か
ら界面へのH+とZn”十 の供給不足に起因して高ま
った界面PHが、メッキ皮膜中のNi  含有率とZn
(OH)2共析量とを高めた結果によるものであると理
解できる。この考えに基づき本願発明者等は、界面PH
の上昇を抑制することが皮膜加工性の低下を防止する基
本であると考え、メッキ浴のPH、メッキ浴と鋼板との
相対速度、メッキ浴中のZn  /(zn  十Ni 
 )をコントロールすることによシ、メッキ皮膜の加工
性低下を防止し、健全な加工性を確保する方法を見出し
た。
From the above, the results shown in Table 1, in which the workability of the plated film decreases with an increase in current density, are due to the increased interface PH due to insufficient supply of H+ and Zn'' from the bulk side of the plating bath to the interface. However, the Ni content in the plating film and Zn
It can be understood that this is due to the increase in the amount of (OH)2 eutectoid. Based on this idea, the inventors of the present application have determined that the interface PH
We believe that suppressing the increase in Zn/(zn +Ni
), we have discovered a method to prevent deterioration in the workability of the plating film and ensure sound workability.

第1図から第4図に、次の条件でNi−Zn合金電気メ
ッキを行ない、高電流密度によりメッキを行なった場合
のメッキ皮膜の加工性に、メッキ浴のPH1メッキ浴と
鋼板との相対速度、メッキ浴中のN12+/(Zn2+
十N12+)が及ぼす影響を示す。各図中、○印はメッ
キ皮膜の剥離が全くないか、はとんどないことを示し、
・印はメッキ皮膜の剥離があることを示す。
Figures 1 to 4 show the workability of the plating film when Ni-Zn alloy electroplating is performed under the following conditions and plating is performed at high current density, and the relative relationship between the PH1 plating bath and the steel plate. speed, N12+/(Zn2+ in the plating bath
10N12+) is shown. In each figure, the ○ mark indicates that there is no or very little peeling of the plating film.
・The mark indicates that the plating film has peeled off.

条件 硫酸亜鉛十硫酸ニッケル: 500グ/1゜無水硫酸ナ
トリウム: 60 f//l。
Conditions Zinc sulfate Nickel decasulfate: 500 g/1° Anhydrous sodium sulfate: 60 f//l.

Nl  /(Zn  +N1  ):0.55,0.6
0,0.65,0.70゜メッキ浴温度:50°C1 電流密度: 50 A/dn1”。
Nl/(Zn+N1): 0.55, 0.6
0, 0.65, 0.70° Plating bath temperature: 50°C1 Current density: 50 A/dn1”.

メッキ量:20?/n?。Plating amount: 20? /n? .

第1図から第4図から明らかなように、(1)、メッキ
浴のPHの低下、(2)2 メッキ浴と鋼板との相対速
度の増加、(3)、Zn2+/(Zn2+十N12+)
−1−Ni”/(Zn2++Ni”+)の増加がメッキ
皮膜の加工性の低下防止に寄与するように作用する池、
これら(1)から(3〕の要因が単独ではなく相互に関
連しなから加工性に影響を及ぼしていることがわかる。
As is clear from Figures 1 to 4, (1) a decrease in the pH of the plating bath, (2) an increase in the relative speed between the plating bath and the steel plate, and (3) Zn2+/(Zn2+1N12+).
-1-A pond in which the increase in Ni”/(Zn2+++Ni”+) contributes to preventing deterioration of workability of the plating film,
It can be seen that these factors (1) to (3) are not independent but are interrelated and influence workability.

そこで1本願発明者等は、上記(1)から(3)の要因
    □を関連づけ、加工性の良、不良の境界条件と
なる、次の如き実験式を得た。
Therefore, the inventors of the present invention related the factors (1) to (3) above and obtained the following experimental formula, which serves as a boundary condition for good workability and poor workability.

但し、PHL: メッキ浴PHの上限値。However, PHL: Upper limit of plating bath PH.

y : メッキ浴と鋼板との相対速度(m/S )。y: Relative speed (m/S) between the plating bath and the steel plate.

Zn  、  Zn  濃度 (μ)。Zn, Zn concentration (μ).

Ni  、Nl  濃度(y/l )。Ni, Nl concentration (y/l).

すなわち、上式を満足するPHのメッキ浴でメッキを行
なえば、加工性の良好なメッキ皮膜が得られる。
That is, if plating is performed in a plating bath with a pH that satisfies the above formula, a plated film with good workability can be obtained.

界面PHに及ぼすZn2+の影響を更に詳しく調べるた
めに−N12+/(Zn2+十N12+)−〇、65一
定とし、Zn”+ 濃度を変えてメッキ皮膜の加工性に
ついて調べた。この結果を第3表に示す。
In order to investigate the influence of Zn2+ on the interface PH in more detail, -N12+/(Zn2+10N12+)-〇, 65 was set constant, and the workability of the plated film was investigated by varying the Zn''+ concentration. The results are shown in Table 3. Shown below.

前述したように、界面PHに及ぼすZr]2+ の影響
は、カンード界面へのZn2+の供給不足によって起こ
るのであるから、FHLにはZn  濃度も関係すると
考えられるが、第3表に見られるようにZn   濃度
が低いときにPHがPHLより小さいとメッキ皮膜の加
工性が確保されない。従って、前述したPHLを示す式
はZn”+濃度が一定濃度以上で成立することが明らか
であり、実験によりz n2+が20 ?/を以上でP
H,−の式が成立することが判明した。
As mentioned above, the influence of Zr]2+ on the interfacial pH is caused by the insufficient supply of Zn2+ to the cand interface, so it is thought that the Zn concentration is also related to FHL, but as shown in Table 3, If the PH is smaller than the PHL when the Zn concentration is low, the workability of the plating film cannot be ensured. Therefore, it is clear that the above-mentioned formula for PHL holds true when the Zn''+ concentration is above a certain concentration, and experiments have shown that when Zn2+ is 20?/ or above, PHL
It was found that the equation H,- holds true.

以上の説明から明らかなように、加工性に優れたN1−
znn合金気気メッキ皮膜、メッキ浴のPRがPHL以
下であり、かつZn2+が20 f/を以上のメッキ浴
から得られることがわかるが、加工性に加えて優れた耐
食性が得られてはじめて、Ni−Zn合金電気メッキの
優れた特性が保証される。
As is clear from the above explanation, N1-
It can be seen that a ZNN alloy plating film can be obtained from a plating bath in which the PR of the plating bath is less than PHL and the Zn2+ is more than 20 f/, but only if excellent corrosion resistance is obtained in addition to workability. The excellent properties of Ni-Zn alloy electroplating are guaranteed.

Ni−Zn合金電気メツキ鋼板め耐食性は、メッキ皮膜
中のN1含有量によって決足されることは周知であるが
、本願発明者等の研究によれば一3OA/dm”  以
上の電流密度でメッキしたNi−Zn合金電気メツキ鋼
板も、 Ni含有率が6〜16%の範囲で良好な耐食性
を示し、特に、10〜14%の範囲ではきわめて優れた
耐食性を示すことが明らかとなった。N1含有率が10
−14%のNi−Zn合金電気メッキ皮皮膜、本願発明
者等の研究によれば、Ni2+/(zn  十N1)が
0.55以上、0.90以下のZn、N1  を含むメ
ッキ浴から得られることがわかった。
It is well known that the corrosion resistance of Ni-Zn alloy electroplated steel sheets is determined by the N1 content in the plating film, but according to research by the inventors of the present invention, the corrosion resistance of Ni-Zn alloy electroplated steel sheets is determined by the N1 content in the plating film. It has become clear that the electroplated Ni-Zn alloy steel sheet also exhibits good corrosion resistance when the Ni content is in the range of 6 to 16%, and particularly shows extremely excellent corrosion resistance in the range of 10 to 14%.N1 Content rate is 10
-14% Ni-Zn alloy electroplated film, according to the research of the present inventors, can be obtained from a plating bath containing Zn and N1 with Ni2+/(zn + N1) of 0.55 or more and 0.90 or less. I found out that it can be done.

第4表に、耐食性と加工性を同時に評価した結果を示す
。耐食性は未塗装のNi −Zn合金電気メツキ鋼板を
、JIS Z 2371に規定されている埴水噴霧試験
でテストし、赤錆発生時間で評価した。評価基準を第5
表に示す。
Table 4 shows the results of simultaneous evaluation of corrosion resistance and workability. Corrosion resistance was evaluated by testing an unpainted Ni-Zn alloy electroplated steel plate using a clay water spray test specified in JIS Z 2371, and evaluating the red rust occurrence time. The fifth evaluation criterion
Shown in the table.

第5表 第4表から次のことがわかる。すなわち、(1)、メッ
キ皮膜中のNi含有率が10%未満では、加工性は良好
であるが耐食性が低下する。
The following can be seen from Table 5 and Table 4. That is, (1), if the Ni content in the plating film is less than 10%, the workability is good but the corrosion resistance is reduced.

(2)、メッキ皮膜中のN1含有率が14%以上になる
と、加工性、耐食性ともに低下する傾向を示す。
(2) When the N1 content in the plating film is 14% or more, both workability and corrosion resistance tend to decrease.

(3)、メッキ皮膜中のN1含有率が10%以上で。(3) The N1 content in the plating film is 10% or more.

加工性に優れたメッキ皮膜の得られる条件でメッキを行
なうことにより、耐食性と加工性に優れたNi−Zn合
金電気メッキ皮皮膜得られる。
By performing plating under conditions that provide a plating film with excellent workability, a Ni-Zn alloy electroplated film with excellent corrosion resistance and workability can be obtained.

(4)、メッキ浴のPHがPHL以下であれは、加工性
は良好である。
(4) If the pH of the plating bath is below PHL, the workability is good.

以上(1)から(4)の事項を整理すると、耐食性、加
工性ともに優れたNi −Zn合金電気メツキ鋼板は、
以下の条件(イ)から(−ウで高電流密度を適用しなが
ら製造可能である。
Summarizing the matters (1) to (4) above, Ni-Zn alloy electroplated steel sheets with excellent corrosion resistance and workability are
From the following conditions (a) to (-c), it is possible to manufacture while applying a high current density.

(イ)、メッキ浴のPHが次式で示されるPHLより低
いこと。
(a) The pH of the plating bath is lower than the PHL expressed by the following formula.

(ロ)、メッキ浴中のZn2+濃度が20 ?/を以上
であること。
(b) Is the Zn2+ concentration in the plating bath 20? / or more.

(ハ)、N12+/(Zn2++Ni2+)が0.55
−0.90の範囲にあること。
(c), N12+/(Zn2+++Ni2+) is 0.55
-0.90.

次に、この発明の実施例について説明する。Next, embodiments of the invention will be described.

実施例1゜ 電解脱脂と酸洗の前処理を行なった後、次のメッキ条件
で鋼板にNi−Zn合金電気メッキを行ない、その後、
メッキ鋼板の耐食性と加工性について調べた。メッキに
際して鋼板とメッキ浴との相対速度は、メッキ浴を流動
させることによって調整した。
Example 1 After pretreatment of electrolytic degreasing and pickling, Ni-Zn alloy electroplating was performed on a steel plate under the following plating conditions.
The corrosion resistance and workability of plated steel sheets were investigated. During plating, the relative speed between the steel plate and the plating bath was adjusted by flowing the plating bath.

(1)、メッキ浴の組成 N12+/(Zn2+十N12+):0.65硫酸亜鉛
: 175 y/L。
(1) Composition of plating bath N12+/(Zn2+10N12+): 0.65 Zinc sulfate: 175 y/L.

硫酸ニッケル: 325 fi!/l。Nickel sulfate: 325 fi! /l.

無水硫酸ナトリウム: 60 ?/1 (2)、メッキ浴のPH:2.O。Anhydrous sodium sulfate: 60? /1 (2), PH of plating bath: 2. O.

(3)、相対速度: O〜1.5 m/S 。(3), Relative speed: O ~ 1.5 m/S.

(4)、メッキ浴の温度:50°C1 (5)、電流密度: 50 A/d−0この結果を第6
表に示す。
(4), Plating bath temperature: 50°C1 (5), Current density: 50 A/d-0.
Shown in the table.

第6表から明らかなように、メッキ浴のPHがPHL以
下のNα4〜6では、メッキ量が202/靜。
As is clear from Table 6, when the pH of the plating bath is Nα4 to 6, which is below PHL, the plating amount is 202/might.

30グ/dの何れの場合においても優れた耐食性と加工
性を具備した、Ni−Zn合金電気メツキ皮膜を有する
鋼板を製造することができることがわがる。     
                     1実施例
2 硫酸亜鉛150 t/l、硫酸ニッケ/し35 Of!
/l、無水硫酸ナトリウム60危、酢酸ナトリウム27
2μ(PH緩衝剤)から成るメッキ浴、を硫酸にてPH
= 1.8と2.4 にそれぞれ調整後1次の条件にて
電気メッキした鋼板の耐食性と加工性を調べた0 (1)、メッキ電流密度:lO〜7 o A/drr?
It can be seen that in any case of 30 g/d, a steel plate having a Ni-Zn alloy electroplated film having excellent corrosion resistance and workability can be manufactured.
1 Example 2 Zinc sulfate 150 t/l, nickel sulfate/silica 35 Of!
/l, anhydrous sodium sulfate 60%, sodium acetate 27%
A plating bath consisting of 2μ (PH buffer) was pH-adjusted with sulfuric acid.
= 1.8 and 2.4 respectively, and the corrosion resistance and workability of the electroplated steel plate were investigated under the following conditions: 0 (1), Plating current density: lO ~ 7 o A/drr?
.

相対速度: 1.0 m1F3・ 21− メッキ浴温度:50℃。Relative speed: 1.0 m1F3・ 21- Plating bath temperature: 50°C.

この結果を第7表に示す。The results are shown in Table 7.

第7表から明らかなように+ PHLよシ高い値のPH
=2.4  のメッキ浴を用いると、電流密度が10 
A/d−のような低い電流密度では耐食性、加工性共に
良好なメッキ皮膜を有する鋼板が得られるが、この性能
は電流密度が3 OA/(1?7Z’以上とな22− ると失われる。一方PHLより低い値のPH=1.8の
メッキ浴では’70 A/dtr?の高電流密度まで耐
食性、加工性共に良好なメッキ皮膜を有する鋼板を製造
することがでまることがわかる。
As is clear from Table 7, PH has a higher value than +PHL.
= 2.4, the current density is 10
At a low current density such as A/d-, a steel plate with a plated film with good corrosion resistance and workability can be obtained, but this performance is lost when the current density is 3 OA/(1-7Z' or higher). On the other hand, it can be seen that in a plating bath with a pH of 1.8, which is lower than PHL, it is possible to produce a steel plate with a plating film with good corrosion resistance and workability up to a high current density of '70 A/dtr? .

以上説明したように、この発明によれば、耐食性、加工
性共に優れたNi−Zn合金電気メツキ鋼板を高電流密
度を適用して能率良く製造することができるといったき
わめて有用な効果がもたらされる。
As explained above, the present invention brings about extremely useful effects such as being able to efficiently manufacture Ni-Zn alloy electroplated steel sheets with excellent corrosion resistance and workability by applying high current density.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第4図は、メッキ浴と鋼板との相対速度とメ
ッキ浴のPHとの関係を示す図である。 出願人  日本鋼管株式会社 代理人   堤  敬太部 (池1名)23−
1 to 4 are diagrams showing the relationship between the relative speed between the plating bath and the steel plate and the pH of the plating bath. Applicant Nippon Kokan Co., Ltd. Agent Keitabe Tsutsumi (1 person Ike) 23-

Claims (1)

【特許請求の範囲】 Ni−Zn合金電気メツキ鋼板を製造する方法において
、PRが次式で表わされるPHL、以下で、Zn2+ 
か20 y/1以上で、しかも、N1/(Zn +Ni
 )が0.55から0.90の範囲内であるメッキ浴を
使用して、高電流密度でメッキを行なうことを特徴とす
る、加工性および耐食性に優れたNi−Zn合金電気メ
ツキ鋼板の製造方法。 1−
[Claims] In the method of manufacturing a Ni-Zn alloy electroplated steel sheet, PR is PHL expressed by the following formula, hereinafter, Zn2+
or 20 y/1 or more, and N1/(Zn + Ni
) is within the range of 0.55 to 0.90, and plating is carried out at high current density to produce a Ni-Zn alloy electroplated steel sheet with excellent workability and corrosion resistance. Method. 1-
JP8726682A 1982-05-25 1982-05-25 Manufacture of steel plate electroplated with ni-zn alloy and provided with superior workability and corrosion resistance Granted JPS58204195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8726682A JPS58204195A (en) 1982-05-25 1982-05-25 Manufacture of steel plate electroplated with ni-zn alloy and provided with superior workability and corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8726682A JPS58204195A (en) 1982-05-25 1982-05-25 Manufacture of steel plate electroplated with ni-zn alloy and provided with superior workability and corrosion resistance

Publications (2)

Publication Number Publication Date
JPS58204195A true JPS58204195A (en) 1983-11-28
JPS6138274B2 JPS6138274B2 (en) 1986-08-28

Family

ID=13909959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8726682A Granted JPS58204195A (en) 1982-05-25 1982-05-25 Manufacture of steel plate electroplated with ni-zn alloy and provided with superior workability and corrosion resistance

Country Status (1)

Country Link
JP (1) JPS58204195A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS616290A (en) * 1984-06-21 1986-01-11 Kawasaki Steel Corp Surface-treated steel sheet having high corrosion resistance and its production
JPS61133394A (en) * 1984-12-01 1986-06-20 Nisshin Steel Co Ltd Method for plating zn-ni alloy with high electric current
JPH0230791A (en) * 1988-07-20 1990-02-01 Kawasaki Steel Corp Production of zn-ni alloy plated steel sheet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4882693A (en) * 1987-12-28 1989-11-21 Ford Motor Company Automotive system for dynamically determining road adhesion

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55110791A (en) * 1979-02-15 1980-08-26 Sumitomo Metal Ind Ltd Preparation of plated steel plate with high corrosion resistance
JPS55152194A (en) * 1979-05-12 1980-11-27 Nippon Steel Corp Production of steel strip plated by zinc-nickel alloy
US4249999A (en) * 1979-03-30 1981-02-10 Sumitomo Metal Industries, Ltd. Electrolytic zinc-nickel alloy plating
JPS5839236A (en) * 1981-08-31 1983-03-07 Toshiba Corp Winding of rotary electric machine
JPS58197292A (en) * 1982-05-14 1983-11-16 Nippon Steel Corp Production of steel plate plated with gamma zinc-nickel alloy in high efficiency

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55110791A (en) * 1979-02-15 1980-08-26 Sumitomo Metal Ind Ltd Preparation of plated steel plate with high corrosion resistance
US4249999A (en) * 1979-03-30 1981-02-10 Sumitomo Metal Industries, Ltd. Electrolytic zinc-nickel alloy plating
JPS55152194A (en) * 1979-05-12 1980-11-27 Nippon Steel Corp Production of steel strip plated by zinc-nickel alloy
JPS5839236A (en) * 1981-08-31 1983-03-07 Toshiba Corp Winding of rotary electric machine
JPS58197292A (en) * 1982-05-14 1983-11-16 Nippon Steel Corp Production of steel plate plated with gamma zinc-nickel alloy in high efficiency

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS616290A (en) * 1984-06-21 1986-01-11 Kawasaki Steel Corp Surface-treated steel sheet having high corrosion resistance and its production
JPH0532478B2 (en) * 1984-06-21 1993-05-17 Kawasaki Steel Co
JPS61133394A (en) * 1984-12-01 1986-06-20 Nisshin Steel Co Ltd Method for plating zn-ni alloy with high electric current
JPH0352551B2 (en) * 1984-12-01 1991-08-12 Nisshin Steel Co Ltd
JPH0230791A (en) * 1988-07-20 1990-02-01 Kawasaki Steel Corp Production of zn-ni alloy plated steel sheet

Also Published As

Publication number Publication date
JPS6138274B2 (en) 1986-08-28

Similar Documents

Publication Publication Date Title
Pushpavanam et al. Corrosion behaviour of electrodeposited zinc-nickel alloys
JPH0585640B2 (en)
JPS59200789A (en) Electroplated steel sheet and its manufacture
JPS58204195A (en) Manufacture of steel plate electroplated with ni-zn alloy and provided with superior workability and corrosion resistance
CN112195489A (en) Protective coating of pipe wall, electroplating method and application
JP5812041B2 (en) Method for producing zinc-based electroplated steel sheet
JPS62211397A (en) Production of zinc alloy plated steel sheet having excellent adhesiveness
JPS5940234B2 (en) Good weldability and corrosion resistance electrolytic zinc alloy plated steel sheet and its manufacturing method
JPS6343479B2 (en)
CN115125590B (en) Corrosion-resistant electroplated galvanized wire and processing technology thereof
JPS5938313B2 (en) Highly corrosion resistant electrolytic zinc alloy plated steel sheet and its manufacturing method
JP2675152B2 (en) Method for producing Zn-Ni alloy electroplated steel sheet with excellent plating adhesion
JPH07103476B2 (en) Method for producing Zn-Ni alloy electroplated steel sheet excellent in workability
JPS61130498A (en) Composite plated steel sheet having superior corrosion resistance before and after coating with paint
JPH04337098A (en) Zn-ni-mo multi-ply electrogalvanized steel sheet excellent in corrosion resistance and plating adhesion
JPH0273980A (en) Double-plated steel sheet having high corrosion resistance
JP2707477B2 (en) High corrosion resistant multi-layer electroplated steel sheet
JPS58141397A (en) Surface-treated steel plate with high corrosion resistance and its manufacture
Chatterjee Electrodeposition of zinc alloys
JPS6348959B2 (en)
JPS6134520B2 (en)
JPS6365097A (en) Zinc alloy electroplated steel sheet having superior plating adhesion after coating and corrosion resistance
JPS61119694A (en) Production of electroplated steel plate
JPH0754193A (en) Production of high corrosion resistant electrogalvanized steel sheet excellent in chemical convertibility
JPS6134194A (en) Galvanized and zinc alloy electroplated steel sheet and its manufacture