JPH0532478B2 - - Google Patents
Info
- Publication number
- JPH0532478B2 JPH0532478B2 JP59128259A JP12825984A JPH0532478B2 JP H0532478 B2 JPH0532478 B2 JP H0532478B2 JP 59128259 A JP59128259 A JP 59128259A JP 12825984 A JP12825984 A JP 12825984A JP H0532478 B2 JPH0532478 B2 JP H0532478B2
- Authority
- JP
- Japan
- Prior art keywords
- mol
- steel sheet
- layer
- bath
- added
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910000831 Steel Inorganic materials 0.000 claims description 33
- 239000010959 steel Substances 0.000 claims description 33
- 229910007567 Zn-Ni Inorganic materials 0.000 claims description 23
- 229910007614 Zn—Ni Inorganic materials 0.000 claims description 23
- 230000007797 corrosion Effects 0.000 claims description 22
- 238000005260 corrosion Methods 0.000 claims description 22
- 239000000956 alloy Substances 0.000 claims description 20
- 229910045601 alloy Inorganic materials 0.000 claims description 20
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 18
- 239000011701 zinc Substances 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 6
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 claims description 5
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 4
- 238000009713 electroplating Methods 0.000 claims description 4
- 229910001453 nickel ion Inorganic materials 0.000 claims description 4
- -1 organic acid ion Chemical class 0.000 claims description 4
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 claims description 3
- 238000007792 addition Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 description 21
- 238000007747 plating Methods 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 5
- 239000002356 single layer Substances 0.000 description 5
- 229910000990 Ni alloy Inorganic materials 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 238000004090 dissolution Methods 0.000 description 4
- 238000005868 electrolysis reaction Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 238000002845 discoloration Methods 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 2
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005246 galvanizing Methods 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000011975 tartaric acid Substances 0.000 description 2
- 235000002906 tartaric acid Nutrition 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011978 dissolution method Methods 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- FQLQNUZHYYPPBT-UHFFFAOYSA-N potassium;azane Chemical compound N.[K+] FQLQNUZHYYPPBT-UHFFFAOYSA-N 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
Landscapes
- Electroplating And Plating Baths Therefor (AREA)
- Electroplating Methods And Accessories (AREA)
Description
〈産業上の利用分野〉
本発明は、特に、裸使用による耐食性および溶
接性にすぐれた自動車用表面処理鋼板の製造方法
に関するものである。
〈従来技術とその問題点〉
近年、寒冷地の塩害対策として、自動車用表面
処理鋼板の需要は、年々増加の一途にある。その
中で高耐食性表面処理鋼板としてZn−Ni合金め
つき鋼板の需要も増えている。その理由として、
Zn−Ni合金めつきは溶融亜鉛めつき、合金化溶
融亜鉛めつき等とは違つて目付量を薄くでき、そ
れによつて溶接によるチツプの寿命延長や裸の耐
食性に優れていることなどがあげられる。
自動車には種々の袋構造部があり、この中は、
化成処理や電着塗装が充分に施されにくいため、
水分や塩分が入りこむと、そこからさびが進行
し、穴あきにまで至つてしまう。そこで裸耐食性
にすぐれた表面処理鋼板を使用すれば、さびの進
行をくいとめることができるわけである。
最近、裸耐食性にすぐれたZn−Ni合金めつき
鋼板が多く使用される傾向にある。同一のコスト
でさらに耐食性にすぐれたZn−Ni合金めつき鋼
板が製造できれば、自動車用鋼板として大いに利
用できると考えられる。
〈発明の目的〉
従つて、本発明の目的は、裸耐食性などに優れ
た安価なZn−Ni合金めつき鋼板の製造方法を提
供しようとすることにある。
〈発明の簡単な説明〉
本発明の第1の態様によれば、電気化学的に単
一な層を有するZn−Ni合金めつき鋼板を製造す
るに際し、亜鉛イオンを0.5〜3.0モル/、ニツ
ケルイオンを0.05〜1.3モル/含み、かつ、
Ni2+/(Zn2++Ni2+)の浴中モル比が0.1〜0.3で
あり、さらに電導度助剤をCl-として1.0モル/
以上溶解限度まで添加した塩化物浴を用い、100
〜200A/dm2の高電流密度で、電気めつきを行
うことを特徴とする高耐食性表面処理鋼板の製造
方法が提供される。
本発明の第2の態様によれば、電気化学的に単
一な層を有するZn−Ni合金めつき鋼板を製造す
るに際し、亜鉛イオンを0.5〜3.0モル/、ニツ
ケルイオンを0.05〜1.3モル/含み、かつ、
Ni2+/(Zn2++Ni2+)の浴中モル比が0.1〜0.3で
あり、電導度助剤をCl-として1.0モル/以上溶
解限度まで添加し、さらに、カルボキシル基を有
する有機酸イオンを0.01モル/以上溶解限度ま
での範囲で添加した塩化物浴を用い、60〜
200A/dm2の高電流密度で、電気めつきを行う
ことを特徴とする高耐食性表面処理鋼板の製造方
法が提供される。
〈発明の具体的説明〉
電気化学的に均一な層を有するZn−Ni合金め
つき鋼板は、通常の均一でない層を有するものに
比べて、きわめて耐食性にすぐれている。
通常のZn−Ni合金めつき鋼板は皮膜中のNi含
有率が10〜20%のものが耐食性にすぐれており、
それらはX線回折で調べる限り、γ単層であるた
めであるといわれている。しかし、通常のZn−
Ni合金めつき鋼板を電気化学的に下記のように
して陽極溶解させると、Znに近い電位を示す層
(以下A層と称する)と−600〜−800mVの電位
を示す層(以下B層と称する)の2つに分かれて
いることがわかつた(第1a図参照)。
なお、上記陽極溶解法は下記のようにして行つ
て、
ZnSO4200g/,NaCl100g/25℃の溶液に
Zn−Ni合金めつき鋼板を浸して陽極とし、陰極
にCu箔を使用して、20mA/cm2の電流密度で電流
を通じ、陽極における電位(VS.S.C.E)変化を
時間的にとらえる。
また、Zn−Ni合金めつき鋼板をめつき液に1
分間浸漬してNiを置換析出させたものは、X線
回折によりγ単層(第2c図参照)であるが、耐
食性がきわめて向上した。電気化学的に陽極溶解
させた場合は、Znに近いA層が消失し、B層の
みの単層になつていることがわかつた(第1b図
参照)。この鋼板が通常のZn−Niよりさらにすぐ
れた耐食性を示す理由として、A層はZnに近い
電位を示していることから、活性な層として存在
していることを示しており、B層単独であると活
性な層がなくなるため耐食性が向上するものと思
われる。
本発明者らは、かかる知見に基き、めつき製造
時にB層が単独で存在するめつき層を安定して形
成し得るめつき条件を鋭意検討した。
その結果、塩化物浴中で高電流密度でめつきす
ることにより、達成しうることがわかつた。また
クエン酸、酒石酸、酢酸等のカルボキシル基を有
する有機酸イオンを添加すると最小必要電流密度
を低下させうることもわかつた。
以下、本発明を詳細に説明する。
本発明の方法によつて製造されるZn−Ni合金
めつき鋼板において、Zn−Ni合金めつき層のNi
含有率は10〜20%、好ましくは11〜15%にあるこ
とである。Ni含有率が10%未満ではA層が多く
なり、単一な層の実施が困難であり、20%を越え
ると加工性や耐食性が悪くなつてしまうからであ
る。定電流陽極溶解でB層が示す電位を−600〜
800mV(VS.S.C.E)としたのは、−600mVより高
い場合は鋼板の電位に近くなり、犠牲防食性の効
果が弱くなりすぎ、−800mVより低い電位では活
性となりやすいからである。
本発明の方法によつて上記のZn−Ni合金めつ
き鋼板を製造するためには、めつき浴の電気伝導
性を高め、高電流密度で電解する必要があるた
め、塩化物浴を用い、多量の電導度助剤を必要と
する。塩化亜鉛が0.5モル/未満では亜鉛イオ
ンの供給が少なく高電流密度でメツキするとヤケ
を生じて好ましくない。上限は特に限定して弊害
を生ずるわけではないが、3.0モル/を越える
と、経済的に好ましくない。
亜鉛量に従つて、ニツケルイオンの浴中モル比
Ni2+/(Zn2++Ni2+)を0.1〜0.3の範囲になるよ
う添加する。0.1未満では、めつき層中のNi量を
10%以上に保つことが難しく、0.3を越えると、
20%以内に保つことが難しい。上記モル比を0.1
〜0.3の範囲に保つためには、Niイオン添加量か
0.05〜1.3モル/必要となつてくる。
また高電流密度電解を達成するためには、電導
度助剤をNaCl,KCl,NH4Cl,CaCl2,MgCl2な
どの一種あるいは2種以上添加する必要がある
が、いずれを添加しても目的を達成しえるので、
特に限定するほどではない。添加量は、Cl-イオ
ンとして、1.0モル/未満では、めつき時にヤ
ケを生ずることがあるので好ましくなく、上限は
特に限定する必要はなく、溶解限度まで添加して
目的を達成しうるものである。
このような浴において電解を施す時、その電流
密度は100〜200A/dm2で行う。電流密度が
100A/dm2未満では、A層が生じやすくなり、
また200A/dm2を越えるとヤケを生じやすくな
る。
さらに、カルボキシル基を有するイオンを、す
なわち有機酸およびまたは有機酸塩(ナトリウ
ム、カリウムアンモニウム塩などとして)、酒石
酸、クエン酸、酢酸あるいはこれらの塩の1種あ
るいは2種以上を0.01モル/以上溶解限度まで
添加すると、これらを添加しない場合に比べて限
界電流密度が低下して許容電流密度範囲が増大
し、工業的生産に充分対応できることがわかり、
B層の電流曲線もさらに平滑化されることがわか
つた。好ましくは、0.1モル/以上必要であり、
0.01モル/未満では60A/dm2未満での電解で
B層単独の層の形成が達し得なくなる。上限につ
いては溶解限度まで目的を達成しうるので特に限
定するものではない。電流密度が200A/dm2を
越えると、ヤケを生じやすくなる。
〈実施例〉
以下、本発明を実施例および比較例について具
体的に述べる。以下に述べるような浴を用いて
Zn−Ni合金めつき鋼板を得た。
<Industrial Field of Application> The present invention particularly relates to a method for manufacturing a surface-treated steel sheet for automobiles that has excellent corrosion resistance and weldability when used bare. <Prior art and its problems> In recent years, the demand for surface-treated steel sheets for automobiles has been increasing year by year as a countermeasure against salt damage in cold regions. In this context, demand for Zn-Ni alloy plated steel sheets as highly corrosion-resistant surface-treated steel sheets is increasing. The reason is that
Unlike hot-dip galvanizing, alloyed hot-dip galvanizing, etc., Zn-Ni alloy plating can have a thinner basis weight, which extends the life of chips by welding and has excellent corrosion resistance when exposed. It will be done. Automobiles have various bag structures, including:
Because it is difficult to apply sufficient chemical conversion treatment or electrodeposition coating,
If moisture or salt gets in, rust will progress and even lead to holes. Therefore, by using a surface-treated steel sheet with excellent bare corrosion resistance, the progress of rust can be stopped. Recently, Zn-Ni alloy plated steel sheets, which have excellent bare corrosion resistance, have been increasingly used. If a Zn-Ni alloy coated steel sheet with even better corrosion resistance can be produced at the same cost, it will be widely used as a steel sheet for automobiles. <Objective of the Invention> Therefore, an object of the present invention is to provide an inexpensive method for manufacturing a Zn--Ni alloy plated steel sheet with excellent bare corrosion resistance. <Brief Description of the Invention> According to the first aspect of the present invention, when producing a Zn-Ni alloy plated steel sheet having an electrochemically single layer, zinc ions are added at 0.5 to 3.0 mol/Ni, Contains 0.05 to 1.3 mol/ion, and
The molar ratio of Ni 2+ / (Zn 2+ + Ni 2+ ) in the bath is 0.1 to 0.3, and the conductivity aid is 1.0 mol/concentration as Cl - .
Using a chloride bath added to the solubility limit of 100
A method for manufacturing a highly corrosion-resistant surface-treated steel sheet is provided, which is characterized in that electroplating is performed at a high current density of ~200 A/dm 2 . According to the second aspect of the present invention, when manufacturing a Zn-Ni alloy plated steel sheet having an electrochemical single layer, zinc ions are contained in the amount of 0.5 to 3.0 mol/and nickel ions are contained in the amount of 0.05 to 1.3 mol/. contains, and
The molar ratio of Ni 2+ / (Zn 2+ + Ni 2+ ) in the bath is 0.1 to 0.3, the conductivity aid is added as Cl - to a solubility limit of 1.0 mol or more, and an organic acid having a carboxyl group is added. Using a chloride bath containing ions up to the solubility limit of 0.01 mol/ or more,
A method for producing a highly corrosion-resistant surface-treated steel sheet is provided, which is characterized in that electroplating is performed at a high current density of 200 A/dm 2 . <Detailed Description of the Invention> A Zn-Ni alloy coated steel sheet having an electrochemically uniform layer has extremely superior corrosion resistance compared to a steel sheet having an ordinary non-uniform layer. Ordinary Zn-Ni alloy plated steel sheets with a Ni content of 10 to 20% in the coating have excellent corrosion resistance.
This is said to be due to the fact that they are γ monolayers as determined by X-ray diffraction. However, normal Zn−
When a Ni alloy plated steel sheet is electrochemically anodically melted as described below, a layer exhibiting a potential close to Zn (hereinafter referred to as layer A) and a layer exhibiting a potential of -600 to -800 mV (hereinafter referred to as layer B) are formed. (see Figure 1a). The above anodic dissolution method was performed as follows, and a solution of 200g of ZnSO 4 / 100g of NaCl / 25℃
A Zn-Ni alloy plated steel plate is immersed to serve as the anode, and Cu foil is used as the cathode. A current is passed at a current density of 20 mA/cm 2 to capture the change in potential (VS.SCE) at the anode over time. In addition, a Zn-Ni alloy plated steel plate was immersed in a plating solution.
The material obtained by immersing the material for a minute to precipitate Ni by substitution was found to be a γ single layer (see Figure 2c) by X-ray diffraction, and the corrosion resistance was significantly improved. It was found that when electrochemically anodic dissolution was performed, the A layer close to Zn disappeared, leaving a single layer consisting only of the B layer (see Figure 1b). The reason why this steel sheet exhibits better corrosion resistance than ordinary Zn-Ni is that the A layer shows a potential close to that of Zn, indicating that it exists as an active layer, and the B layer alone It is thought that corrosion resistance improves when there is no active layer. Based on this knowledge, the present inventors have intensively studied plating conditions that can stably form a plating layer in which layer B exists alone during plating production. The results showed that this could be achieved by plating at high current densities in a chloride bath. It was also found that the addition of organic acid ions having carboxyl groups, such as citric acid, tartaric acid, and acetic acid, can lower the minimum required current density. The present invention will be explained in detail below. In the Zn-Ni alloy plated steel sheet manufactured by the method of the present invention, the Ni of the Zn-Ni alloy plated layer is
The content should be between 10 and 20%, preferably between 11 and 15%. This is because if the Ni content is less than 10%, there will be too much A layer, making it difficult to form a single layer, and if it exceeds 20%, workability and corrosion resistance will deteriorate. The potential exhibited by the B layer during constant current anodic dissolution is -600 ~
The reason for setting it to 800 mV (VS.SCE) is that if it is higher than -600 mV, the potential will be close to that of the steel plate, and the sacrificial corrosion protection effect will be too weak, and if the potential is lower than -800 mV, it will easily become active. In order to produce the above-mentioned Zn-Ni alloy plated steel sheet by the method of the present invention, it is necessary to increase the electrical conductivity of the plating bath and conduct electrolysis at a high current density. Requires large amounts of conductivity aids. If the amount of zinc chloride is less than 0.5 mole/mol/zinc, the supply of zinc ions will be small, and plating at high current density will cause discoloration, which is not preferable. The upper limit is not particularly limited and does not cause any adverse effects, but if it exceeds 3.0 mol/mole, it is economically unfavorable. According to the amount of zinc, the molar ratio of nickel ions in the bath
Ni 2+ /(Zn 2+ + Ni 2+ ) is added in a range of 0.1 to 0.3. If it is less than 0.1, the amount of Ni in the plating layer is
It is difficult to keep it above 10%, and when it exceeds 0.3,
Difficult to keep within 20%. The above molar ratio is 0.1
In order to keep it within the range of ~0.3, the amount of Ni ion added must be
0.05 to 1.3 mol/required. In addition, in order to achieve high current density electrolysis, it is necessary to add one or more types of conductivity aids such as NaCl, KCl, NH 4 Cl, CaCl 2 , MgCl 2 , etc., but no matter which one is added, Because the purpose can be achieved,
It's not particularly limiting. The amount added is less than 1.0 mol/as Cl - ion, which is undesirable as it may cause discoloration during plating, and there is no need to limit the upper limit, and the purpose can be achieved by adding up to the solubility limit. be. When electrolysis is carried out in such a bath, the current density is 100 to 200 A/dm 2 . The current density
If it is less than 100A/ dm2 , layer A tends to occur,
Moreover, if it exceeds 200 A/dm 2 , it tends to cause discoloration. Furthermore, 0.01 mol or more of an ion having a carboxyl group, that is, an organic acid and/or an organic acid salt (as sodium, potassium ammonium salt, etc.), tartaric acid, citric acid, acetic acid, or one or more of these salts, is dissolved. It was found that when added up to the limit, the limiting current density decreases and the allowable current density range increases compared to when they are not added, and it is sufficient for industrial production.
It was found that the current curve of the B layer was also further smoothed. Preferably, 0.1 mol/or more is required,
If it is less than 0.01 mol/dm, it will be impossible to form the B layer alone by electrolysis at less than 60 A/dm 2 . The upper limit is not particularly limited as the objective can be achieved up to the solubility limit. When the current density exceeds 200 A/dm 2 , it tends to cause burns. <Examples> Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. using a bath as described below.
A Zn-Ni alloy plated steel plate was obtained.
【表】【table】
【表】
以上のように得られたZn−Ni合金めつき鋼板
について、塩水噴霧試験(JIS.Z.2371)で耐食性
を調べた結果、第3図のグラフに示すようになつ
た。この図から、本発明方法により得られたZn
−Ni合金めつき鋼板は従来のものに比して耐食
性に勝れていることがわかつた(第3図参照)。
また、実施例で得られたZn−Ni合金めつき鋼
板の一部を陽極溶解させた結果を、第1c図(実
施例1の鋼板)および第1d図(実施例2の鋼
板)に示す。この結果より、−600〜800mVの電
位を示すZn−Ni合金めつきが耐食性にすぐれて
いることがわかる。[Table] The corrosion resistance of the Zn-Ni alloy plated steel sheet obtained as described above was investigated using a salt spray test (JIS.Z.2371), and the results were as shown in the graph of Figure 3. From this figure, it can be seen that Zn obtained by the method of the present invention
It was found that the -Ni alloy plated steel sheet has better corrosion resistance than the conventional one (see Figure 3). Further, the results of anodic melting of a part of the Zn-Ni alloy plated steel sheet obtained in the example are shown in FIG. 1c (steel sheet of Example 1) and FIG. 1d (steel sheet of Example 2). This result shows that the Zn-Ni alloy plating exhibiting a potential of -600 to 800 mV has excellent corrosion resistance.
第1a図、第1b図、第1c図および第1d図
はそれぞれ、比較例1で得られたZn−Ni合金め
つき、比較例1で得られためつきをZn−Niめつ
き液中に1分間浸漬されたもの、実施例1で得ら
れためつきおよび実施例2で得られためつきの陽
極溶解電位を示す図、第2a図、第2b図および
第2c図は比較例1で得られたZn−Ni合金めつ
き、比較例2で得られためつきおよび比較例1で
得られためつきをZn−Niめつき液中に1分間浸
漬させたもののX線回折結果を示す図、第3図は
塩水噴霧試験による耐食性試験結果を示すグラフ
である。
Figures 1a, 1b, 1c, and 1d show the Zn-Ni alloy plating obtained in Comparative Example 1 and the plating obtained in Comparative Example 1 in a Zn-Ni plating solution. Figures 2a, 2b and 2c are diagrams showing the anodic dissolution potential of the Zn obtained in Comparative Example 1 and the anodic dissolution potential of the Zn obtained in Comparative Example 1. - A diagram showing the X-ray diffraction results of the Ni alloy plating, the dimming obtained in Comparative Example 2, and the dimming obtained in Comparative Example 1 immersed in a Zn-Ni plating solution for 1 minute. It is a graph showing the results of a corrosion resistance test based on a salt spray test.
Claims (1)
めつき鋼板を製造するに際し、亜鉛イオンを0.5
〜3.0モル/、ニツケルイオンを0.05〜1.3モ
ル/含み、かつ、Ni2+/(Zn2++Ni2+)の浴
中モル比が0.1〜0.3であり、さらに、電導度助剤
をCl-として1.0モル/以上溶解限度まで添加し
た塩化物浴を用い、100〜200A/dm2の高電流密
度で、電気めつきを行うことを特徴とする高耐食
性表面処理鋼板の製造方法。 2 電気化学的に単一な層を有するZn−Ni合金
めつき鋼板を製造するに際し、亜鉛イオンを0.5
〜3.0モル/、ニツケルイオンを0.05〜1.3モ
ル/含み、かつ、Ni2+/(Zn2++Ni2+)の浴
中モル比が0.1〜0.3であり、電導度助剤をCl-と
して1.0モル/以上溶解限度まで添加し、さら
に、カルボキシル基を有する有機酸イオンを0.01
モル/以上溶解限度までの範囲で添加した塩化
物浴を用い、60〜200A/dm2の高電流密度で、
電気めつきを行うことを特徴とする高耐食性表面
処理鋼板の製造方法。[Claims] 1. When producing a Zn-Ni alloy plated steel sheet having a single electrochemical layer, zinc ions are added to 0.5
~3.0 mol/, 0.05 to 1.3 mol/nickel ion, and the molar ratio of Ni 2+ /(Zn 2+ + Ni 2+ ) in the bath is 0.1 to 0.3, and the conductivity aid is Cl - 1. A method for producing a highly corrosion-resistant surface-treated steel sheet, characterized in that electroplating is carried out at a high current density of 100 to 200 A/dm 2 using a chloride bath containing 1.0 mol/or more of chloride added up to a solubility limit. 2 When manufacturing a Zn-Ni alloy plated steel sheet having a single electrochemical layer, zinc ions were added to 0.5
~3.0 mol/contains nickel ions/0.05 to 1.3 mol/, and the molar ratio of Ni 2+ /(Zn 2+ + Ni 2+ ) in the bath is 0.1 to 0.3, and the conductivity aid is 1.0 as Cl -. Add 0.01 mole/or more of organic acid ion having a carboxyl group up to the solubility limit.
At high current densities of 60 to 200 A/ dm2 , using a chloride bath with additions of mol/min up to the solubility limit,
A method for manufacturing a highly corrosion-resistant surface-treated steel sheet, which comprises performing electroplating.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12825984A JPS616290A (en) | 1984-06-21 | 1984-06-21 | Surface-treated steel sheet having high corrosion resistance and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12825984A JPS616290A (en) | 1984-06-21 | 1984-06-21 | Surface-treated steel sheet having high corrosion resistance and its production |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2787292A Division JPH0559583A (en) | 1992-02-14 | 1992-02-14 | High-corrosion resistance surface treated steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS616290A JPS616290A (en) | 1986-01-11 |
JPH0532478B2 true JPH0532478B2 (en) | 1993-05-17 |
Family
ID=14980422
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12825984A Granted JPS616290A (en) | 1984-06-21 | 1984-06-21 | Surface-treated steel sheet having high corrosion resistance and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS616290A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63307297A (en) * | 1987-06-09 | 1988-12-14 | Sumitomo Metal Ind Ltd | Production of rustproof steel sheet for automobile |
US5063117A (en) * | 1988-12-27 | 1991-11-05 | The Furukawa Electric Co., Ltd. | Copper fin material for heat-exchanger and method of producing the same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57164999A (en) * | 1981-04-03 | 1982-10-09 | Kawasaki Steel Corp | Production of steel plate electroplated zinc-nickel alloy with highly corrosion resistant |
JPS58204196A (en) * | 1982-05-25 | 1983-11-28 | Nisshin Steel Co Ltd | Manufacture of steel plate electroplated with zinc alloy and provided with superior corrosion resistance at worked part |
JPS58204195A (en) * | 1982-05-25 | 1983-11-28 | Nippon Kokan Kk <Nkk> | Manufacture of steel plate electroplated with ni-zn alloy and provided with superior workability and corrosion resistance |
-
1984
- 1984-06-21 JP JP12825984A patent/JPS616290A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57164999A (en) * | 1981-04-03 | 1982-10-09 | Kawasaki Steel Corp | Production of steel plate electroplated zinc-nickel alloy with highly corrosion resistant |
JPS58204196A (en) * | 1982-05-25 | 1983-11-28 | Nisshin Steel Co Ltd | Manufacture of steel plate electroplated with zinc alloy and provided with superior corrosion resistance at worked part |
JPS58204195A (en) * | 1982-05-25 | 1983-11-28 | Nippon Kokan Kk <Nkk> | Manufacture of steel plate electroplated with ni-zn alloy and provided with superior workability and corrosion resistance |
Also Published As
Publication number | Publication date |
---|---|
JPS616290A (en) | 1986-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103757672B (en) | A kind of Zinc-tin alloy electro-plating method | |
JPS6365758B2 (en) | ||
US4249999A (en) | Electrolytic zinc-nickel alloy plating | |
JP3043336B1 (en) | Electro-galvanized steel sheet excellent in white rust resistance and method for producing the same | |
JPH0532478B2 (en) | ||
JPH0251996B2 (en) | ||
JPS6028918B2 (en) | Post-treatment method for non-plated side of single-sided zinc-based electroplated steel sheet | |
US4177129A (en) | Plated metallic cathode | |
JPH0341559B2 (en) | ||
JP3499543B2 (en) | Electrical Zn-plated steel sheet with excellent white rust resistance and method for producing the same | |
JPH0559583A (en) | High-corrosion resistance surface treated steel sheet | |
JPS6367560B2 (en) | ||
JPH0466690A (en) | Zinc-iron-group metal alloy plating bath and zinc-iron-group metal alloy plating method using the same | |
JPH09209108A (en) | Dip plating method for steel worked product | |
JPH0148356B2 (en) | ||
JPH052745B2 (en) | ||
JPS61119694A (en) | Production of electroplated steel plate | |
SU1726567A1 (en) | Electrolyte for precipitation of coating on the basis of nickel, cobalt and phosphorus | |
JP3398100B2 (en) | Electrogalvanized steel sheet with excellent white rust resistance and blackening resistance | |
JPH0860392A (en) | Iron electroplating solution | |
JPS6312953B2 (en) | ||
JPS6344837B2 (en) | ||
JPH03193893A (en) | Method for tinning galvanized steel sheet | |
JPH09111492A (en) | Method for continuously and electroplating metallic sheet | |
JPS6121318B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |