JPH09111492A - Method for continuously and electroplating metallic sheet - Google Patents

Method for continuously and electroplating metallic sheet

Info

Publication number
JPH09111492A
JPH09111492A JP8291064A JP29106496A JPH09111492A JP H09111492 A JPH09111492 A JP H09111492A JP 8291064 A JP8291064 A JP 8291064A JP 29106496 A JP29106496 A JP 29106496A JP H09111492 A JPH09111492 A JP H09111492A
Authority
JP
Japan
Prior art keywords
bath
zinc
anode
chlorine
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8291064A
Other languages
Japanese (ja)
Inventor
Christian Allely
アルリー クリスチャン
Herve Babitch
バビッチ エルベ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sollac SA
Original Assignee
Sollac SA
Lorraine de Laminage Continu SA SOLLAC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sollac SA, Lorraine de Laminage Continu SA SOLLAC filed Critical Sollac SA
Publication of JPH09111492A publication Critical patent/JPH09111492A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/565Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of zinc

Abstract

PROBLEM TO BE SOLVED: To increase the current density in a medium without generating chlorine on an anode at the time of electrogalvanizing a steel sheet as a cathode in an electrolyte contg. chlorides by the use of an insoluble anode by adding a chlorine-reducible compd. into a bath.
SOLUTION: Plural anodes, among which at least the one is insoluble, are arranged in the bath of an electrolyte with a chloride as the base, a current is applied between the anode and cathode, and a steel sheet as the cathode is continuously electroplated with zinc or zinc alloy. In this case, a compd. reducing the chloride in the bath and not reducing the zinc and alloy element close to the cathode in the bath is added as the soln. to the bath during electroplating. The bath is kept at ≤pH5.5, hydrazine, hydroxylamine, hydroxylamine hydrochloride, etc., are preferably used as the compd., and the concn. is kept at 0.03-0.3mol/l. Consequently, the current density is increased to ≥100A/dm2 in the insoluble anode region.
COPYRIGHT: (C)1997,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は金属板の連続電気メ
ッキ法、特に、不溶性陽極を有し且つ塩化物を主成分と
する電解質水溶液を収容した電気メッキ槽内で金属板を
陰極として用いて鋼板に亜鉛または亜鉛合金を連続電気
メッキする方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous electroplating method for a metal plate, and more particularly, to use the metal plate as a cathode in an electroplating tank containing an insoluble anode and an aqueous electrolyte solution containing chloride as a main component. The present invention relates to a method for continuously electroplating a steel sheet with zinc or a zinc alloy.

【0002】[0002]

【従来の技術】この種の電気メッキ法としては亜鉛(Zn
2+イオン)が溶解した硫酸塩をベースとした電解浴を用
いる方法は既に公知であり、亜鉛が陰極上に析出すると
同時に陽極では酸素が発生する。
2. Description of the Related Art Zinc (Zn
A method using an electrolytic bath based on a sulfate having 2+ ions dissolved therein is already known, and oxygen is generated at the anode at the same time when zinc is deposited on the cathode.

【0003】しかし、塩化物をベースとした電解液は伝
導率が高く、電解槽内での抵抗損失(ohmic loss)が小さ
く、電流密度が高くなり、多くの場合 100A/dm2 以上
になるので、一般には塩化物をベースとした電解液を用
いるのが好ましい。事実、可溶性陽極式の電気メッキ槽
で一般に用いられている塩化物ベースの浴と同様な高い
亜鉛(Zn2+イオン)濃度、場合によっては亜鉛合金濃度
且つ高い電流密度を用いて析出速度を極めて速くするこ
とができる。一般に、浴中の亜鉛濃度は1リットル当り
の亜鉛量で 100g以上になる。水酸化物の沈澱を生じさ
せずに溶液濃度をこのような高い値にするには酸性浴を
用いるのが好ましく、浴のpHは通常4〜5.5 である。
しかし、塩化物の媒体中で不溶性陽極を用いた場合には
陽極からは酸素の代わりに塩素が発生する。これは工場
プラントでは許されないことである。
However, chloride-based electrolytes have a high conductivity, a low ohmic loss in the electrolytic cell, a high current density, and in many cases 100 A / dm 2 or more. Generally, it is preferable to use a chloride-based electrolyte. In fact, high zinc (Zn 2+ ion) concentrations similar to chloride-based baths commonly used in soluble anode electroplating baths, and in some cases zinc alloy concentrations and high current densities, can be used to achieve very high deposition rates. Can be fast. Generally, the zinc concentration in the bath is 100 g or more in terms of zinc amount per liter. An acid bath is preferably used to obtain such a high solution concentration without causing precipitation of hydroxide, and the pH of the bath is usually 4 to 5.5.
However, when an insoluble anode is used in a chloride medium, chlorine is generated from the anode instead of oxygen. This is unacceptable in a factory plant.

【0004】欧州特許第0,501,547 号に記載の上記問題
の解決方法では多孔質陽極を用いて孔から電解液中に水
素を噴射する。これによって陽極でと塩化物イオンが酸
化されて塩素となる代わりに水素が酸化されてH+ イオ
ンになる。この特許の方法の欠点は、上記の多孔性陽極
の付近では水素が噴射されるため高い電流密度で操作で
きないという点にある。すなわち、塩化物をベースとし
た電解液を用いた他の形式の工業的プロセス(例えば可
溶性陽極槽を用いる方法)では電流密度を一般に 100A
/dm2以上にできるが、上記方法の電流密度は実際には約
50A/dm2に制限される。従って、塩素の発生を防ぐため
の解決策によって塩化物ベースをベースとした電解溶液
を用いたことによる重要な利点の1つが失われてしま
う。
The solution to the above-mentioned problems described in EP 0,501,547 uses a porous anode to inject hydrogen from the pores into the electrolyte. As a result, instead of oxidizing chloride ions to chlorine at the anode, hydrogen is oxidized to H + ions. The disadvantage of the method of this patent is that it cannot be operated at high current densities due to the injection of hydrogen in the vicinity of the porous anode. That is, in other types of industrial processes using chloride-based electrolytes (eg, using a soluble anode cell), the current density is typically 100 A
/ dm 2 or more, but the current density of the above method is actually about
Limited to 50 A / dm 2 . Therefore, one of the important advantages of using a chloride-based electrolyte solution is lost by the solution to prevent chlorine evolution.

【0005】英国特許第 1,123,005号には、不溶性陽極
槽を用いて鋼基板上に亜鉛をメッキするための化学的且
つ電気化学的な方法が記載されている。この特許に記載
されている浴は例えば硫酸塩、酢酸塩または蟻酸塩ベー
スのもので、塩化物をベースとした浴は記載されてはい
ない。この浴の亜鉛濃度は低い(酸化亜鉛の量で例えば
20g/l、46g/l)のでほぼ中性のpH (5〜8、好まし
くは7)で操作しても水酸化物が沈澱する危険はない。
化学的析出を行わせるために陰極で亜鉛(Zn2+)を還元
させる物質としてヒドラジンが提案されている。この化
合物は高濃度(例えば1リットル当り20 cm3のヒドラジ
ン水和物)で且つpH7付近で使用され、(分極した)
陰極の付近で亜鉛を還元する物質として機能する。この
浴では約1.3 A/dm2の電流密度で操作することによって
5分間で224 mg/dm2すなわち厚さ約3μmのメッキ層が
得られる。すなわち、この方法のメッキ速度はかなり遅
い。
British Patent 1,123,005 describes a chemical and electrochemical process for plating zinc on steel substrates using an insoluble anode bath. The baths described in this patent are, for example, based on sulphate, acetate or formate, no chloride-based baths are described. The zinc concentration in this bath is low.
Since it is 20 g / l, 46 g / l), there is no danger of hydroxide precipitation even if operated at a neutral pH (5-8, preferably 7).
Hydrazine has been proposed as a substance that reduces zinc (Zn 2+ ) at the cathode in order to effect chemical deposition. This compound was used at high concentrations (eg 20 cm 3 hydrazine hydrate per liter) and around pH 7 (polarized).
It functions as a substance that reduces zinc near the cathode. In this bath, operating at a current density of about 1.3 A / dm 2 , a plating layer of 224 mg / dm 2 or a thickness of about 3 μm can be obtained in 5 minutes. That is, the plating rate of this method is quite slow.

【0006】メッキ速度を上げるには少なくとも亜鉛濃
度の高い媒体中で操作する必要があるが、そのためには
酸性pHにする必要がある。しかし、酸性pHでは、ヒ
ドラジンの還元力が低下(これはN2 4 +Zn2+→N2
+Zn+4H+ の反応による)してヒドラジンの化学的析
出機能が失われる。従って、英国特許第 1,123,005号に
記載の方法では亜鉛濃度の高い酸性浴を用いることは適
当でないとされており、そのため高い電流密度で操作す
ることはできず、メッキ速度が制限される。
[0006] In order to increase the plating rate, it is necessary to operate in a medium containing at least zinc, and for that purpose, an acidic pH is required. However, at acidic pH, the reducing power of hydrazine decreases (this is due to N 2 H 4 + Zn 2+ → N 2
The chemical precipitation function of hydrazine is lost (due to the reaction of + Zn + 4H + ). Therefore, the method described in GB 1,123,005 does not make it appropriate to use an acidic bath with a high zinc concentration, which makes it impossible to operate at high current densities and limits the plating rate.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は陽極か
ら塩素を発生させずに塩化物をベースとした媒体中で電
流密度を高くすることにある。
SUMMARY OF THE INVENTION It is an object of the invention to increase the current density in chloride-based media without generating chlorine from the anode.

【0008】[0008]

【課題を解決するための手段】本発明は、塩化物をベー
スとした電解液の浴を含む槽中に複数の陽極を有し、少
なくとも1つの陽極は不溶性とし、金属板を陰極とし、
少なくとも1つの陽極と金属板との間に電流を流して金
属板、特に鋼板上に亜鉛または亜鉛合金を連続的に電気
メッキする方法において、浴中の塩素に対して還元作用
を有し且つ浴中の金属板付近にある亜鉛および合金元素
に対して還元作用のない化合物を電気メッキ中に溶液状
態で浴に添加することを特徴とする方法を提供する。
SUMMARY OF THE INVENTION The present invention has a plurality of anodes in a bath containing a chloride-based electrolyte bath, at least one anode being insoluble and a metal plate serving as the cathode.
A method for continuously electroplating zinc or a zinc alloy on a metal plate, especially a steel plate by passing an electric current between at least one anode and the metal plate, which has a reducing action on chlorine in the bath and which is Provided is a method characterized in that a compound having no reducing action on zinc and alloying elements in the vicinity of an inner metal plate is added to the bath in a solution state during electroplating.

【0009】[0009]

【発明の実施の形態】浴のpHが 5.5以下の場合には溶
液状態で添加する上記化合物はヒドラジン、ヒドロキシ
ルアミンおよびヒドロキシルアミンハイドロクロライド
の中から選択するのが好ましい。英国特許第 1,123,005
号に記載の方法と本発明方法とを比較した場合の主たる
相違点は、ヒドラジンを例にとって具体的に説明する
と、本発明では浴のpHを十分に酸性にし、浴中のヒド
ラジン濃度を十分に低くして浴中のヒドラジン/窒素対
のレドックス電位を十分に高くすることによって浴溶液
中の亜鉛が還元されないとようにして、陽極における塩
素の発生を防ぐというヒドラジンの機能を十分に果たさ
せることが必要である。
BEST MODE FOR CARRYING OUT THE INVENTION When the pH of the bath is 5.5 or less, the above compound to be added in a solution state is preferably selected from hydrazine, hydroxylamine and hydroxylamine hydrochloride. British Patent No. 1,123,005
The main difference between the method described in No. 1 and the method of the present invention is that when hydrazine is used as an example, the pH of the bath is sufficiently acidic in the present invention and the concentration of hydrazine in the bath is sufficiently high. Low enough that the redox potential of the hydrazine / nitrogen pair in the bath is high enough so that zinc in the bath solution is not reduced and the hydrazine function of preventing chlorine evolution at the anode is fully fulfilled. It is necessary.

【0010】また、ヒドラジン濃度は陰極でのヒドラジ
ンの還元を防止または制限するだての十分に低い濃度で
なければならない(低いpHではZn2+イオンの還元を犠
牲にしてヒドラジンの還元反応が優先的に起こる)。ヒ
ドラジン、ヒドロキシルアミンおよびヒドロキシルアミ
ンハイドロクロライドの中から選択される化合物は浴中
の濃度が0.03〜0.3 mol/リットルに維持されるように添
加するのが好ましい。本発明の他の特徴は下記の点にあ
る: a) 陽極領域での電流密度は 100A/dm2 以上である。 b) 還元化合物がハイドロキシルアミンハイドロクロラ
イドの場合の浴中の濃度は常に少なくとも2g/リット
ルに保持する。
Also, the hydrazine concentration must be low enough to prevent or limit the reduction of hydrazine at the cathode (at low pH the reduction reaction of hydrazine takes precedence at the expense of Zn 2+ ion reduction). Happens). The compound selected from hydrazine, hydroxylamine and hydroxylamine hydrochloride is preferably added so that the concentration in the bath is maintained at 0.03 to 0.3 mol / liter. Other characteristics of the present invention are as follows: a) The current density in the anode region is 100 A / dm 2 or more. b) When the reducing compound is hydroxylamine hydrochloride, the concentration in the bath should always be kept at least 2 g / l.

【0011】本発明の他の対象は上記方法を実施するた
めのメッキ浴にある。以下、塩素の発生を防止するため
に電着浴に添加する物質としてヒドロキシルアミンハイ
ドロクロライドを用いた実施例で本発明を説明するが、
本発明が下記実施例に限定されるものではなく、本発明
は他の塩素還元化合物、特にヒドラジンまたはヒドロキ
シルアミンをも含むものである。
Another subject of the invention is a plating bath for carrying out the method described above. Hereinafter, the present invention will be described with reference to Examples using hydroxylamine hydrochloride as a substance added to the electrodeposition bath in order to prevent generation of chlorine.
The present invention is not limited to the following examples, the present invention also includes other chlorine reducing compounds, especially hydrazine or hydroxylamine.

【0012】実施例1 本発明の第1実施例は、塩化物をベースとした浴を用い
た不溶性陽極を有する電気亜鉛メッキプラントを用いて
行う連続亜鉛メッキである。本発明の化合物以外のも
の、すなわち浴組成、陽極材料およびメッキ条件自体は
公知であり、ここでは詳細な説明は省略する。pHは一
般に4〜5.5 である。電気亜鉛メッキ用プラントは一連
の不溶性陽極型の電解槽を有し、全体として塩化物をベ
ースとした電解浴を例えば 340m3 収容し、プラントを
流れる合計電流は例えば約 600kAである。
Example 1 A first example of the present invention is continuous galvanizing performed using an electrogalvanizing plant with an insoluble anode using a chloride based bath. Other than the compound of the present invention, that is, the bath composition, the anode material, and the plating conditions themselves are known, and therefore detailed description thereof is omitted here. The pH is generally 4-5.5. An electrogalvanizing plant has a series of insoluble anode type electrolyzers, which generally contains, for example, 340 m 3 of a chloride-based electrolytic bath, the total current flowing through the plant being, for example, about 600 kA.

【0013】この場合、塩素の放出を完全に防ぐため
に、本発明ではプラントの電気亜鉛メッキ用浴に1400kg
/時の割合でヒドロキシルアミンハイドロクロライドを
添加する必要がある。浴への添加剤、この場合はヒドロ
キシルアミンハイドロクロライドの流量は、陽極で発生
し得る塩素を減少させ且つ陰極でのヒドロキシルアミン
ハイドロクロライドの還元とZn2+イオンによるヒドロキ
シルアミンハイドロクロライドの酸化とを防ぐのに十分
な低い濃度に維持する。この方法自体は公知である。発
生し得る塩素の量はプラントの可溶性陽極を流れる電流
と、塩素生成のクーロン収率(coulombic yield)とに依
存し、塩素のクーロン収率は不溶性陽極に用いる材料に
依存する。
In this case, in order to completely prevent the emission of chlorine, 1400 kg is added to the electrogalvanizing bath of the plant in the present invention.
It is necessary to add hydroxylamine hydrochloride at a rate of / hour. The flow rate of the additive to the bath, in this case hydroxylamine hydrochloride, reduces the chlorine that may be generated at the anode and reduces the hydroxylamine hydrochloride at the cathode and the oxidation of hydroxylamine hydrochloride by Zn 2+ ions. Keep concentration low enough to prevent. This method itself is known. The amount of chlorine that can be generated depends on the current flowing through the soluble anode of the plant and the coulombic yield of chlorine production, which depends on the material used for the insoluble anode.

【0014】ヒドロキシルアミンハイドロクロライドの
添加流量は浴中のこの添加剤の濃度が少なくとも2g/
l、すなわち約0.03モル/l (これは公知の20g/lよ
りもはるかに低い)に保たれるように調節するのが好ま
しい。この濃度はより高いレベル、例えば8g/lに維
持するのが好ましい。本発明では塩化物ベースの電解液
中で不溶性陽極を用いて、電解液から塩素を発生させず
に高い電流密度、この場合約 100A/dm2 で亜鉛層をメ
ッキすることができ、従って、高速のメッキが可能にな
る。本発明の還元化合物、この実施例ではヒドロキシル
アミンハイドロクロライドは陽極で生じる「発生期」の
塩素すなわちCl原子状の塩素)と反応して窒素と塩酸と
になる。従って、電気亜鉛メッキ浴からは窒素が発生す
るが、これは塩素発生と違って危険ではない。生成した
塩酸は浴中に亜鉛イオンを再供給するために用いられる
亜鉛プロックの溶解反応に都合が良い。
The addition flow rate of hydroxylamine hydrochloride is such that the concentration of this additive in the bath is at least 2 g /
It is preferably adjusted so that it is kept at 1, ie about 0.03 mol / l, which is much lower than the known 20 g / l. This concentration is preferably maintained at a higher level, eg 8 g / l. In the present invention, an insoluble anode can be used in chloride-based electrolytes to plate zinc layers at high current densities, in this case about 100 A / dm 2 , without the generation of chlorine from the electrolyte, and thus high speed. Can be plated. The reducing compound of the present invention, hydroxylamine hydrochloride in this example, reacts with "nascent" chlorine (Cl-atomic chlorine) generated at the anode to form nitrogen and hydrochloric acid. Therefore, nitrogen is generated from the electrogalvanizing bath, which is not dangerous unlike chlorine generation. The hydrochloric acid formed is convenient for the dissolution reaction of the zinc block used to resupply zinc ions into the bath.

【0015】実施例2 上記プラントと同様なプラントを用いて本発明に従って
亜鉛/ニッケル合金による連続メッキを行ったが、この
第2実施例では、陽極の一部を可溶性亜鉛陽極にし、残
りの陽極をメッキする亜鉛/ニッケル合金のニッケル濃
度を制御するための不溶性陽極にした。例として、6個
の陽極の中の5個を亜鉛陽極とし、残りを不溶性陽極に
した。全電流が 300kAの場合に、本発明では 140kg/時
の割合でヒドロキシルアミンハイドロクロライドを電着
浴に添加した。浴に加える添加剤の量はプラント内の不
溶性陽極の割合およびメッキすべき亜鉛/ニッケル合金
中のニッケルの割合にも依存する。ヒドロキシルアミン
ハイドロクロライドの添加流量は、浴内のヒドロキシル
アミンハイドロクロライド濃度が 0.4g/lすなわち約
0.006 mol/lに維持されるように調節するのが好まし
い。
Example 2 A zinc / nickel alloy was continuously plated according to the present invention using a plant similar to the plant described above. In this second example, a part of the anode was a soluble zinc anode, and the remaining anode was used. Was used as an insoluble anode for controlling the nickel concentration of the zinc / nickel alloy to be plated. As an example, 5 out of 6 anodes were zinc anodes and the rest were insoluble anodes. In the present invention, at a total current of 300 kA, hydroxylamine hydrochloride was added to the electrodeposition bath at a rate of 140 kg / hr. The amount of additive added to the bath also depends on the proportion of insoluble anode in the plant and the proportion of nickel in the zinc / nickel alloy to be plated. The addition flow rate of hydroxylamine hydrochloride is such that the concentration of hydroxylamine hydrochloride in the bath is 0.4 g / l or approximately
It is preferable to adjust it so that it is maintained at 0.006 mol / l.

【0016】最低濃度は実施例1よりも低いが、これは
放出され得る塩素の量が少なく、電流値が低く且つ陽極
の一部のみが不溶性型であることによる。本発明によっ
て、塩化物ベースの電解液中で陽極のいくつかを不溶型
にして、電解液から塩素を発生させずに高い電流密度、
この実施例の場合約100 A/dm2で亜鉛/ニッケル合金
の層をメッキすることができる。以下、本発明の具体的
試験結果を説明する。
The minimum concentration is lower than in Example 1, but this is because the amount of chlorine that can be released is small, the current value is low, and only part of the anode is insoluble. According to the present invention, some of the anodes are insoluble in chloride-based electrolytes, high current densities without generating chlorine from the electrolytes,
In this embodiment, a layer of zinc / nickel alloy can be plated at about 100 A / dm 2 . Hereinafter, specific test results of the present invention will be described.

【0017】以下の試験は、表面積が 0.03 cm2 の白金
陽極と、亜鉛陰極とを備えた回転電極型の実験室用メッ
キ槽を用いて行った。試験開始時の電解液の水溶液は下
記を含み、pHは約4で、温度は約60℃であった: 1) 2モル/リットルの塩化亜鉛(ZnCl2l) 2) 4.5 モル/リットルの塩化カリウム(KCl) メッキ槽に上記電解液を入れ、電流密度が50〜100 A/
dm2 に達するように電極間に電流を流した。試験は2時
間継続した。
The following tests were carried out using a rotating electrode type laboratory plating tank equipped with a platinum anode having a surface area of 0.03 cm 2 and a zinc cathode. The aqueous solution of the electrolyte at the start of the test contained the following, pH about 4 and temperature about 60 ° C .: 1) 2 mol / l zinc chloride (ZnCl 2 l) 2) 4.5 mol / l chloride Put the above electrolytic solution into the potassium (KCl) plating tank and make the current density 50 to 100 A /
A current was passed between the electrodes to reach dm 2 . The test lasted 2 hours.

【0018】試験中、電解液から放出された塩素を下記
の方法で定量した。電解液中に窒素を吹き込んで、陽極
で発生する塩素を窒素に随伴させて付属の容器中に回収
する。この容器にはヨウ化カリウム溶液が入っており、
塩素はヨウ化物を酸化してヨウ素に変える。試験後に溶
液に含まれるヨウ素の量を(例えばチオ硫酸塩を用い
て)測定すれば試験中に電解液から放出された塩素の量
を求めることができる。
During the test, chlorine released from the electrolytic solution was quantified by the following method. Nitrogen is blown into the electrolytic solution, and chlorine generated at the anode is made to accompany with nitrogen and collected in an attached container. This container contains potassium iodide solution,
Chlorine oxidizes iodide to iodine. The amount of chlorine released from the electrolyte during the test can be determined by measuring the amount of iodine contained in the solution (eg, using thiosulfate) after the test.

【0019】比較例1 比較のために、電解液に特別な添加剤を加えずに行っ
た。付属容器内のヨウ化カリウム溶液は急速に着色し、
セル内で塩素が放出されていることが証明された。試験
終了後、付属容器内で生成したヨウ素の量を測定して、
その値から陽極で発生した塩素の量を求め、それから塩
素生成のクーロン収率を計算したところ90%という値が
得られた。
Comparative Example 1 For comparison, the procedure was performed without adding any special additive to the electrolytic solution. The potassium iodide solution in the accessory container rapidly colored,
It was proved that chlorine was released in the cell. After the test, measure the amount of iodine produced in the attached container,
The amount of chlorine generated at the anode was calculated from this value, and the Coulomb yield for chlorine formation was calculated from this value, giving a value of 90%.

【0020】試験例1 この試験は本発明を具体的に説明するためのものであ
る。この試験も比較例1と同様な条件で行ったが、本試
験では電解液に2g/リットルのヒドロキシルアミンハ
イドロクロライド (NH2OH ・HCl)を添加した。試験中、
付属容器内のヨウ化カリウム溶液に着色は見られず、50
または100 A/dm2の電流密度で操作してもセル内での塩
素の発生はないことが証明された。
Test Example 1 This test is for specifically explaining the present invention. This test was also performed under the same conditions as in Comparative Example 1, but in this test, 2 g / l of hydroxylamine hydrochloride (NH 2 OH.HCl) was added to the electrolytic solution. Under examination,
No color was found in the potassium iodide solution in the accessory container.
It was proved that chlorine was not generated in the cell even when operated at a current density of 100 A / dm 2 .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 エルベ バビッチ フランス国 57000 メス リュ ポン サン マルセル 9 ─────────────────────────────────────────────────── ——————————————————————————————————————————————————————————————————————————————————————— 3—

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 塩化物をベースとした電解液の浴を含む
槽中に複数の陽極を有し、少なくとも1つの陽極は不溶
性とし、金属板を陰極とし、少なくとも1つの陽極と金
属板との間に電流を流して金属板、特に鋼板上に亜鉛ま
たは亜鉛合金を連続的に電気メッキする方法において、 浴中の塩素に対して還元作用を有し且つ浴中の金属板付
近にある亜鉛および合金元素に対して還元作用のない化
合物を電気メッキ中に溶液状態で浴に添加することを特
徴とする方法。
1. A plurality of anodes are provided in a bath containing a bath of chloride-based electrolyte, at least one anode being insoluble, a metal plate being the cathode, and at least one anode and a metal plate. In a method of continuously electroplating zinc or a zinc alloy on a metal plate, especially a steel plate by passing an electric current between them, zinc having a reducing action on chlorine in the bath and zinc in the vicinity of the metal plate in the bath A method comprising adding a compound having no reducing action to an alloying element to the bath in a solution state during electroplating.
【請求項2】 浴のpHを 5.5以下にし且つ溶液に添加
する化合物をヒドラジン、ヒドロキシルアミンおよびヒ
ドロキシルアミンハイドロクロライドの中から選択され
る化合物にする請求項1に記載の方法。
2. The method according to claim 1, wherein the pH of the bath is 5.5 or less and the compound added to the solution is a compound selected from hydrazine, hydroxylamine and hydroxylamine hydrochloride.
【請求項3】 電気メッキ中の上記化合物の濃度を0.03
〜0.3mol/リットルに保つように上記化合物を溶液状態
で添加する請求項2に記載の方法。
3. The concentration of the above compound during electroplating is 0.03.
The method according to claim 2, wherein the compound is added in the form of a solution so as to maintain the concentration at 0.3 mol / liter.
【請求項4】 上記化合物をヒドロキシルアミンハイド
ロクロライドとし、電気メッキ中のその浴中濃度を常に
少なくとも2g/リットルに維持される請求項2に記載
の方法。
4. The method according to claim 2, wherein the compound is hydroxylamine hydrochloride, and the concentration in the bath during electroplating is always maintained at least 2 g / liter.
【請求項5】 少なくとも1つの不溶性陽極領域での電
流密度が 100A/dm2以上にする請求項1〜4のいずれか
一項に記載の方法。
5. The method according to claim 1, wherein the current density in at least one insoluble anode region is 100 A / dm 2 or more.
JP8291064A 1995-10-12 1996-10-14 Method for continuously and electroplating metallic sheet Withdrawn JPH09111492A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9511973 1995-10-12
FR9511973A FR2739872B1 (en) 1995-10-12 1995-10-12 METHOD OF CONTINUOUS ELECTRODEPOSITION OF A METAL STRIP AND ASSOCIATED BATH

Publications (1)

Publication Number Publication Date
JPH09111492A true JPH09111492A (en) 1997-04-28

Family

ID=9483461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8291064A Withdrawn JPH09111492A (en) 1995-10-12 1996-10-14 Method for continuously and electroplating metallic sheet

Country Status (3)

Country Link
JP (1) JPH09111492A (en)
KR (1) KR970021377A (en)
FR (1) FR2739872B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102747396A (en) * 2012-06-28 2012-10-24 贵州钢绳股份有限公司 Technology for electrogalvanizing of specially-shaped steel wire

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100358011B1 (en) * 1999-12-24 2002-10-25 주식회사 포스코 The method of gradient electroplating
KR101065104B1 (en) * 2008-10-22 2011-09-16 엘에스엠트론 주식회사 Electroplating method capable of lessening consumption of plating additive

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1278188B (en) * 1964-08-18 1968-09-19 Siemag Siegener Maschb Ges Mit Process for the production of base metals on more noble metals by chemical reduction of metal salts dissolved in water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102747396A (en) * 2012-06-28 2012-10-24 贵州钢绳股份有限公司 Technology for electrogalvanizing of specially-shaped steel wire

Also Published As

Publication number Publication date
FR2739872A1 (en) 1997-04-18
KR970021377A (en) 1997-05-28
FR2739872B1 (en) 1997-11-14

Similar Documents

Publication Publication Date Title
JP3455709B2 (en) Plating method and plating solution precursor used for it
US20160024683A1 (en) Apparatus and method for electrolytic deposition of metal layers on workpieces
US4555317A (en) Cathode for the electrolytic production of hydrogen and its use
US20120279869A1 (en) Chromium plating method
JP3302949B2 (en) Black ruthenium plating solution
US4715935A (en) Palladium and palladium alloy plating
JPH02197590A (en) Redox reaction method and electrolytic bath for it
US1077920A (en) Electrode.
EP0043854B1 (en) Aqueous electrowinning of metals
US3833485A (en) Electroplating chromium and chromium alloys
US5198095A (en) Method for continuously manganese-electroplating or manganese-alloy-electroplating steel sheet
JPH09111492A (en) Method for continuously and electroplating metallic sheet
EP0088192B1 (en) Control of anode gas evolution in trivalent chromium plating bath
US6569311B2 (en) Continuous electrochemical process for preparation of zinc powder
US3799850A (en) Electrolytic process of extracting metallic zinc
JP2982658B2 (en) Method of lowering metal concentration in electroplating solution
US6569310B2 (en) Electrochemical process for preparation of zinc powder
JPS6353267B2 (en)
Rudnik et al. Comparative studies of the electroreduction of zinc ions from gluconate solutions
Murase et al. Measurement of pH in the vicinity of a cathode during the chloride electrowinning of nickel
US5534131A (en) Process for heavy metals electrowinning
JPS6017096A (en) Production of electrode
Wilcox et al. The kinetics of electrode reactions III practical aspects
JPS5925991A (en) Reducing method of metallic ions
WO2020049657A1 (en) Electroplating bath, method for manufacturing electroplated product, and electroplating device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040106