JPS5925991A - Reducing method of metallic ions - Google Patents

Reducing method of metallic ions

Info

Publication number
JPS5925991A
JPS5925991A JP13593882A JP13593882A JPS5925991A JP S5925991 A JPS5925991 A JP S5925991A JP 13593882 A JP13593882 A JP 13593882A JP 13593882 A JP13593882 A JP 13593882A JP S5925991 A JPS5925991 A JP S5925991A
Authority
JP
Japan
Prior art keywords
ions
plating
cathode
chamber
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13593882A
Other languages
Japanese (ja)
Inventor
Nobukazu Suzuki
鈴木 信和
Sadatomo Fujita
藤田 貞智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP13593882A priority Critical patent/JPS5925991A/en
Publication of JPS5925991A publication Critical patent/JPS5925991A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)

Abstract

PURPOSE:To reduce easily and economically Fe<3+> ions to Fe<2+> ions in Fe plating, by separating an electrolytic cell to a plating bath chamber and an anode chamber with an anion exchange membrane, and maintaining the potential of the cathode in the plating bath chamber at a specific value. CONSTITUTION:A vertical two-chamber type electrolytic cell 1 made of an acrylic resin is separated by an anion exchange membrane 2 to an anode chamber 3 and a plating bath chamber 4. An insoluble anode 5 is provided in the chamber 3, and a cathode 6 in the chamber 4. The potential of the cathode is maintained at (+0.77+0.04log[Fe<3+>]/[Fe<2+>])V-(-0.44+0.03log[Fe<2+>] at a hydrogen elec trode standard (vs.NHE) and at (+0.53+0.04log[Fe<3+>]/[Fe<2+>])V-(-0.68+0.03log [Fe<2+>])V at a saturated caromel electrode standard (vs.SCE) in the stage of electrolysis. The concn. of Fe<3+> ions in the plating soln. is thus uppressed and good plating is accomplished.

Description

【発明の詳細な説明】 本発明は、Fe、Fe−ZnまたはF e−N i等の
Fe系メッキにおいて、Fe”+イオンをFez+イオ
ンに還元する金属イオンの還元方法に関する〇一般に、
Fe系メッキにおいて、メッキ浴中のFe2+イオンは
きわめて不安定であシ、メッキ液中の溶存酸素により 
(1)式の反応をもって、1だ陽極表面での電極反応に
より(2)式の反応をもって、Fe2+イオンが酸化さ
れてFe3+イオンが生成する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a metal ion reduction method for reducing Fe''+ ions to Fez+ ions in Fe-based plating such as Fe, Fe-Zn or Fe-Ni.
In Fe-based plating, Fe2+ ions in the plating bath are extremely unstable, and dissolved oxygen in the plating solution
With the reaction of formula (1), Fe2+ ions are oxidized and Fe3+ ions are generated by the electrode reaction on the anode surface with the reaction of formula (2).

F e”+’/402 + 1/2H2Q −+ ’f
;’ e3++OR−・・” (1)Fe”→Fe””
+e ” =(2) その結果、メッキ浴中のFeZ+濃度の変化により、特
にFe系合金メッキの場合において、合金組成が変化し
均一な皮膜が得られないとともに、電流効率が低下する
などの問題点を招く○そこで、かかる点に対処するため
に、Fe2+の酸化を防止する手段、あるいはFe3+
イオンの生成量に相当する量のFe3+イオンの還元ま
たは除去手段として次記の技術がある0 (1)可溶性陽極(Fe系陽極)を用いる方法。
F e"+'/402 + 1/2H2Q -+ 'f
;' e3++OR-...” (1) Fe”→Fe””
+e ” = (2) As a result, due to changes in the FeZ+ concentration in the plating bath, especially in the case of Fe-based alloy plating, the alloy composition changes, making it impossible to obtain a uniform film and causing problems such as a decrease in current efficiency. Therefore, in order to deal with this problem, we need a means to prevent the oxidation of Fe2+ or a method to prevent Fe3+ from oxidizing.
The following techniques are available as means for reducing or removing Fe3+ ions in an amount corresponding to the amount of ions produced. (1) A method using a soluble anode (Fe-based anode).

(2)生成したFe3+をFe粉またはFe粒等の溶解
により還元し、Fez+を得てメッキ浴室へ供給する方
法。
(2) A method of reducing the generated Fe3+ by dissolving Fe powder or Fe grains to obtain Fez+ and supplying it to the plating bath.

(3)溶媒抽出法等でFe3+を除去する方法。(3) A method of removing Fe3+ using a solvent extraction method or the like.

(4)不溶性陽極を陰イオン交換膜隔膜によりメッキ浴
室とは分離した陽極室に設置しながらメッキする方法。
(4) A method of plating while installing an insoluble anode in an anode chamber separated from the plating bath by an anion exchange membrane diaphragm.

しかしく1)の方法では、電極反応(2)式は避けるこ
とができるけれども、(1)式の反応は避けることがで
きず、結局ある量のFea+イオンはキレート樹脂によ
る吸着等により除去せねばならず、また陽極効率と陰極
効率との差に相当するメッキ金属イオンが過剰となり、
浴組成を一定に保つことがきわめて困難となるばかりで
なく、陽極の消耗の度に陽極を取替えねばならず、連続
メツキラインを考えた場合致命的であシ、さらに30A
/di”以上の高電流密度条件では、Fe陽極での不働
態化現象を生じ操業が不可能となる欠点がある。
However, in method 1), although the electrode reaction equation (2) can be avoided, the reaction of equation (1) cannot be avoided, and in the end, a certain amount of Fea+ ions must be removed by adsorption with a chelate resin, etc. In addition, there is an excess of plating metal ions corresponding to the difference between anode efficiency and cathode efficiency.
Not only is it extremely difficult to maintain a constant bath composition, but the anode must be replaced every time it wears out, which is fatal when considering a continuous plating line, and the 30A
Under high current density conditions of /di'' or higher, there is a drawback that passivation occurs at the Fe anode, making operation impossible.

(2)の方法は、Fe粉または粒の溶解速度が低く、還
元能力が十分でなく、そしてH+にょるFeの溶解反応
の寄与が大きく、したがって必要量のFe3+を還元す
る場合には、Fe2+イオンが供給過剰となシ、これを
避けるにはメッキ液を大量にドラックアウトせねばなら
ない。また、この方法は(3)〜(5)式の反応に着目
するものである。
In method (2), the dissolution rate of Fe powder or grains is low, the reducing ability is not sufficient, and the contribution of the dissolution reaction of Fe to H+ is large. Therefore, when reducing the required amount of Fe3+, To avoid an oversupply of ions, it is necessary to drag out a large amount of plating solution. Moreover, this method focuses on the reactions of formulas (3) to (5).

アノード反応として、 Fe−+Fe”+ 2e  ・・=  (3)カソード
反応として、(4) (5)式の競争反応を生じるO Fe”e−+Fe”  ”  (4) H”七6−+ 1/2 H2” ” (5)そして、(
5)式の反応が支配的であるため、必要量のFe3+を
還元するには、(3)式の反応を高める必要がある。そ
の結果、メッキ浴中にFe 2 +が供給過剰となり、
メッキ浴液をドラックアウトせねばならないのである。
As an anode reaction, Fe-+Fe"+ 2e...= (3) As a cathode reaction, competitive reactions of formulas (4) and (5) occur O Fe"e-+Fe"" (4) H"76-+ 1 /2 H2” ” (5) And (
Since the reaction of formula 5) is dominant, it is necessary to increase the reaction of formula (3) in order to reduce the necessary amount of Fe3+. As a result, Fe 2 + is oversupplied in the plating bath,
The plating bath solution must be dragged out.

(3)の方法はランニングコストが嵩むとともに、Fe
2+の供給に際して、硫酸第1鉄については5042−
のバランスの面から用いることができず、またFe粉等
では溶解し難いため、Fe2+の供給不足となる問題が
ある。
Method (3) increases the running cost and
5042- for ferrous sulfate when supplying 2+
It cannot be used due to the balance of Fe2+, and it is difficult to dissolve with Fe powder, so there is a problem of insufficient supply of Fe2+.

これに対して、(4)の方法では、不溶性陽極を用いて
いるので、高電流密度でのメッキが可能で、浴組成のコ
ントロールが容易であり、さらに原則的に陽極の取替が
不要である利点がある。
On the other hand, method (4) uses an insoluble anode, which allows plating at high current density, makes it easy to control the bath composition, and, in principle, does not require replacement of the anode. There are certain advantages.

また陰イオン交換膜隔膜により陽極室とメッキ浴室とに
分離し、Fe2+イオンの陽極室への移動を極力防止す
るから、陽極でのF e a+イオンの生成量も少くな
る効果が期待でき、(1)〜(3)の方法と比較すれば
はるかに実用的なものである。
Furthermore, since the anion exchange membrane separates the anode chamber and the plating bath into the anode chamber and prevents Fe2+ ions from moving to the anode chamber as much as possible, it is expected that the amount of Fe a+ ions produced at the anode will be reduced. This method is much more practical than methods 1) to (3).

しかしながら、連続メッキを行う場合、極間距離を通常
電力効率などを考えて小さくしている関係もあって、走
行するストリップの振れ等によりそれが隔膜を損傷する
危険性がある。
However, when continuous plating is performed, the distance between the electrodes is usually kept small in consideration of power efficiency, etc., and there is a risk that the running strip may sway and damage the diaphragm.

本発明は、メツキセルにおいてたとえ隔膜を使用しなく
とも、良好なメッキを達成できる金属イオンの還元方法
を提供することを目的としている。
An object of the present invention is to provide a method for reducing metal ions that can achieve good plating in Metxel even without using a diaphragm.

すなわち、本発明は、Fe系メッキの際にメッキ浴中の
Fe3+イオンをFe”+イオンに還元するに当って、
陰イオン交換膜隔膜にょシメッキ浴室と陽極室とを分離
し、メッキ浴室には陰極を陽極室には不溶性陽極をそれ
ぞれ設け、前記陰極の電位を水素電極基準(VS、NH
K) テ(−1−0,77+0.04A!og[Fe3
+)/CFe”、])V〜(−0,44+0.031o
g[Fe”))V、飽和カロメル電極基準(VS、5C
E)で(+0.53+0.04nog(Fe”)/(F
e” ) )V〜(−0,,68+0.031og (
Fe” :) )Vに保持して電解を行い、陰極におい
てFea+イオンをFe2+イオンに還元する(ただし
、前記〔Fez+〕、〔Fea+〕は金属イオ7 (7
) 濃度ヲ示す)ことを特徴とするものである〇 たとえば・本発明法は・メツキセルと別体的に本発明に
係る還元装置を設置し、メッキ液をメツキセルから抜き
出して、還元装置に導き、その還元装置においてメッキ
液中のFea+イオンをFe2+イオンに還元した後、
Fe3+イオンが少いメッキ液をメツキセルに戻す態様
等に適用される。
That is, in the present invention, in reducing Fe3+ ions in the plating bath to Fe"+ ions during Fe-based plating,
An anion exchange membrane diaphragm separates the plating bath from the anode chamber, and the plating bath is equipped with a cathode and the anode chamber is equipped with an insoluble anode, and the potential of the cathode is set to the hydrogen electrode standard (VS, NH
K) Te(-1-0,77+0.04A!og[Fe3
+)/CFe”,])V~(-0,44+0.031o
g[Fe”))V, saturated calomel electrode reference (VS, 5C
E) at (+0.53+0.04nog(Fe”)/(F
e” ) ) V ~ (-0,,68+0.031og (
Electrolysis is carried out by holding the ions at V () to reduce Fea+ ions to Fe2+ ions at the cathode (however, the above [Fez+] and [Fea+] are metal ions 7 (7
For example, the method of the present invention is characterized by: installing the reducing device according to the present invention separately from the Metxel, extracting the plating solution from the Metxel and guiding it to the reducing device; After reducing Fea+ ions in the plating solution to Fe2+ ions in the reduction device,
This method is applied to a mode in which a plating solution containing few Fe3+ ions is returned to Metsuki Cell.

Feイオンの酸化還元反応は(6)式であられされる0 Fe2+ @ Fe3++ e   ・・”  (6)
一般に、酸化還元反応はその電位の依存すること自体は
知られている。
The redox reaction of Fe ions is expressed by equation (6)0 Fe2+ @ Fe3++ e...” (6)
It is generally known that redox reactions depend on their potential.

本発明者らは、いま対象としているFe系メッキにあっ
て、その酸化還元反応に対して電位がはたして−どのよ
うに作用するものであるか、そしてその電位範囲外であ
るとどのような結果を招くかについて実験と考究を繰り
返したところ次のことが明らかとなった0 すなわち、(6)式において左方への反応、すなわちF
e”+イオンをFe2+イオンに還元するには、陰極の
電位を水素電極基準(VS、NHE)で(+0.77十
〇、0411og CFe” 〕/ [F e”) )
V〜(−0,44+o、o3gog[Fe”))V、飽
和カロメル電極基準(vs、 5CE)で(+0.53
+0.041og [:Fe”:]/[Fe2+) )
 V〜(−0,68+0.031og[Fe”)] )
Vに保持すればよいことが判明したO そして、この場合、上限値は数式で示したように、鉄イ
オン濃度比r=〔Fe3+〕/〔Fe2+〕によって変
動する。通常メッキ浴での濃度比rは1以下となること
が多いので、通常は電位の前側の値は+〇、77V(v
s、 NHE)より卑とする必要がある。たとえば、〔
Fe2+〕−50g/l、〔Fe3+〕−5jj/lの
場合には、+0.73V (V S、、 NHE)より
卑とする必要がある。もしかかる上限値を超えると、F
e”+ e −’p Fe2+の反応は生ぜず、電気が
流れない結果となる。
The present inventors have investigated how potential actually acts on the oxidation-reduction reaction of the Fe-based plating that we are currently targeting, and what the results will be if the potential is outside of that range. As a result of repeated experiments and studies, the following was clarified:
To reduce e"+ ions to Fe2+ ions, the potential of the cathode is set to (+0.770, 0411og CFe" / [F e") ) with respect to hydrogen electrode (VS, NHE).
V~(-0,44+o, o3gog[Fe''))V, (+0.53 with saturated calomel electrode reference (vs, 5CE)
+0.041og [:Fe”:]/[Fe2+))
V~(-0,68+0.031og[Fe”)])
It has been found that it is sufficient to maintain it at V. In this case, the upper limit value varies depending on the iron ion concentration ratio r=[Fe3+]/[Fe2+], as shown by the formula. Since the concentration ratio r in a normal plating bath is often less than 1, the value on the front side of the potential is usually +〇, 77V (v
s, NHE) need to be made more base. for example,〔
In the case of [Fe2+]-50g/l and [Fe3+]-5jj/l, it is necessary to make it more base than +0.73V (VS,,NHE). If such upper limit is exceeded, F
e"+ e -'p No reaction of Fe2+ occurs, resulting in no electricity flowing.

他方、下限値も数式で示したようにFe2+濃度に依存
し、通常のメッキ浴では−0,44V(vs。
On the other hand, the lower limit also depends on the Fe2+ concentration as shown in the formula, and in a normal plating bath -0.44V (vs.

NHE )よりも貴となる。電位をこの下限値より卑で
あると、Fe3+の還元反応(Fe3+十e→Fe2+
)のほかに、水素発生反応(H++e→’/2 H2)
と共に鉄の電析反応(F e”+2 e −+F6)が
生じてしまう問題がある。
NHE) becomes more noble. When the potential is less base than this lower limit, the reduction reaction of Fe3+ (Fe3+10e→Fe2+
), hydrogen generation reaction (H++e→'/2 H2)
At the same time, there is a problem that an iron electrodeposition reaction (F e''+2 e −+F6) occurs.

またFea+の還元反応は、拡散律速反応であるため、
実際的にも陰極でのメッキ液の撹拌が大きいほど好まし
いことも明らかとなった。
In addition, since the reduction reaction of Fea+ is a diffusion-limited reaction,
It has also become clear that, in practice, the greater the agitation of the plating solution at the cathode, the better.

本発明において、陰極として適宜のものを使用できるが
、エキスバンドメタル捷たはラスを電極基材とし、チタ
ン上に白金メッキや白金〜イリジウム酸化物系のコーテ
ィングを施したものは好適な例である。電極基材をエキ
スバンドメタルまたはラスとすると、電極面状でのメッ
キ液の拡散が大となυ、上記のFe”十e→Fe2+の
還元反応が促進される利点がある。また鉄板やラス状の
鉄を陰極として用いてもよいが、メッキ浴のpHが低い
場合には、Feの溶出があシ、これがために度々取替が
必要となり不利である。
In the present invention, any suitable material can be used as the cathode, but a suitable example is one in which the electrode base material is expanded metal or lath, and titanium is coated with platinum or a platinum to iridium oxide coating. be. When the electrode base material is expanded metal or lath, there is an advantage that diffusion of the plating solution on the electrode surface is large υ, and the above-mentioned reduction reaction of Fe''→Fe2+ is promoted. It is also possible to use iron in the form of iron as the cathode, but if the pH of the plating bath is low, the elution of Fe may occur, which is disadvantageous as it requires frequent replacement.

陽極としては、チタン等の耐食性材料に鉛やAgを1係
程度含む鉛合金をコーティングしたもの、あるいはチタ
ンやニオブ上に白金をクラッドしたものが望ましい。そ
の電極形状としては、エキスバンドメタル状、ラス状、
さらに間隔を置いた傾斜電極が、陽極で発生する酸素ガ
スを抜くために望ましい。
As the anode, it is desirable to use a corrosion-resistant material such as titanium coated with a lead alloy containing about 1% lead or Ag, or a platinum clad on titanium or niobium. The electrode shapes include expanded metal shape, lath shape,
Further spaced angled electrodes are desirable to remove oxygen gas generated at the anode.

隔膜としては、Fe2+イオンの透過を防止できる陰イ
オン交換膜隔膜であればよく、たとえばSelemio
n AMV (旭硝子(株)製、Ac1plex CA
−1(旭化成(株)製)、Neosepta AV −
4T (徳山曹達(株)製)を用いることができる。
The diaphragm may be any anion exchange membrane diaphragm that can prevent the permeation of Fe2+ ions, such as Selemio
n AMV (manufactured by Asahi Glass Co., Ltd., Ac1plex CA
-1 (manufactured by Asahi Kasei Corporation), Neosepta AV -
4T (manufactured by Tokuyama Soda Co., Ltd.) can be used.

ところで、本発明法の適用例としては、前述のようにメ
ツキセルと別体的に還元装置を設ける場合などである。
By the way, as an example of application of the method of the present invention, there is a case where a reducing device is provided separately from Metxel as described above.

メツキセルでは、バッチ式にメッキを行っていても、連
続的に移動する鋼板に対する連続メッキであっても、い
ずれでもよい。還元装置では、公知の定電位電解装置を
用いて、陰極の電位が所定範囲内に保持される。
At Metsukicell, plating can be performed either batchwise or continuously on continuously moving steel plates. In the reduction device, the potential of the cathode is maintained within a predetermined range using a known constant potential electrolyzer.

この場合、〔Fez+〕と〔Fe3+〕の濃度比を管理
しながら電解電位を設定する。陰極におけるにe3+に
対する還元反応に対して、陽極室を01〜ION程度の
高濃度のH2SO4で満すと陽極ではH2O−) 2 
H++ 1/202 + 2 eの反応が起る。したが
って、陽極室の上部に気液分離器を設けてガス抜きを行
いながら陽極室液を再使用するのがよい。さらに、本発
明に係る還元装置は、後述する実施例のように、陽極室
を兼用する多重方式を採ることもできる。
In this case, the electrolytic potential is set while controlling the concentration ratio of [Fez+] and [Fe3+]. For the reduction reaction of e3+ at the cathode, if the anode chamber is filled with H2SO4 at a high concentration of 01 to ION, H2O-)2 at the anode.
A reaction of H++ 1/202 + 2 e occurs. Therefore, it is preferable to provide a gas-liquid separator above the anode chamber to remove gas and reuse the anode chamber liquid. Furthermore, the reduction device according to the present invention can also adopt a multiplex system in which the anode chamber also serves as an embodiment, as described later.

本発明によれば、次述の実施例のように、Fe3+イオ
ンをFe2+イオンに容易かつ経済的に還元でき、メツ
キセルにおけるメッキ液のFe”+イオン濃度を抑えて
、良好なメッキを達成できる。
According to the present invention, as in the following embodiment, Fe3+ ions can be easily and economically reduced to Fe2+ ions, and the concentration of Fe"+ ions in the plating solution in Metxcell can be suppressed to achieve good plating.

次に実施例および比較例を示し本発明をさらに詳述する
Next, the present invention will be explained in further detail by showing examples and comparative examples.

実施例1 第1図に示す還元装置を用いてメッキ液の還元を行った
○電解槽としては、アクリル樹脂製の縦型2室式の電解
槽1を用い、陰イオン交換膜隔膜2により、陽極室3と
陰極室4とに分離した0陽極5および陰極6の背面に約
501πmの液空間を取り、陽極室3および陰極室4の
底部に、それぞれ供給メッキ液および供給H2SO4の
供給口を形成するとともに、陽極室3の上部に巾100
朋、高さ100 +nn、厚さ30 mmの気液分離室
7を設け、この分離室7の上部に酸素ガス出口を設けた
O 使用したメッキ浴としては、FeSO4・7H20が3
00g/l、znSO4・7H20が150.!i’/
J!!。
Example 1 The plating solution was reduced using the reduction apparatus shown in FIG. A liquid space of approximately 501πm is provided on the back of the anode 5 and cathode 6, which are separated into an anode chamber 3 and a cathode chamber 4, and supply ports for the plating solution and H2SO4 are provided at the bottoms of the anode chamber 3 and cathode chamber 4, respectively. At the same time, a width 100 mm is formed at the top of the anode chamber 3.
A gas-liquid separation chamber 7 with a height of 100 mm and a thickness of 30 mm was provided, and an oxygen gas outlet was provided at the top of the separation chamber 7.The plating bath used was FeSO4.7H20.
00g/l, znSO4・7H20 is 150. ! i'/
J! ! .

NazSO4が75 、!i’ / lの組成で、pH
=2で、Fe3+濃度として7.5 g/lのものであ
る。
NazSO4 is 75! With a composition of i'/l, the pH
= 2, and the Fe3+ concentration was 7.5 g/l.

かくして、定電位電解装置を用い、照合電極として飽和
カロメル電極を用いて、Ti基体のptクラッドエキス
バンドメタルからなる陰極の電位を+0.2Vに保持し
た。その結果、通電量に比例してメッキ液中のFe3+
濃度の低下がみら10〜25A/diであった。そして
メッキ液の循環量が多いほど還元量も多くなることが判
明した。またFe”濃度は、10分後には、0.5g/
lに低下し、好適に還元できることが明らかとなった〇 一方、陽極室液としては、N FL 2 S O4が1
009/IJで、pH=2の溶液を用いたが、陽極室で
は通電に伴ってH2S O4が生成し、pHが低下する
ため、pHを一定に保つために、当量分のNaOHを添
加した○ここでもし、陽極室液として高濃度のH2S 
04を用いる場合には、H2Oを添加し、生成したH2
 S 04に見合う量をオーバーフローさせて回収する
ようにしてもよい。
Thus, the potential of the cathode made of Ti-based PT clad expanded metal was maintained at +0.2 V using a constant potential electrolyzer and a saturated calomel electrode as a reference electrode. As a result, Fe3+ in the plating solution is proportional to the amount of current applied.
The decrease in concentration was found to be 10-25 A/di. It was also found that the greater the amount of plating solution circulated, the greater the amount of reduction. Moreover, the Fe” concentration was 0.5g/10 minutes later.
On the other hand, as the anode chamber liquid, N FL 2 SO4 was reduced to 1
In 009/IJ, a solution with pH = 2 was used, but in the anode chamber, H2SO4 is generated as electricity is applied and the pH decreases, so in order to keep the pH constant, an equivalent amount of NaOH was added. Here, if there is a high concentration of H2S in the anode chamber solution,
When using 04, H2O is added and the generated H2
An amount corresponding to S04 may be overflowed and recovered.

比較例1 実施例1に対して、電位を−0,7V (VS、5CE
)を変えて還元を試みた。この場合には、たしかにFe
3+の還元反応が生じたが、水素発生反応(H++e→
1/2 H2)も生じ、鉄の電析反応も生じ、陰極がF
eメッキされることとなった。
Comparative Example 1 Compared to Example 1, the potential was set to -0.7V (VS, 5CE
) and tried to reduce it. In this case, it is true that Fe
A reduction reaction of 3+ occurred, but a hydrogen generation reaction (H++e→
1/2 H2) also occurs, an iron electrodeposition reaction also occurs, and the cathode becomes F
It was decided that it would be e-plated.

電流密度としては、30A/di”が得られたが、Fe
3+を還元する電流効率の低下があった0比較例2 電位を+〇、50VIVs、 5CE)としてみた。し
かし、Fe3+の還元は生ぜず、電流が流れなかった。
A current density of 30 A/di” was obtained, but Fe
0 Comparative Example 2 There was a decrease in current efficiency for reducing 3+ The potential was set to +〇, 50VIVs, 5CE). However, reduction of Fe3+ did not occur and no current flowed.

実施例2 第2図に示すメツキセル10と第1図と同様な還元装置
とを組み合せた電気メツキシステムにより、電気メッキ
を実施するとともに、還元も行った。
Example 2 Electroplating was carried out and reduction was also carried out using an electroplating system that combined the Metsuki cell 10 shown in FIG. 2 and a reduction device similar to that shown in FIG. 1.

メツキセル10の陽極11としては、pb合金電極を用
い、陰極12としては鋼板を用い、鋼板12にFe7Z
nメツキを行った。メツキセルでのメッキ浴としては、
FeSO4・77H2O−300/LZnSO4・7H
20=150g/l、NazSO4”75g/lの組成
で、pH=2.50℃、Fe3+濃度が1 g/lのも
のを用いた。メッキの電流密度は40A/di”であっ
た。メッキに伴って、メツキセル内のFe3+濃度は増
大する傾向にあり、メッキ液の出側ではFe3+濃度が
2.5g/lであった0このメッキ液は、電解槽1の陰
極室4に導き、実施例1と同様な還元を実施した。ただ
、陰極の電位は、+ 0. I V (vs、ScE 
)に保持した0還元装置では、12A/diの電流密度
の電気量が流れ、メッキ浴のFe3+濃度は1 g/l
に低下した。この還元済のメッキ液は、メッキ浴タンク
20に貯めた後、メツキセル10に戻した。また還元装
置の陽極5としては、pb多孔質板を用いた。陽極室で
は、H2Oが電気分解され、02ガスが発生し、H+が
生成され、このH”が隔膜2を透過子るSO42−と反
応しH2SO4が生成される。そこで、5042−イオ
ンのバランスを保つために、陽極室3で生成したH2S
O4をメッキ浴室4ヘリターンさせねばならないが、本
例では陽極室液として高濃度のHzSO4を用いている
関係上、陽極室液を一旦pH調整槽3oでH2Oの添加
によりpHを調整のうえ、メッキ浴タンク2゜に導き、
そこでF e + Z nの粉粒状物を添加し、それら
の金属溶解の後、メツキセル10に導いた。この場合、
金属の溶解は、メッキによって系外に持ち出される金属
イオンの供給源となる。
A PB alloy electrode is used as the anode 11 of the Metsuki cell 10, a steel plate is used as the cathode 12, and the steel plate 12 is made of Fe7Z.
n-metsuki was performed. As a plating bath in Metsukicel,
FeSO4・77H2O-300/LZnSO4・7H
The composition used was 20=150 g/l, NazSO4" 75 g/l, pH=2.50° C., and Fe3+ concentration of 1 g/l. The current density of plating was 40 A/di". Along with plating, the Fe3+ concentration within the Metxel tends to increase, and the Fe3+ concentration was 2.5 g/l on the outlet side of the plating solution.This plating solution is led to the cathode chamber 4 of the electrolytic cell 1, A reduction similar to Example 1 was carried out. However, the potential of the cathode is +0. I V (vs, ScE
), electricity with a current density of 12 A/di flows, and the Fe3+ concentration in the plating bath is 1 g/l.
It declined to . This reduced plating solution was stored in the plating bath tank 20 and then returned to the Metxel 10. Furthermore, a PB porous plate was used as the anode 5 of the reduction device. In the anode chamber, H2O is electrolyzed, 02 gas is generated, and H+ is generated. This H" reacts with SO42- passing through the diaphragm 2 to generate H2SO4. Therefore, the balance of 5042- ions is adjusted. To maintain the H2S generated in the anode chamber 3
O4 must be returned to the plating bath 4, but in this example, since high concentration HzSO4 is used as the anode chamber solution, the pH of the anode chamber solution is adjusted by adding H2O in the pH adjustment tank 3o, and then the plating is carried out. Guide it to the bath tank 2 degrees,
Therefore, powder and granules of Fe + Zn were added, and after the metals were melted, they were introduced into Metxel 10. in this case,
The dissolution of metal becomes a source of metal ions that are carried out of the system by plating.

なお、SO42−の隔膜2に対する透過に対して、コレ
ニ見合う量を陰極室4またはメツキセル1゜内にFeS
O4・7H20の形で供給することも可能である。
In addition, an amount of FeS corresponding to the permeation of SO42- through the diaphragm 2 is placed in the cathode chamber 4 or within 1° of the mesh cell.
It is also possible to supply it in the form of O4.7H20.

実施例3 第1図に示す2室型電解槽を改造して、第3図に示す3
室型電解槽1′を用意し、中間を陽極室3、両側を陰極
室4.4とし、陽極室3を左右の陰極室4.4に対して
共有する構造の還元装置によシ還元を行った。
Example 3 The two-chamber electrolytic cell shown in Fig. 1 was modified to produce the electrolytic cell shown in Fig. 3.
A chamber-type electrolytic cell 1' is prepared, and an anode chamber 3 is provided in the middle, and cathode chambers 4.4 are provided on both sides. Reduction is carried out using a reduction device having a structure in which the anode chamber 3 is shared by the left and right cathode chambers 4.4. went.

陰極6〜隔膜2〜陽極50間隔はそれぞれ同一とした。The intervals between the cathode 6, the diaphragm 2, and the anode 50 were the same.

使用したメッキ浴としては、FeSO47H20= 3
00g/CZn5O4H7H20”150jj/l。
The plating bath used was FeSO47H20=3
00g/CZn5O4H7H20”150jj/l.

NNa2S04=75/lの組成で、pH=2、Fe3
+濃度は7.5 g/lのものである。また定電位電解
装置1台を兼用化し、その陰極を左右の陰極室の電極に
並列に接続し、陽極を中間の陽極室の電極に接続した。
Composition of NNa2S04 = 75/l, pH = 2, Fe3
+ concentration is of 7.5 g/l. In addition, one constant potential electrolysis device was used, and its cathode was connected in parallel to the electrodes of the left and right cathode chambers, and the anode was connected to the electrode of the intermediate anode chamber.

この際、左に位置する陰極の電位を、別途電圧計を用い
、陰極室中に設置した飽和カロメル電極に対して、電位
差を測定する条件で、定電位電解装置を用いて電流を流
した。
At this time, a current was applied to the cathode located on the left using a constant potential electrolyzer under conditions that measured the potential difference between the saturated calomel electrode and the saturated calomel electrode installed in the cathode chamber using a separate voltmeter.

陰極の電位が+〇、2V (vs、5cE) トナルヨ
ウ、定電位電解装置をコントロールした結果、メッキ液
の流速およびFe3+濃度の変動に伴って、電流密度が
10〜25A/dmの範囲で変動した。実施例1と同様
のメッキ液の流速の下では、半分の時間つ1す5分後に
、実施例と同一のFe3+濃度つまり 0.59/12
に達した。
The potential of the cathode was +〇, 2V (vs, 5cE). As a result of controlling the constant potential electrolyzer, the current density varied in the range of 10 to 25 A/dm as the flow rate of the plating solution and the Fe3+ concentration varied. . Under the same plating solution flow rate as in Example 1, after half the time, 1.5 minutes, the Fe3+ concentration was the same as in Example, i.e. 0.59/12.
reached.

本例では、陽極室を兼用としているので、構造が簡素と
なる。また、本例の3室型に代えて、さらに多重家型と
することも可能である。
In this example, since the anode chamber is also used, the structure is simple. Further, instead of the three-room type of this example, it is also possible to use a multiple-house type.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は、それぞれ実施例1〜3に用いた実験
装置の概要図である。 1.1′・・電解槽  2・・陰イオン交換膜隔膜3・
・陽極室  4・・陰極室(メッキ浴室)5・・陽極 
 6・・陰極  1o・・メツキセル11・・陽極  
12・・陰極 第1図 第3図 第2図
FIGS. 1 to 3 are schematic diagrams of the experimental apparatus used in Examples 1 to 3, respectively. 1.1'... Electrolytic cell 2... Anion exchange membrane diaphragm 3.
・Anode room 4...Cathode room (plating bathroom) 5...Anode
6...Cathode 1o...Metsukicell 11...Anode
12... Cathode Figure 1 Figure 3 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)  Fe系メッキの際にメッキ浴中のFe3+イ
オンをFe2+イオンに還元するに当って、陰イオン交
換膜隔膜によりメッキ浴室と陽極室とを分離し、メッキ
浴室には陰極を陽極室には不溶性陽極をそれぞれ設け、
前記陰極の電位を水素電極基準(VS、NHE)で(+
0.77−1−0.041og(Fe”)]/CFe”
))V〜(−0,44−1−0,03log CF e
2+〕) V、飽和カロメル電極基準(vs、SCE 
) テ(+0.53+0.04Aog[:Fe3+)/
CF e” ) )V〜(−0,68+0.03 /l
og [F e”) )Vに保持して電解を行い、陰極
においてFe3+イオンをFe2+イオンに還元する(
ただし、前記〔Fe2+〕、〔Fe3+〕は金Rイ、t
 ン(7) 濃度を示す)ことを特徴とする金属イオン
の還元方法。
(1) When reducing Fe3+ ions in the plating bath to Fe2+ ions during Fe-based plating, the plating bath and anode chamber are separated by an anion exchange membrane diaphragm, and the cathode is placed in the anode chamber in the plating bath. are each provided with an insoluble anode,
The potential of the cathode is set to (+) with reference to the hydrogen electrode (VS, NHE).
0.77-1-0.041og(Fe”)]/CFe”
))V~(-0,44-1-0,03log CF e
2+]) V, saturated calomel electrode reference (vs, SCE
) Te(+0.53+0.04Aog[:Fe3+)/
CF e”) )V~(-0,68+0.03/l
og [F e”)) to perform electrolysis and reduce Fe3+ ions to Fe2+ ions at the cathode (
However, the above [Fe2+] and [Fe3+] are gold R, t
(7) A method for reducing metal ions, characterized by: (7) indicating a concentration).
JP13593882A 1982-08-04 1982-08-04 Reducing method of metallic ions Pending JPS5925991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13593882A JPS5925991A (en) 1982-08-04 1982-08-04 Reducing method of metallic ions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13593882A JPS5925991A (en) 1982-08-04 1982-08-04 Reducing method of metallic ions

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP15585385A Division JPS6152398A (en) 1985-07-15 1985-07-15 Out-of-system reduction treatment of metallic ion
JP15585485A Division JPS6152399A (en) 1985-07-15 1985-07-15 Reduction of metallic ion

Publications (1)

Publication Number Publication Date
JPS5925991A true JPS5925991A (en) 1984-02-10

Family

ID=15163346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13593882A Pending JPS5925991A (en) 1982-08-04 1982-08-04 Reducing method of metallic ions

Country Status (1)

Country Link
JP (1) JPS5925991A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6152399A (en) * 1985-07-15 1986-03-15 Sumitomo Metal Ind Ltd Reduction of metallic ion
JPS63114989A (en) * 1986-10-31 1988-05-19 Asahi Glass Co Ltd Treatment of plating solution
JP2006312785A (en) * 2005-05-05 2006-11-16 Headway Technologies Inc Electroplating method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6152399A (en) * 1985-07-15 1986-03-15 Sumitomo Metal Ind Ltd Reduction of metallic ion
JPH0514800B2 (en) * 1985-07-15 1993-02-25 Sumitomo Metal Ind
JPS63114989A (en) * 1986-10-31 1988-05-19 Asahi Glass Co Ltd Treatment of plating solution
JP2006312785A (en) * 2005-05-05 2006-11-16 Headway Technologies Inc Electroplating method

Similar Documents

Publication Publication Date Title
US5162079A (en) Process and apparatus for control of electroplating bath composition
JP4451445B2 (en) Method and apparatus for electrowinning copper using ferrous / ferric anode reactions
RU2302481C2 (en) Electrolysis cell for compensation for concentration of metal ions in electrodeposition processes
Spitzer et al. Selective electrochemical recovery of gold and silver from cyanide aqueous effluents using titanium and vitreous carbon cathodes
US5173170A (en) Process for electroplating metals
US20030000842A1 (en) Method and device for the regulation of the concentration of metal ions in an electrolyte and use thereof
DE68904002T2 (en) METHOD FOR ELECTROLYTICALLY COATING A METAL SUBSTRATE IN THE FORM OF A STRIP AND DEVICE THEREFOR.
EP0909344A1 (en) Steel pickling process in which the oxidation of the ferrous ion formed is carried out electrolytically
US4279711A (en) Aqueous electrowinning of metals
JPS5925991A (en) Reducing method of metallic ions
JPS6338436B2 (en)
EP0461271A1 (en) Process for continuously applying electro-deposited manganese or manganese alloy coating to steel plate
US3799850A (en) Electrolytic process of extracting metallic zinc
JPS6152398A (en) Out-of-system reduction treatment of metallic ion
JPS6152399A (en) Reduction of metallic ion
JP4242248B2 (en) Tin plating method using insoluble anode
DE102009004155A1 (en) Process and apparatus for regenerating peroxodisulfate pickling solutions
JPS5873783A (en) Electrolytic extraction of massive zinc with hydrogen anode
US5534131A (en) Process for heavy metals electrowinning
JPS5893888A (en) Supplying method for metallic ion in electroplating
Wilcox et al. The kinetics of electrode reactions III practical aspects
JPH09111492A (en) Method for continuously and electroplating metallic sheet
JPS5931881A (en) Electroplating method
JPH0841695A (en) Reduction of ferric ion in plating solution
JPH052757B2 (en)