JPH0514800B2 - - Google Patents

Info

Publication number
JPH0514800B2
JPH0514800B2 JP60155854A JP15585485A JPH0514800B2 JP H0514800 B2 JPH0514800 B2 JP H0514800B2 JP 60155854 A JP60155854 A JP 60155854A JP 15585485 A JP15585485 A JP 15585485A JP H0514800 B2 JPH0514800 B2 JP H0514800B2
Authority
JP
Japan
Prior art keywords
ions
cathode
potential
plating
anode chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60155854A
Other languages
Japanese (ja)
Other versions
JPS6152399A (en
Inventor
Nobukazu Suzuki
Sadatomo Fujita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP15585485A priority Critical patent/JPS6152399A/en
Publication of JPS6152399A publication Critical patent/JPS6152399A/en
Publication of JPH0514800B2 publication Critical patent/JPH0514800B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、Fe,Fe−ZnまたはFe−Ni等のFe
系メツキにおいて、Fe3+イオンをFe2+イオンに
還元する金属イオンの還元方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to Fe, Fe-Zn or Fe-Ni.
This invention relates to a metal ion reduction method for reducing Fe 3+ ions to Fe 2+ ions in system plating.

〔従来の技術〕[Conventional technology]

一般に、Fe系メツキにおいて、メツキ浴中の
Fe2+イオンはきわめて不安定であり、メツキ液
中の溶存酸素により(1)式の反応をもつて、また陽
極表面での電極反応により(2)式の反応をもつて、
Fe2+イオンが酸化されてFe3+イオンが生成する。
Generally, in Fe-based plating, the
Fe 2+ ions are extremely unstable, and they undergo the reaction of equation (1) due to dissolved oxygen in the plating solution, and the reaction of equation (2) due to the electrode reaction on the anode surface.
Fe 2+ ions are oxidized to generate Fe 3+ ions.

Fe2++1/4O2+1/2H2O→Fe3++OH- …(1) Fe2+→Fe3++e …(2) その結果、メツキ浴中のFe2+濃度の変化によ
り、特にFe系合金メツキの場合において、合金
組成が変化し均一な被膜が得られないとともに、
電流効率が低下するなどの問題点を招く。
Fe 2+ +1/4O 2 +1/2H 2 O→Fe 3+ +OH - …(1) Fe 2+ →Fe 3+ +e …(2) As a result, due to changes in Fe 2+ concentration in the plating bath, especially In the case of Fe-based alloy plating, the alloy composition changes and a uniform coating cannot be obtained, and
This leads to problems such as a decrease in current efficiency.

そこで、かかる点に対処するために、Fe2+
酸化を防止する手段、あるいはFe3+イオンの生
成量に相当する量Fe3+イオンの還元または除去
手段として次記の技術がある。
In order to deal with this problem, the following techniques are available as a means for preventing the oxidation of Fe 2+ or as a means for reducing or removing Fe 3+ ions in an amount corresponding to the amount of Fe 3+ ions produced.

(1) 可溶性陽極(Fe系陽極)を用いる方法。(1) Method using a soluble anode (Fe-based anode).

(2) 生成したFe3+をFe粉またはFe粒等の溶解に
より還元し、Fe2+を得てメツキ浴室へ供給する
方法。
(2) A method in which the generated Fe 3+ is reduced by dissolving Fe powder or Fe grains, etc. to obtain Fe 2+ and supply it to the bathroom.

(3) 溶媒抽出法等でFe3+を除去する方法。(3) Method of removing Fe 3+ by solvent extraction method etc.

(4) 不溶性陽極を陰イオン交換膜隔膜によりメツ
キ浴室とは分離した陽極室に設置しながらメツキ
する方法。
(4) A method of plating while installing an insoluble anode in an anode chamber separated from the plating bath by an anion exchange membrane diaphragm.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし(1)の方法では、電極反応(2)式は避けるこ
とができるけれども、(1)式の反応は避けることが
できず、結局ある量のFe3+イオンはキレート樹
脂による吸着等により除去せねばならず、また陽
極効率と陰極効率との差に相当するメツキ金属イ
オンが過剰となり、浴組成を一定に保つことがき
わめて困難となるばかりでなく、陽極の消耗の度
に陽極を取替えねばならず、連続メツキラインを
考えた場合致命的であり、さらに30A/dm2以上
の高電流密度条件では、Fe陽極での不働態化現
象を生じ操業が不可能となる欠点がある。
However, in method (1), although the electrode reaction equation (2) can be avoided, the reaction of equation (1) cannot be avoided, and a certain amount of Fe 3+ ions are eventually removed by adsorption with the chelate resin, etc. Moreover, the amount of plating metal ions corresponding to the difference between anode efficiency and cathode efficiency becomes excessive, making it extremely difficult to maintain a constant bath composition, and the anode must be replaced every time it wears out. This is fatal when considering a continuous plating line, and furthermore, under high current density conditions of 30 A/dm 2 or more, a passivation phenomenon occurs at the Fe anode, making operation impossible.

(2)の方法は、Fe粉または粒の溶解速度が低く、
還元能力が十分でなく、そしてH+によるFeの溶
解反応の寄与が大きく、したがつて必要量の
Fe3+を還元する場合には、Fe2+イオンが供給過
剰となり、これを避けるにはメツキ液を大量にド
ラツクアウトせねばならない。また、この方法は
次記の(3)〜(5)式の反応に着目するものである。
Method (2) has a low dissolution rate of Fe powder or grains,
The reduction ability is not sufficient, and the contribution of Fe dissolution reaction by H + is large, so the required amount is
When Fe 3+ is reduced, Fe 2+ ions become oversupplied, and to avoid this, a large amount of plating solution must be dragged out. Moreover, this method focuses on the reactions of the following formulas (3) to (5).

アノード反応として、 Fe→Fe2++2e …(3) カソード反応として、(4)(5)式の競争反応を生じ
る。
As an anode reaction, Fe→Fe 2+ +2e...(3) As a cathode reaction, competitive reactions of formulas (4) and (5) occur.

Fe3++e→Fe2+ …(4) H++e→2/1H2 (5) そして、(5)式の反応が支配的であるため、必要
量のFe3+を還元するには、(3)式の反応を高める
必要がある。その結果、メツキ浴中にFe2+が供
給過剰となり、メツキ浴液をドラツクアウトせね
ばならないのである。
Fe 3+ +e→Fe 2+ …(4) H + +e→2/1H 2 (5) And since the reaction of formula (5) is dominant, in order to reduce the required amount of Fe 3+ , It is necessary to enhance the reaction of equation (3). As a result, Fe 2+ is oversupplied in the plating bath, and the plating bath solution must be dragged out.

(3)の方法はランニングコストが嵩むとともに、
Fe2+の供給に際して、硫酸第1鉄については
SO4 2-のバランスの面から用いることができず、
またFe粉等では溶解し難いため、Fe2+の供給不
足となる問題がある。
Method (3) increases running costs and
When supplying Fe 2+ , regarding ferrous sulfate,
It cannot be used due to the balance of SO 4 2- ,
Furthermore, since it is difficult to dissolve Fe powder, etc., there is a problem of insufficient supply of Fe 2+ .

これに対して、(4)式の方法では、不溶性陽極を
用いているので、高電流密度でのメツキが可能
で、浴組成のコントロールがが容易であり、さら
に原則的に陽極の取替が不要である利点がある。
また陰イオン交換膜隔膜により陽極室とメツキ浴
室とに分離し、Fe2+イオンの陽極室への移動を
極力防止するから、陽極でのFe3+イオンの生成
量を少なくなる効果が期待でき、(1)〜(3)の方法と
比較すればはるかに実用的なものである。しかし
ながら、連続メツキを行う場合、極間距離を通常
電力効率などを考えて小さくしている関係もあつ
て、走行するストリツプの振れ等によりそれが隔
膜を損傷する危険性がある。
On the other hand, the method of equation (4) uses an insoluble anode, which allows plating at high current density, makes it easy to control the bath composition, and, in principle, does not require replacement of the anode. It has the advantage of not being necessary.
In addition, the anion exchange membrane separates the anode chamber and the plating bath, preventing Fe 2+ ions from moving to the anode chamber as much as possible, which can be expected to reduce the amount of Fe 3+ ions produced at the anode. , it is much more practical than methods (1) to (3). However, when continuous plating is performed, the distance between the poles is usually kept small in consideration of power efficiency, etc., and there is a risk that the diaphragm will be damaged by vibrations of the running strip.

したがつて、本発明は、メツキセルにおいてた
とえ隔膜を使用しなくとも、良好なメツキを達成
できる連続的な金属イオンの還元方法を提供する
ことを課題としている。
Therefore, an object of the present invention is to provide a continuous metal ion reduction method that can achieve good plating in Metxel even without using a diaphragm.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題は、Fe系メツキの際にメツキセル中
のFe3+イオンをFe2+イオンに還元するに当つて、 陰極室から陽極室に硫酸イオンを透過しFe2+
イオンを透過せず、かつ陽極室から陰極室に水素
イオンを透過する陰イオン交換膜隔膜によりメツ
キ浴室と陽極室とを分離し、メツキ浴室には陰極
室を陽極室には不溶性陽極をそれぞれ設けて還元
装置を構成し、 前記陰極の電位を水素電極基準(vs.NHE)で
(+0.77+0.04log〔Fe3+〕/〔Fe2+〕)Vよりも卑
の電位、飽和カロメル電極基準(vs.SCE)で
(+0.53+0.04log〔Fe3+〕/〔Fe2+〕)Vよりも卑
の電位、ならびに水素電極基準(vs.NHE)で
(−0.44+0.03log〔Fe2+〕)Vよりも貴の電位、飽
和カロメル電極基準(vs.SCE)で(−0.63+
0.03log〔Fe2+〕)Vよりも貴の電位に保持して、
陰極室において鉄の電析を防止する電位条件の下
で、連続的に電解を行い、陰極においてFe3+
オンをFe2+イオンに連続的に還元し(ただし、
前記〔Fe3+〕,〔Fe2+〕は金属イオンの濃度を示
す)、 前記陽極室からFe3+イオンを含む液を取出し
た後、Feを含む粉粒状物の溶解を図り、Fe3+
オンをFe2+イオンに還元した後、メツキセルに
メツキ液を戻すことで解決できる。
The above problem is that when reducing Fe 3+ ions in the cell to Fe 2+ ions during Fe-based plating, sulfate ions permeate from the cathode chamber to the anode chamber and Fe 2+
The plating bath and anode chamber are separated by an anion exchange membrane membrane that does not allow ions to pass through, but allows hydrogen ions to pass from the anode chamber to the cathode chamber.The plating bath is equipped with a cathode chamber, and the anode chamber is equipped with an insoluble anode. The potential of the cathode is set to (+0.77+0.04log [Fe 3+ ]/[Fe 2+ ]) based on a hydrogen electrode (vs.NHE), which is less base than V, and based on a saturated calomel electrode. (vs. SCE) at (+0.53+0.04log[Fe 3+ ]/[Fe 2+ ]) potential more base than V, and hydrogen electrode reference (vs.NHE) at (−0.44+0.03log[Fe 2 + ]) Potential nobler than V, with saturated calomel electrode reference (vs.SCE) (−0.63+
0.03log [Fe 2+ ]) held at a potential nobler than V,
Electrolysis is performed continuously in the cathode chamber under potential conditions that prevent iron electrodeposition, and Fe 3+ ions are continuously reduced to Fe 2+ ions at the cathode (however,
(The above [Fe 3+ ] and [Fe 2+ ] indicate the concentration of metal ions). After taking out the liquid containing Fe 3+ ions from the anode chamber, the powdery material containing Fe is dissolved, and Fe 3 This can be solved by returning the Metsuki solution to the Metsuki Cell after reducing the + ions to Fe 2+ ions.

〔作用〕[Effect]

Feイオンの酸化還元反応は(6)式であらわされ
る。
The redox reaction of Fe ions is expressed by equation (6).

Fe2+ Fe3++e …(6) 一般に、酸化還元反応はその電位に依存するこ
と自体は知られている。
Fe 2+ Fe 3+ +e...(6) It is generally known that redox reactions depend on their potential.

本発明者らは、いま対象としているFe系メツ
キにあつて、その酸化還元反応に対して電位がは
たしてどのように作用するものであるか、そして
その電位範囲外であるとどのような結果を招くか
について実験と考究を繰に返したところ次のこと
が明らかとなつた。
The present inventors have investigated how potential actually acts on the oxidation-reduction reaction of the Fe-based plating that we are currently targeting, and what the results will be if the potential is outside of that range. As a result of repeated experiments and studies, the following became clear:

すなわち、(6)式において左方への反応、すなわ
ちFe3+イオンをFe2+イオンに還元するには、陰
極の電位を水素電極基準(vs.NHE)で(+0.77
+0.04log〔Fe3+〕/〔Fe2+〕)Vよりも卑の電位、
(−0.44+0.03log〔Fe2+〕)Vよりも貴の電位、飽
和カロメル電極基準(vs.SCE)で(+0.53+
0.04log〔Fe3+〕/〔Fe2+〕)Vよりも卑の電位、
(−0.68+0.03log〔Fe2+〕)Vよりも貴の電位に保
持すればよいことが判明した。
In other words, in order to react to the left in equation (6), that is, to reduce Fe 3+ ions to Fe 2+ ions, the potential of the cathode must be set to (+0.77) based on the hydrogen electrode (vs.NHE).
+0.04log [Fe 3+ ]/[Fe 2+ ]) Potential less base than V,
(−0.44+0.03log [Fe 2+ ]) Potential nobler than V, saturated calomel electrode reference (vs.SCE) (+0.53+
0.04log [Fe 3+ ]/[Fe 2+ ]) Potential less base than V,
It has been found that it is sufficient to hold the potential at a potential more noble than (−0.68+0.03log[Fe 2+ ])V.

そして、この場合、上限値は数式で示したよう
に、鉄イオン濃度比r=〔Fe3+〕/〔Fe2+〕によ
つて、変動する。通常メツキ浴での濃度比rは1
以下となることが多いので、通常は電位の貴側の
値は+0.77V(vs.NHE)より卑とする必要があ
る。たとえば、(Fe2+〕=50g/、〔Fe3+〕=5g/
の場合には、+0.73V(vs.NHE)より卑とする
必要がある。もしかかる上限値を越えると、
Fe3++e→Fe2+の反応は生ぜず、電気が流れな
い結果となる。
In this case, the upper limit value varies depending on the iron ion concentration ratio r=[Fe 3+ ]/[Fe 2+ ], as shown in the formula. The concentration ratio r in a normal plating bath is 1
Usually, the value on the noble side of the potential needs to be less than +0.77V (vs.NHE). For example, (Fe 2+ ] = 50g/, [Fe 3+ ] = 5g/
In this case, it needs to be lower than +0.73V (vs.NHE). If such upper limit is exceeded,
The Fe 3+ +e→Fe 2+ reaction does not occur, resulting in no electricity flowing.

他方、下限値も数式で示したようにFe2+濃度
に依存し、通常のメツキ浴では−0.44V(vs.
NHE)よりも貴となる。電位がこの下限値より
卑であると、Fe3+の還元反応(Fe3++e→Fe2+
のほかに、本発明においては、陰イオン交換膜隔
膜として、第1図および第2図に示すように、水
素イオンを透過する陰イオン交換膜隔膜を用いて
おり、この隔膜を通して陰極室に移行した水素イ
オンによる水素発生反応(H++e→1/2H2
と共に鉄の電析反応(Fe2+2e→Fe)が生じてし
まう問題がある。
On the other hand, the lower limit also depends on the Fe 2+ concentration as shown in the formula, and in a normal plating bath it is −0.44V (vs.
NHE). When the potential is less noble than this lower limit, the reduction reaction of Fe 3+ (Fe 3+ +e → Fe 2+ )
In addition to this, in the present invention, as shown in FIGS. 1 and 2, an anion exchange membrane diaphragm that transmits hydrogen ions is used as an anion exchange membrane diaphragm, and hydrogen ions are transferred to the cathode chamber through this diaphragm. Hydrogen generation reaction by hydrogen ions (H + +e → 1/2H 2 )
At the same time, there is a problem that an iron electrodeposition reaction (Fe 2 +2e→Fe) occurs.

すなわち水素発生反応や鉄の電析反応が生じた
場合には、全電気量のうち、Fe3+の還元反応に
消費される以外の電気量として、これらの反応に
消費されるために、還元効率が通常100%である
のに対し、60〜80%程度以下に低下する問題が生
じる。
In other words, when a hydrogen generation reaction or an iron electrodeposition reaction occurs, the amount of electricity other than that consumed in the Fe 3+ reduction reaction out of the total electricity is consumed in these reactions, so the reduction While the efficiency is normally 100%, a problem arises in which the efficiency drops to about 60 to 80% or less.

また、さらにメツキ浴室中に固定された陰極に
メツキがなされ、陰極のメツキがビルドアツプ
し、陰極と陰イオン交換膜との間隔が小さくな
り、メツキ液の流速等の問題が生じる。
Further, the cathode fixed in the plating bath is plated, the plating on the cathode builds up, the gap between the cathode and the anion exchange membrane becomes smaller, and problems such as the flow rate of the plating solution arise.

したがつて、上記2点の大きな問題が故に、下
限値が限定される。
Therefore, due to the two major problems mentioned above, the lower limit value is limited.

またFe3+の還元反応は、拡散律速度反応であ
るため、実際的にも陰極でのメツキ液の撹拌が大
きいほど好ましいことも明らかとなつた。
Furthermore, since the reduction reaction of Fe 3+ is a diffusion-controlled reaction, it has also become clear that, in practice, the greater the stirring of the plating solution at the cathode, the better.

さらに、本発明では、メツキセルと別体的に還
元装置を設置し、メツキ液をメツキセルから抜き
出して還元装置においてメツキ液中のFe3+イオ
ンをFe2+イオンに還元した後、Fe3+イオンが少
ないメツキ液をメツキセルに戻すこととしてい
る。したがつて、優れた性状のメツキをメツキセ
ル内で行うことができる。
Furthermore, in the present invention, a reduction device is installed separately from the Metsuki cell, the plating solution is extracted from the Metsuki cell, the Fe 3+ ions in the plating solution are reduced to Fe 2+ ions in the reduction device, and then the Fe 3+ ions are converted into Fe 3+ ions. The Metsuki liquid with a low amount is returned to Metsuki Cell. Therefore, plating with excellent properties can be performed within the plating cell.

しかしながら、本発明にしたがつて、陰イオン
交換膜隔膜を用いてFe2+イオンの陽極室への移
行を防止しているが、微量は透過して陽極室へ移
行し、この陽極室で酸化されてFe3+イオンが生
成する。そこで、陽極室からFe3+イオンを含む
液を取出した後、Feを含む粉粒状物の溶解を図
り、Fe3+イオンをFe2+イオンに還元した後、メ
ツキセルにメツキ液を戻すことで、メツキセル中
ではFe3+イオンが実質的に存在しない状態でメ
ツキを行うことができ、よりメツキ性状を優れた
ものとすることができる。
However, in accordance with the present invention, although an anion exchange membrane membrane is used to prevent Fe 2+ ions from migrating to the anode chamber, a small amount of Fe 2+ ions permeate and migrate to the anode chamber, where they are oxidized. and Fe 3+ ions are generated. Therefore, after removing the liquid containing Fe 3+ ions from the anode chamber, we attempted to dissolve the powdery material containing Fe, reduce the Fe 3+ ions to Fe 2+ ions, and then return the liquid to the Metsuki cell. , plating can be performed in a state in which Fe 3+ ions are substantially absent in the plating cell, and the plating properties can be made even more excellent.

しかも、陽極室からの液を回収してメツキセル
に返送するので、メツキ液の有効利用を図ること
ができる。
Moreover, since the liquid from the anode chamber is collected and returned to the plating cell, the plating liquid can be used effectively.

他方で、陽極室からの液によりFeを含む粉粒
状物の溶解を図り、その液をメツキセルに戻す。
したがつて、メツキすべき金属イオンを補充で
き、たとえば高価なFeSO4やZnSO4を新たに補充
する場合に比較して、経済的となる。
On the other hand, the liquid from the anode chamber is used to dissolve the Fe-containing powder and granules, and the liquid is returned to the Metxel.
Therefore, the metal ions to be plated can be replenished, which is more economical than, for example, newly replenishing expensive FeSO 4 or ZnSO 4 .

また、鉄板などの溶解でなく、Feを含む粉粒
状物の溶解を図るものであるから、溶解速度が速
く、必要なメツキ金属をコンパクトな装置によつ
て補充できる。
Furthermore, since the melting process is aimed at dissolving powdery materials containing Fe, rather than melting iron plates, the melting speed is fast and the necessary plating metal can be replenished using a compact device.

〔発明の具体例〕 本発明において、陰極として適宜のものを使用
できるが、エキスパンドメタルまたはラスを電極
基材とし、チタン上の白金メツキや白金〜イリジ
ウム酸化物系のコーテイングを施したものは好適
な例である。電極基材をエキスパンドメタルまた
はラスとすると、電極面状での、メツキ液の拡散
が大となり、上記のFe3++e→Fe2+の還元反応
が促進される利点がある。また鉄板やラス状の鉄
を陰極として用いてもよいが、メツキ浴のPHが低
い場合には、Feの溶出があり、これがため度々
取替が必要となり不利である。
[Specific Examples of the Invention] In the present invention, any suitable material can be used as the cathode, but it is preferable to use expanded metal or lath as the electrode base material, and use platinum plating on titanium or coating of platinum to iridium oxide. This is an example. When the electrode base material is made of expanded metal or lath, there is an advantage that the plating solution is diffused more widely on the electrode surface, and the above-mentioned reduction reaction of Fe 3+ +e→Fe 2+ is promoted. Further, an iron plate or lath-like iron may be used as the cathode, but if the pH of the plating bath is low, Fe will be eluted, which is disadvantageous as it will require frequent replacement.

陽極としては、チタン等の耐食性材料に鉛や
Agを1%程度含む鉛合金をコーテイングしたも
の、あるいはチタンやニオブ上に白金をクラツド
したものが望ましい。その電極形状としては、エ
キスパンドメタル状、ラス状、さらに間隔を置い
た傾斜電極が、陽極で発生する酸素ガスを抜くた
めに望ましい。
For the anode, use lead or other corrosion-resistant materials such as titanium.
A material coated with a lead alloy containing about 1% Ag, or a material made of platinum clad on titanium or niobium is desirable. The electrode shape is preferably an expanded metal shape, a lath shape, or a tilted electrode with intervals in order to remove oxygen gas generated at the anode.

本発明に用いる隔膜としては、陰極室から陽極
室に硫酸イオンを透過しFe2+イオンを透過せず、
かつ陽極室から陰極室に水素イオンを透過する陰
イオン交換膜隔膜であればよく、たとえば
Seleimion AMV(旭硝子(株)製)、Aciplex CA―
1(旭化成(株)製)、Neosepta AV―4T(徳山曹達
(株)製)を用いることができる。
The diaphragm used in the present invention is one that allows sulfate ions to pass from the cathode chamber to the anode chamber, but does not allow Fe 2+ ions to pass through.
Any anion exchange membrane diaphragm that also allows hydrogen ions to pass from the anode chamber to the cathode chamber may be used, for example,
Seleimion AMV (manufactured by Asahi Glass Co., Ltd.), Aciplex CA—
1 (manufactured by Asahi Kasei Corporation), Neosepta AV-4T (Tokuyama Soda)
Co., Ltd.) can be used.

一方、隔膜の材質として、陽イオン交換膜を用
いることも考えられるが、陽イオン交換膜を用い
た場合、下記の問題点が生じる。
On the other hand, it is possible to use a cation exchange membrane as the material for the diaphragm, but when a cation exchange membrane is used, the following problems arise.

すなわち、陽イオン交換膜の選択透過性は陽イ
オンであるため、電解液中の電気の流れを荷なう
イオンとしては陽極室にH2SO4溶液や、Na2SO4
溶液を用いた場合、陽極室中の主としてH+イオ
ンやさらにNa+等が選択的に透過するので、メツ
キ浴室中のPH低下が大きいと同時にNa+イオンの
濃縮等の問題が生じる。
In other words, since the selective permselectivity of the cation exchange membrane is cations, the ions responsible for the flow of electricity in the electrolyte are H 2 SO 4 solution and Na 2 SO 4 in the anode chamber.
When a solution is used, mainly H + ions in the anode chamber and also Na + etc. selectively permeate, resulting in problems such as a large drop in pH in the plating bath and concentration of Na + ions.

また、無通電時には、濃度勾配によつて、メツ
キ浴室中のFe2+、Fe3+、Zn2+等の金属イオンが
陽極室へ透過する問題も生じる。この意味から陽
イオン交換膜を用いるのは、本発明に係る陰イオ
ン交換膜を用いるのに比較し不利である。そこで
イオン交換膜としては陰イオン交換膜が好適に用
いられる。陰イオン交換膜の場合は、選択透過す
るイオンは陰イオンであるためメツキ浴室の
SO4 2-が陽極室へ移行することによつて電気回路
が電解液中で形成される。なお、この際、本発明
の陰イオン交換膜においては、第1図および第2
図のようにH+イオンのみはイオン径が極端に小
さく透過する。
Further, when no current is applied, there is a problem that metal ions such as Fe 2+ , Fe 3+ , Zn 2+ in the plating bath permeate into the anode chamber due to the concentration gradient. In this sense, using a cation exchange membrane is disadvantageous compared to using an anion exchange membrane according to the present invention. Therefore, an anion exchange membrane is preferably used as the ion exchange membrane. In the case of anion exchange membranes, the ions that selectively permeate are anions, so
An electric circuit is formed in the electrolyte by the migration of SO 4 2- into the anode chamber. In addition, in this case, in the anion exchange membrane of the present invention, FIGS.
As shown in the figure, only H + ions are transmitted due to their extremely small ion diameter.

そして実施例1に示すように、メツキ浴室から
陽極室へSO4 2-が、また、陽極室からメツキ浴室
へH+が透過する。
As shown in Example 1, SO 4 2- permeates from the plating bath to the anode chamber, and H + permeates from the anode chamber to the plating bath.

この全電気量のうち、SO4 2-およびH+が荷な
う電気量を輸率と称しそれぞれtSO4 2-、tH+であ
らわされる。
Of this total quantity of electricity, the quantity of electricity carried by SO 4 2- and H + is called the transference number, and is expressed by tSO 4 2- and tH + , respectively.

陰イオン交換膜のH+透過性、すなわちtH+は、
主として陽極室のH+イオン濃度にもよるが、
tH+=0.05〜0.4程度であり、一方、tSO4 2-
tSO4 2-=0.6〜0.95であり、tH++tSO4 2-=1の関
係が成立する。この意味から、陰イオン交換膜と
は云え、両性的イオン交換膜としての機能をす
る。したがつて、本発明に係る陰イオン交換膜を
用いた場合は、メツキ浴室のPH変動は、陽イオン
交換膜を用いるのに比較して、はるかに少なくメ
ツキ浴の管理も容易である。また、還元運転時以
外の無通電時において、メツキ浴室中のFe2+
Fe3+、Zn2+等の陽イオンの濃度勾配による陽極
室への透過を防止できる利点がある。
The H + permeability of an anion exchange membrane, i.e. tH + , is
Although it mainly depends on the H + ion concentration in the anode chamber,
tH + = about 0.05 to 0.4, while tSO 4 2-
tSO 4 2- = 0.6 to 0.95, and the relationship tH + +tSO 4 2- = 1 holds true. In this sense, although it is an anion exchange membrane, it functions as an amphoteric ion exchange membrane. Therefore, when the anion exchange membrane according to the present invention is used, the pH fluctuations in the plating bath are much smaller than when using the cation exchange membrane, and the plating bath is easier to manage. In addition, when there is no electricity other than during reduction operation, Fe 2+ in the bathroom,
This has the advantage of preventing cations such as Fe 3+ and Zn 2+ from permeating into the anode chamber due to their concentration gradient.

ところで、本発明法では、前述のように連続メ
ツキセルと別体的に本発明の連続的還元装置を設
ける。
By the way, in the method of the present invention, as described above, the continuous reduction device of the present invention is provided separately from the continuous Metxel.

還元装置では、公知の定電位電解装置を用い
て、陰極の電位が所定範囲内に保持される。この
場合、〔Fe2+〕と〔Fe3+〕の濃度比を管理しなが
ら電解電位を設定する。陰極におけるFe3+に対
する還元反応に対して、陽極室を0.1〜10N程度
の高濃度のH2SO4で満たすと陽極ではH2O→2H
+1/2O2+2eの反応が起こる。したがつて、陽
極室の上部に気液分離器を設けてガス抜きを行い
ながら、陽極室液を再使用するのがよい。さら
に、本発明に係る還元装置は、後述する実施例の
ように、陽極室を兼用する多重方式を採ることも
できる。
In the reduction device, the potential of the cathode is maintained within a predetermined range using a known constant potential electrolyzer. In this case, the electrolytic potential is set while controlling the concentration ratio of [Fe 2+ ] and [Fe 3+ ]. For the reduction reaction of Fe 3+ at the cathode, when the anode chamber is filled with H 2 SO 4 at a high concentration of about 0.1 to 10N, H 2 O → 2H at the anode
+1/2O 2 +2e reaction occurs. Therefore, it is preferable to provide a gas-liquid separator above the anode chamber to remove gas and reuse the anode chamber liquid. Furthermore, the reduction device according to the present invention can also adopt a multiplex system in which the anode chamber also serves as an embodiment, as described later.

本発明によれば、次述の実施例のように、
Fe3+イオンをFe2+イオンに容易かつ経済的に還
元でき、メツキセルにおけるメツキ液のFe3+
オン濃度を抑えて、良好なメツキを達成できる。
According to the present invention, as in the following embodiments,
Fe 3+ ions can be easily and economically reduced to Fe 2+ ions, and good plating can be achieved by suppressing the Fe 3+ ion concentration in the plating solution in the Metxel.

次に実施例および比較例を示し本発明をさらに
詳述する。
Next, the present invention will be explained in further detail by showing examples and comparative examples.

実施例 1 第1図に示す還元装置を用いてメツキ液の還元
を行つた。電解槽としては、アクリル樹脂製の縦
型2室式の電解槽1を用い、陰イオン交換膜隔膜
2により、陽極室3と陰極室4とに分離した。陽
極5および陰極6の背面に約50mmの液空間を取
り、陽極室3および陰極室4の底部にそれぞれ供
給メツキ液および供給H2SO4の供給口を形成す
るとともに、陽極室3の上部に巾100mm、高さ100
mm、厚さ30mmの気液分離室7を設け、この分離室
7の上部に酸素ガス出口を設けた。
Example 1 A plating solution was reduced using the reduction apparatus shown in FIG. As the electrolytic cell, a vertical two-chamber type electrolytic cell 1 made of acrylic resin was used, and was separated into an anode chamber 3 and a cathode chamber 4 by an anion exchange membrane diaphragm 2 . A liquid space of approximately 50 mm is provided on the back side of the anode 5 and cathode 6, and supply ports for the plating liquid and H 2 SO 4 are formed at the bottom of the anode chamber 3 and cathode chamber 4, respectively, and at the top of the anode chamber 3. Width 100mm, height 100
A gas-liquid separation chamber 7 with a thickness of 30 mm and a thickness of 30 mm was provided, and an oxygen gas outlet was provided in the upper part of the separation chamber 7.

使用したメツキ浴としては、FeSO4・7H2Oが
300g/、ZnSO4・7H2Oが150g/、Na2SO4
が75g/の組成で、PH=2で、Fe3+濃度として
7.5g/のものである。
The plating bath used was FeSO 4 7H 2 O.
300g/, ZnSO 4 7H 2 O 150g/, Na 2 SO 4
has a composition of 75g/, PH=2, and Fe 3+ concentration.
It weighs 7.5g/.

かくして、定電位電解装置を用い、照合電極と
して飽和カロメル電極を用いて、Ti基体のPtク
ラツドエキスバンドメタルからなる陰極の電位を
+0.2Vに保持した。その結果、通電量に比例し
てメツキ液中のFe3+濃度の低下がみられた。ま
たその際の電流密度は、メツキ液の循環量、すな
わち拡散条件によつても異なるが、10〜25A/d
m2であつた。そしてメツキ液の循環量が多いほど
還元量も多くなることが判明した。またFe3+
度は、10分後には、0.5g/に低下し、好適に還
元できることが明らかとなつた。
Thus, using a constant potential electrolyzer and a saturated calomel electrode as a reference electrode, the potential of the cathode consisting of a Ti-based Pt-clad expanded metal was maintained at +0.2V. As a result, it was found that the Fe 3+ concentration in the plating solution decreased in proportion to the amount of current applied. In addition, the current density at that time varies depending on the amount of circulation of the plating solution, that is, the diffusion conditions, but is 10 to 25 A/d.
It was m2 . It was also found that the greater the amount of circulating liquid, the greater the amount of reduction. Furthermore, the Fe 3+ concentration decreased to 0.5 g/10 minutes later, making it clear that reduction could be carried out suitably.

一方、陽極室液としては、Na2SO4が100g/
で、PH=2の溶液を用いたが、陽極室では通電に
伴つてH2SO4が生成し、PHが低下するため、PH
を一定に保つために、当量分のNaOHを添加し
た。ここでもし、陽極室液として高濃度の
H2SO4を用いる場合には、H2Oを添加し、生成
したH2SO4に見合う量をオーバーフローさせて
回収するようにしてもよい。
On the other hand, as the anode chamber solution, 100g/Na 2 SO 4
In this case, a solution with PH = 2 was used, but in the anode chamber, H 2 SO 4 is generated as electricity is applied, and the PH decreases.
To keep constant, an equivalent amount of NaOH was added. Here, if the anode chamber fluid contains a high concentration of
When using H 2 SO 4 , H 2 O may be added and an amount corresponding to the generated H 2 SO 4 may be overflowed and recovered.

比較例 1 実施例1に対して、電位を−0.7V(vs.SCE)を
変えて還元を試みた。この場合には、たしかに
Fe3+の還元反応が生じたが、水素発生反応(H+
+e→1/2H2)も生じ、鉄の電析反応も生じ、
陰極がFeメツキされることとなつた。電流密度
としては、30A/dm2が得られたが、Fe3+を還元
する電流効率の低下があつた。
Comparative Example 1 With respect to Example 1, reduction was attempted by changing the potential by -0.7V (vs. SCE). In this case, certainly
A reduction reaction of Fe 3+ occurred, but a hydrogen generation reaction (H +
+e → 1/2H 2 ) also occurs, and an iron electrodeposition reaction also occurs,
The cathode was now plated with Fe. Although a current density of 30 A/dm 2 was obtained, the current efficiency for reducing Fe 3+ decreased.

比較例 2 電位を+0.50V(vs.SCE)としてみた。しかし、
Fe3+の還元は生ぜず、電流が流れなかつた。
Comparative Example 2 The potential was set to +0.50V (vs.SCE). but,
No reduction of Fe 3+ occurred and no current flowed.

実施例 2 第2図に示すメツキセル10と第1図と同様な
還元装置とを組み合せた電気メツキシステムによ
り、電気メツキを実施するとともに、還元も行つ
た。
Example 2 Electroplating and reduction were performed using an electroplating system that combined the plating cell 10 shown in FIG. 2 and a reduction device similar to that shown in FIG. 1.

メツキセル10の陽極11としては、Pb合金
電極を用い。陰極12としては鋼板を用い、鋼板
12にFe―Znメツキを行つた。メツキセルでの
メツキ浴としては、FeSO4・7H2O=300g/、
ZnSO4・7H2O=150s/、Na2SO4=75g/の
組成で、PH=2、50℃、Fe3+濃度が1g/のも
のを用いた。メツキの電流密度は40A/dm2であ
つた。メツキに伴つて、メツキセル内のFe3+
度は増大する傾向にあり、メツキ液の出側では
Fe3+濃度が2.5g/であつた。
As the anode 11 of the Metsuki cell 10, a Pb alloy electrode is used. A steel plate was used as the cathode 12, and the steel plate 12 was plated with Fe--Zn. As a plating bath in Metxel, FeSO 4 7H 2 O = 300g/,
The composition used was ZnSO 4 .7H 2 O = 150 s/, Na 2 SO 4 = 75 g/, PH = 2, 50°C, and Fe 3+ concentration of 1 g/. The electric current density was 40 A/dm 2 . The Fe 3+ concentration in the Metx cell tends to increase as it is mixed, and at the outlet side of the Metx cell, Fe 3+ concentration tends to increase.
The Fe 3+ concentration was 2.5 g/.

このメツキ液は、電解槽1の陰極室4に導き、
実施例1と同様な還元を実施した。ただ、陰極の
電位は、+0.1V(vs.SCE)に保持した。還元装置
では、12A/dm2の電流密度の電気量が流れ、メ
ツキ浴のFe3+濃度はg/に低下した。この還
元済のメツキ液は、金属溶解タンク20を通した
後、メツキセル10に戻した。また還元装置の陽
極5としては、Pb多孔質板を用いた。陽極室で
は、H2Oが電気分解され、O2ガスが発生し、H+
が生成され、このH+が隔膜2を透過するSO4 2-
と反応しH2SO4が生成される。そこで、SO4 2-
オンのバランスを保つために、陽極室3で生成し
たH2SO4をメツキ浴室4へリターンさせねばな
らないが、本例では陽極室液として高濃度の
H2SO4を用いている関係上、陽極室液を一旦PH
調整槽30でH2Oの添加によりPHを調節のうえ、
金属溶解タンク20に導き、そこでFe,Znの粉
粒状物を添加し、それらの金属溶解の後、メツキ
セル10に導いた。この場合、金属の溶解は、メ
ツキによつて系外に持ち出される金属イオンの供
給源となる。
This plating solution is led to the cathode chamber 4 of the electrolytic cell 1,
A reduction similar to Example 1 was carried out. However, the potential of the cathode was kept at +0.1V (vs. SCE). In the reduction device, electricity with a current density of 12 A/dm 2 was passed, and the Fe 3+ concentration in the plating bath was reduced to g/dm 2 . This reduced plating solution was returned to the plating cell 10 after passing through the metal dissolving tank 20. Furthermore, a Pb porous plate was used as the anode 5 of the reduction device. In the anode chamber, H 2 O is electrolyzed, O 2 gas is generated, and H +
is generated, and this H + passes through the diaphragm 2 SO 4 2-
reacts with H 2 SO 4 . Therefore, in order to maintain the balance of SO 4 2- ions, the H 2 SO 4 generated in the anode chamber 3 must be returned to the plating bath 4, but in this example, a high concentration of H 2 SO 4 is used as the anode chamber solution.
Since H 2 SO 4 is used, the anode chamber solution must be PHed once.
After adjusting the pH by adding H 2 O in the adjustment tank 30,
The metal was introduced into a metal melting tank 20, where powder and granules of Fe and Zn were added, and after the metals were melted, the metal was introduced into the Metxel 10. In this case, the dissolution of the metal becomes a source of metal ions that are carried out of the system by plating.

なお、SO4 2-の隔膜2に対する透過に対して、
これに見合う量を陰極室4またはメツキセル10
内にFeSO4・7H2Oの形で供給することも可能で
ある。
In addition, regarding the permeation of SO 4 2- through the diaphragm 2,
Add the corresponding amount to 4 cathode chambers or 10 metsuki cells.
It is also possible to supply it in the form of FeSO 4 .7H 2 O.

実施例 3 第1図に示す2室型電解槽を改造して、第3図
に示す3室型電解槽1′を用意し、中間を陽極室
3、両側を陰極室4,4とし、陽極室3を左右の
陰極室4,4に対して共有する構造の還元装置に
より還元を行つた。
Example 3 The two-chamber electrolytic cell shown in FIG. 1 was modified to prepare a three-chamber electrolytic cell 1' shown in FIG. Reduction was carried out using a reduction device having a structure in which chamber 3 was shared by left and right cathode chambers 4, 4.

陰極6〜隔膜2〜陽極5の間隔はそれぞれ同一
とした。使用したメツキ浴としては、FeSO4
7H2O=300g/、ZnSO4・7HO4=150g/、
Na2SO4=75g/の組成で、PH=2、Fe3+濃度
は7.5g/のものである。また定電位電解装置1
台を兼用化し、その陰極を左右の陰極室の電極に
並列に接続し、陽極を中間の陽極室の電極に接続
した。この際、左に位置する陰極の電位を、別途
電圧計を用い、陰極室中に設置した飽和カロメル
電極に対して、電位差を測定する条件で、定電位
電解装置を用いて電流を流した。陰極の電位が+
0.2V(vs.SCE)となるよう、定電位電解装置をコ
ントロールした結果、メツキ液の流速および
Fe2+濃度の変動に伴つて、電流密度が10〜25A/
dm2の範囲で変動した。実施例1と同様のメツキ
液の流速の下では、半分の時間つまり5分後に、
実施例と同一のFe3+濃度つまり0.5g/に達し
た。
The intervals between the cathode 6, the diaphragm 2, and the anode 5 were the same. The plating bath used was FeSO4
7H 2 O = 300g/, ZnSO 4・7HO 4 = 150g/,
The composition is Na 2 SO 4 = 75 g/, PH = 2, and Fe 3+ concentration is 7.5 g/. Also, constant potential electrolyzer 1
A stand was used, and its cathode was connected in parallel to the electrodes in the left and right cathode chambers, and the anode was connected to the electrode in the middle anode chamber. At this time, a current was applied to the cathode located on the left using a constant potential electrolyzer under conditions that measured the potential difference between the saturated calomel electrode and the saturated calomel electrode installed in the cathode chamber using a separate voltmeter. The potential of the cathode is +
As a result of controlling the constant potential electrolyzer so that the voltage was 0.2V (vs.SCE), the flow rate of the plating solution and
As the Fe 2+ concentration fluctuates, the current density increases from 10 to 25 A/
It varied in the range of dm2 . Under the same flow rate of the plating solution as in Example 1, after half the time, that is, 5 minutes,
The same Fe 3+ concentration as in the example was reached, that is, 0.5 g/.

本例では、陽極室を兼用としているので、構造
が簡素となる。また、本例の3室型に代えて、さ
らに多重室型とすることも可能である。
In this example, since the anode chamber is also used, the structure is simple. Further, instead of the three-chamber type in this example, it is also possible to use a multi-chamber type.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明によれば、連続的にFe3+
イオンをFe2+イオンに還元でき、良好な性状の
メツキを達成できるなどの利点がもたらされる。
As described above, according to the present invention, Fe 3+
The advantages include being able to reduce ions to Fe 2+ ions and achieving plating with good properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は、それぞれ実施例1〜3に用
いた実験装置の概要図である。 1,1′…電解槽、2…陰イオン交換膜隔膜、
3…陽極室、4…陰極室(メツキ浴室)、5…陽
極、6…陰極、10…メツキセル、11…陽極、
12…陰極、20…金属溶解タンク。
FIGS. 1 to 3 are schematic diagrams of the experimental apparatus used in Examples 1 to 3, respectively. 1, 1'... Electrolytic cell, 2... Anion exchange membrane diaphragm,
3...Anode chamber, 4...Cathode chamber (metsuki bathroom), 5...Anode, 6...Cathode, 10...Metsuki cell, 11...Anode,
12...Cathode, 20...Metal dissolution tank.

Claims (1)

【特許請求の範囲】 1 Fe系メツキの際にメツキセル中のFe3+イオ
ンをFe2+イオンに還元するに当つて、 陰極室から陽極室に硫酸イオンを透過しFe2+
イオンを透過せず、かつ陽極室から陰極室に水素
イオンを透過する陰イオン交換膜隔膜によりメツ
キ浴室と陽極室とを分離し、メツキ浴室には陰極
を陽極室には不溶性陽極をそれぞれ設けて還元装
置を構成し、 前記陰極の電位を水素電極基準(vs.NHE)で
(+0.77+0.04log〔Fe3+〕/〔Fe2+〕)Vよりも卑
の電位、飽和カロメル電極基準(vs.SCE)で
(+0.53+0.04log〔Fe3+〕/〔Fe2+〕)Vよりも卑
の電位、ならびに水素電極基準(vs.NHE)で
(−0.44+0.03log〔Fe2+〕)Vよりも貴の電位、飽
和カロメル電極基準(vs.SCE)で(−0.63+
0.03log〔Fe2+〕)Vよりも貴の電位に保持して、
陰極室において鉄の電析を防止する電位条件の下
で、連続的に電解を行い、陰極においてFe3+
オンをFe2+イオンに連続的に還元し(ただし、
前記〔Fe3+〕,〔Fe2+〕は金属イオンの濃度を示
す)、 前記陽極室からFe3+イオンを含む液を取出し
た後、Feを含む粉粒状物の溶解を図り、Fe3+
オンをFe2+イオンに還元した後、メツキセルに
メツキ液を戻すことを特徴とする金属イオンの還
元方法。
[Claims] 1. In reducing Fe 3+ ions in the metal plating to Fe 2+ ions during Fe-based plating, sulfate ions permeate from the cathode chamber to the anode chamber and Fe 2+
The plating bath and the anode chamber are separated by an anion exchange membrane diaphragm that does not allow ions to pass through, but allows hydrogen ions to pass from the anode chamber to the cathode chamber.The plating bath is provided with a cathode, and the anode chamber is provided with an insoluble anode. A reduction device is configured, and the potential of the cathode is set to a potential more base than (+0.77+0.04log [Fe 3+ ]/[Fe 2+ ]) V with reference to a hydrogen electrode (vs.NHE), and a potential with respect to a saturated calomel electrode (vs.NHE). vs. SCE) at (+0.53 + 0.04 log [Fe 3+ ] / [Fe 2+ ]) potential more base than V, and hydrogen electrode reference (vs. NHE) at (−0.44 + 0.03 log [Fe 2+ ]) Potential nobler than V, with saturated calomel electrode reference (vs.SCE) (-0.63+
0.03log [Fe 2+ ]) held at a potential nobler than V,
Electrolysis is performed continuously in the cathode chamber under potential conditions that prevent iron electrodeposition, and Fe 3+ ions are continuously reduced to Fe 2+ ions at the cathode (however,
(The above [Fe 3+ ] and [Fe 2+ ] indicate the concentration of metal ions). After taking out the liquid containing Fe 3+ ions from the anode chamber, the powdery material containing Fe is dissolved, and Fe 3 A method for reducing metal ions, which comprises reducing + ions to Fe 2+ ions and then returning the Metsuki solution to the Metsuki cell.
JP15585485A 1985-07-15 1985-07-15 Reduction of metallic ion Granted JPS6152399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15585485A JPS6152399A (en) 1985-07-15 1985-07-15 Reduction of metallic ion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15585485A JPS6152399A (en) 1985-07-15 1985-07-15 Reduction of metallic ion

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP13593882A Division JPS5925991A (en) 1982-08-04 1982-08-04 Reducing method of metallic ions

Publications (2)

Publication Number Publication Date
JPS6152399A JPS6152399A (en) 1986-03-15
JPH0514800B2 true JPH0514800B2 (en) 1993-02-25

Family

ID=15614949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15585485A Granted JPS6152399A (en) 1985-07-15 1985-07-15 Reduction of metallic ion

Country Status (1)

Country Link
JP (1) JPS6152399A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3788708D1 (en) * 1986-10-31 1994-02-17 Asahi Glass Co Ltd Process for treating a plating solution.
JP2006213956A (en) * 2005-02-02 2006-08-17 Nomura Plating Co Ltd Fe-W ALLOY ELECTROPLATING DEVICE USING CATION EXCHANGE MEMBRANE, CONTINUOUS PLATING METHOD USING THE DEVICE AND COATING FILM

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57135938A (en) * 1981-02-17 1982-08-21 Takagi Kogyo Kk Remote control camera
JPS58199888A (en) * 1982-05-17 1983-11-21 Nippon Steel Corp Control method of ferrous electroplating solution
JPS5925991A (en) * 1982-08-04 1984-02-10 Sumitomo Metal Ind Ltd Reducing method of metallic ions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57135938A (en) * 1981-02-17 1982-08-21 Takagi Kogyo Kk Remote control camera
JPS58199888A (en) * 1982-05-17 1983-11-21 Nippon Steel Corp Control method of ferrous electroplating solution
JPS5925991A (en) * 1982-08-04 1984-02-10 Sumitomo Metal Ind Ltd Reducing method of metallic ions

Also Published As

Publication number Publication date
JPS6152399A (en) 1986-03-15

Similar Documents

Publication Publication Date Title
JP4422751B2 (en) Electrolytic cell for recovering metal ion concentration in electroplating process
US6126796A (en) Electrolytic cell and method for the production of acid water
US6004449A (en) Method of operating electrolytic cell to produce highly concentrated alkaline hydrogen peroxide
CA1153982A (en) Electrolytic production of alkali metal hypohalite and apparatus therefor
RU97100560A (en) METHOD FOR ELECTROLYSIS OF AQUEOUS SOLUTIONS OF HYDROCHLORIDE ACID
CN112714803B (en) Plating solution production and regeneration process and device for insoluble anode acid copper electroplating
TW557332B (en) Method and device for regulating the metal ion concentration in an electrolyte fluid
US4279705A (en) Process for oxidizing a metal of variable valence by constant current electrolysis
US4191619A (en) Process for conversion of materials in electrolytic solution
EP0043854A1 (en) Aqueous electrowinning of metals.
US4243494A (en) Process for oxidizing a metal of variable valence by controlled potential electrolysis
JPH0514800B2 (en)
WO2001092604A2 (en) Electrolysis cell for restoring the concentration of metal ions in processes of electroplating
JPS5925991A (en) Reducing method of metallic ions
JPS6141799A (en) Method for supplying tin ion to electrolytic tinning bath
SA520411661B1 (en) Method for Producing Metallic Silver by Electro-Deposition
JP4242248B2 (en) Tin plating method using insoluble anode
JPS5873783A (en) Electrolytic extraction of massive zinc with hydrogen anode
JP2689076B2 (en) Method for maintaining and recovering etching solution capacity
JPS6152398A (en) Out-of-system reduction treatment of metallic ion
JPH05302199A (en) Method for controlling composition of copper plating bath in copper plating using insoluble anode
US4367128A (en) Energy efficient self-regulating process for winning copper from aqueous solutions
US861226A (en) Electrolysis.
JPH0242911B2 (en)
JPS5893899A (en) Controlling method for electroplating bath