JPH05302199A - Method for controlling composition of copper plating bath in copper plating using insoluble anode - Google Patents

Method for controlling composition of copper plating bath in copper plating using insoluble anode

Info

Publication number
JPH05302199A
JPH05302199A JP10673992A JP10673992A JPH05302199A JP H05302199 A JPH05302199 A JP H05302199A JP 10673992 A JP10673992 A JP 10673992A JP 10673992 A JP10673992 A JP 10673992A JP H05302199 A JPH05302199 A JP H05302199A
Authority
JP
Japan
Prior art keywords
copper
plating
plating bath
tank
copper plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10673992A
Other languages
Japanese (ja)
Inventor
Tadashi Nagasawa
正 長沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Metalpha Corp
Original Assignee
Bridgestone Metalpha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Metalpha Corp filed Critical Bridgestone Metalpha Corp
Priority to JP10673992A priority Critical patent/JPH05302199A/en
Publication of JPH05302199A publication Critical patent/JPH05302199A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To control the composition of a copper plating bath by equalizing the electrolytic current in a copper ion replenishing tank to that in a plating bath. CONSTITUTION:Copper ion and hydroxide ion are supplied from a copper ion replenishing tank 1 to a copper plating bath 2 in copper plating using an insoluble electrode. The tank 1 is separated by a thin membrane impermeable to copper ion and permselective to hydroxide ion. One compartment of the tank 1 is filled with a copper plating soln., a copper metallic electrode 7 is dipped in the compartment, and electrolysis is carried out between the positive electrode 7 and a negative counter electrode to generate copper ion from the electrode 7. In this case, the electrolytic current in the tank 1 is equalized to that in the plating bath. Consequently, the composition of the copper plating bath is controlled by replenishing a plating bath contg. copper ion.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、不溶性陽極を用いた電
気銅めっき法における銅めっき浴に銅イオンを含むめっ
き液を補給することによって銅めっき浴の組成を制御す
る方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the composition of a copper plating bath by replenishing the copper plating bath with a plating solution containing copper ions in an electrolytic copper plating method using an insoluble anode.

【0002】[0002]

【従来の技術】銅の電気めっき法としては、陽極として
可溶性陽極を用いる方法と不溶性陽極を用いる方法とが
知られている。しかし、金属銅を陽極として用いる可溶
性陽極法の場合、めっき浴中への銅イオンの補給は陽極
面での電解反応による陽極金属銅の溶解により行われる
ので、連続してめっき処理を行う場合、溶解により金属
銅が消耗するため定期的な金属銅の補充及び更新を必要
とした。また、電極の形状が経時的に変化するため、被
めっき物と陽極との距離が変化して、めっき槽内での電
流分布が変化し、このためめっき付着量がばらつき、精
度の高いめっきができないという問題があった。
2. Description of the Related Art As a copper electroplating method, a method using a soluble anode as an anode and a method using an insoluble anode are known. However, in the case of the soluble anode method using metallic copper as the anode, since the supply of copper ions to the plating bath is performed by the dissolution of the anode metallic copper by the electrolytic reaction on the anode surface, when performing the plating treatment continuously, Since the metal copper is consumed by the melting, it was necessary to periodically replenish and renew the metal copper. In addition, since the shape of the electrode changes with time, the distance between the object to be plated and the anode changes, and the current distribution in the plating tank changes. There was a problem that I could not.

【0003】一方、不溶性陽極を用いた場合には、めっ
き付着量がばらつかず、精度の高いめっきができるが、
陽極以外からの銅イオンのめっき浴中への補給が必要で
ある。一般的に、図3に示すように銅イオン補給槽1を
設け不溶性陽極8および被めっき材9を配置しためっき
浴2との間でめっき液を循環させることで補給が行われ
ており、かかる補給方法として特開昭56−75590 号公報
に、亜酸化銅と過酸化水素を併用してめっき液に入れる
ことでめっき液中への銅イオンの補給を行う方法が開示
されている。しかし、かかる方法には、銅イオン供給の
銅単価が金属銅に比べ高いこと、連続めっき処理中のめ
っき浴組成を一定に保つために、銅イオン及びpH等の
浴成分の分析並びに化学薬品の計量及び追加が必要であ
ること、溶解しない亜酸化銅がめっき浴に入ると亜酸化
銅が不溶性陽極に堆積してめっき電流をばらつかせた
り、めっきに巻き込まれたりすること等、の欠点があっ
た。
On the other hand, when the insoluble anode is used, the amount of plating adhered does not vary, and highly accurate plating can be performed.
It is necessary to supply copper ions from other than the anode into the plating bath. Generally, as shown in FIG. 3, the copper ion replenishment tank 1 is provided and the plating solution is circulated between the insoluble anode 8 and the plating bath 2 in which the material to be plated 9 is placed, and the replenishment is performed. As a replenishment method, JP-A-56-75590 discloses a method of replenishing copper ions into the plating solution by using cuprous oxide and hydrogen peroxide in combination into the plating solution. However, in such a method, the copper unit price of copper ion supply is higher than that of metallic copper, and in order to keep the plating bath composition constant during the continuous plating treatment, analysis of bath components such as copper ion and pH and chemical There are drawbacks such as the need for weighing and addition, the fact that when undissolved cuprous oxide enters the plating bath, cuprous oxide accumulates on the insoluble anode and causes the plating current to fluctuate, or is involved in plating. there were.

【0004】[0004]

【発明が解決しようとする課題】銅めっきにおいて、線
材または板材等を連続してめっきする場合、長い時間に
亘って安定して一定のめっき厚みを得るには不溶性陽極
を用いためっき方法が有効であるが、このようなめっき
方法においては、本質的にめっきによって消費される金
属イオンを連続的に補給しなければならない。
In copper plating, when a wire or plate is continuously plated, a plating method using an insoluble anode is effective for obtaining a stable and constant plating thickness over a long period of time. However, in such a plating method, metal ions essentially consumed by the plating must be continuously replenished.

【0005】従って、本発明の目的は、銅イオン供給の
銅単価が高くなるものを使用することなく、まためっき
に好適なめっき液組成または浴温度等の条件を変更する
ことなく、更にめっき液に第三成分を添加することな
く、安価かつ簡単に銅イオンを補給する方法と銅イオン
濃度と液pHを簡便にかつ精度よく制御する方法とを提
供することにある。
Therefore, an object of the present invention is to use a plating solution having a high copper unit price for supplying copper ions without changing the plating solution composition suitable for plating or conditions such as bath temperature, and further to obtain a plating solution. Another object of the present invention is to provide a method for replenishing copper ions inexpensively and easily without adding a third component, and a method for easily and accurately controlling copper ion concentration and liquid pH.

【0006】[0006]

【課題を解決するための手段】かかる目的を達成するた
め本発明者らは、不溶性陽極を用いた銅めっき法におけ
るめっき浴中への銅イオンの補給方法および浴の組成の
制御方法について鋭意検討を行った結果、銅イオン補給
槽として銅イオンを通過させることなく水酸化イオンを
選択的に通過させる隔膜を具えた補給槽を所定の条件で
用いることにより上記目的を達成し得ることを見い出
し、本発明を完成するに至った。
[Means for Solving the Problems] In order to achieve such an object, the inventors of the present invention diligently studied a method of supplying copper ions into a plating bath and a method of controlling the composition of the bath in a copper plating method using an insoluble anode. As a result, it was found that the above object can be achieved by using a replenishment tank having a diaphragm that selectively passes hydroxide ions without passing copper ions as a copper ion replenishment tank under predetermined conditions. The present invention has been completed.

【0007】すなわち、本発明は、不溶性電極を用いた
銅めっき法における銅めっき浴に、銅イオン補給槽から
銅イオンおよび水酸化イオンを補給することで該銅めっ
き浴の組成を制御する方法において、銅イオンを透過さ
せることなく水酸化イオンを選択的に透過させる隔膜で
分離された上記銅イオン補給槽の一方の側を銅めっき液
で満しかつこの中に銅金属電極を浸漬し、他方の側をア
ルカリ水溶液で満しかつこの中に対極を浸漬し、上記銅
金属電極が正に上記対極が負となるようにして電解する
ことにより該銅金属電極から銅イオンを生ぜしめ、この
際、上記銅イオン補給槽での電解電流と上記めっき浴で
の電解電流とが等しくなるように制御することにより、
補給すべき銅イオンおよび水酸化イオンの濃度を一定に
保つことを特徴とするものである。
That is, the present invention relates to a method for controlling the composition of a copper plating bath in a copper plating method using an insoluble electrode by supplying copper ions and hydroxide ions from a copper ion replenishing tank. , One side of the copper ion replenishing tank separated by a diaphragm that selectively permeates hydroxide ions without permeating copper ions is filled with a copper plating solution and a copper metal electrode is immersed therein, and the other Is filled with an alkaline aqueous solution and the counter electrode is immersed therein, and the copper metal electrode is electrolyzed so that the counter electrode becomes positive and the counter electrode becomes negative, whereby copper ions are produced from the copper metal electrode. By controlling the electrolytic current in the copper ion replenishing tank and the electrolytic current in the plating bath to be equal,
It is characterized in that the concentration of copper ions and hydroxide ions to be replenished is kept constant.

【0008】上記隔膜は、銅イオンを透過させることな
く水酸化イオンを選択的に透過させるものであるなら無
機材または有機材のいずれでもよく、例えばアルミナ焼
結材、イオン交換膜等を使用することができる。尚、用
いる隔膜によって水酸化イオンの透過速度が異なるた
め、銅イオン補給槽の一方の側に入れるアルカリ水溶液
の濃度は、それに対応して変動させる必要がある。例え
ば、アルカリ水溶液と銅めっき液の容量比率が1:10の
場合アルミナ焼結材を隔膜として用いてめっき浴のpH
を適当な値(pH8〜9)に保つには、アルカリ水溶液
の初期濃度を260〜340 g/lの範囲内に設定するのが
好ましい。またアニオンのイオン交換膜を用いてめっき
浴のpHを適当な値に保つには、アルカリ水溶液の初期
濃度を10〜65g/lの範囲内に設定するのが好ましい。
The above-mentioned diaphragm may be either an inorganic material or an organic material as long as it selectively permeates hydroxide ions without permeating copper ions. For example, an alumina sintered material, an ion exchange membrane or the like is used. be able to. Since the permeation rate of hydroxide ions varies depending on the diaphragm used, the concentration of the alkaline aqueous solution put into one side of the copper ion replenishment tank needs to be changed correspondingly. For example, when the volume ratio of the alkaline aqueous solution and the copper plating solution is 1:10, the alumina sintered material is used as a diaphragm and the pH of the plating bath is
In order to maintain the pH value at an appropriate value (pH 8 to 9), it is preferable to set the initial concentration of the alkaline aqueous solution within the range of 260 to 340 g / l. Further, in order to maintain the pH of the plating bath at an appropriate value by using an anion ion exchange membrane, it is preferable to set the initial concentration of the alkaline aqueous solution within the range of 10 to 65 g / l.

【0009】本発明においては、銅イオン補給槽のめっ
き液の入った分離槽の隔膜面でめっき液と、浸透してき
たアルカリ溶液とが反応してめっき液が凝固、沈澱する
のを防ぐため、めっき液の入った分離槽の隔膜面近傍で
液攪拌を行ない、隔膜面での電流密度がある値を超えな
い範囲で電解を行なうようにすることが好ましい。
In the present invention, in order to prevent the plating solution from coagulating and precipitating due to the reaction of the plating solution with the permeating alkaline solution on the diaphragm surface of the separation tank containing the plating solution in the copper ion supply tank, It is preferable to stir the solution in the vicinity of the diaphragm surface of the separation tank containing the plating solution so that the electrolysis is performed within a range in which the current density on the diaphragm surface does not exceed a certain value.

【0010】また本発明においては、銅イオン補給槽で
の電解電流とめっき浴での電解電流とを等しくすること
で銅イオン濃度を一定にするが、ここで各々の電解電流
を等しくする方法として、銅イオン補給槽とめっき浴を
図1に示すように電気的に直列に配線する方法、および
他の方法として銅イオン補給槽とめっき浴との各々の槽
に電解電源を設置し銅イオン補給槽の電流値をめっき浴
の電流値と同じに制御する方法がある。
In the present invention, the concentration of copper ions is made constant by equalizing the electrolytic current in the copper ion replenishing tank with the electrolytic current in the plating bath. As shown in FIG. 1, a method of electrically connecting a copper ion supply tank and a plating bath in series, and as another method, an electrolytic power supply is installed in each of the copper ion supply tank and the plating bath to supply copper ions. There is a method of controlling the current value of the bath to be the same as the current value of the plating bath.

【0011】一方、めっき浴中のめっき液のpHは、か
かるめっき浴中の不溶性陽極で消費される水酸化イオン
を、予め所定濃度のアルカリ溶液の入った分離槽の電解
で生成する水酸化イオンの全てを当該分離槽からめっき
浴に移行させることにより補給し、安定させる。ここ
で、アルカリ水溶液の入った分離槽から、銅めっき液の
入った分離槽に水酸化イオンを移行させる方法は主に2
通りあり、その1つは、水酸化イオンの電気浸透または
アルカリ水溶液の自然浸透現象を利用して電解によって
生成した全ての水酸化イオンの移行を隔膜を介して行う
方法で、具体的には隔膜として上述のイオン交換膜また
は無機化合物の焼結材を用いて行う方法である。例え
ば、めっき液に50℃のピロりん酸銅めっき液を用い、ま
た隔膜にアルミナの焼結材を用い、隔膜を通過する電流
の電流密度を1A/dm2 として電解する場合、300 g/l
の濃度の水酸化カリウム水溶液を分離槽に入れることで
pHを変化させることなく安定して銅イオンをめっき浴
に補給することができる。
On the other hand, the pH of the plating solution in the plating bath is such that hydroxide ions consumed in the insoluble anode in the plating bath are generated by electrolysis in a separation tank containing an alkaline solution of a predetermined concentration in advance. Is transferred to the plating bath from the separation tank to replenish and stabilize it. Here, the method of transferring hydroxide ions from the separation tank containing the alkaline aqueous solution to the separation tank containing the copper plating solution is mainly 2
One is a method of transferring all the hydroxide ions generated by electrolysis using the electroosmosis of hydroxide ions or the natural permeation phenomenon of an alkaline aqueous solution through the diaphragm, and specifically, the diaphragm. Is a method using the above-mentioned ion exchange membrane or a sintered material of an inorganic compound. For example, when a copper pyrophosphate plating solution at 50 ° C. is used as the plating solution and an alumina sintered material is used as the diaphragm, and the current density of the current passing through the diaphragm is 1 A / dm 2 , electrolysis is performed at 300 g / l.
It is possible to stably replenish copper ions to the plating bath without changing the pH by adding the potassium hydroxide aqueous solution having the concentration of 3 to the separation tank.

【0012】もう一つの方法は、隔膜電解法においては
分離槽内のアルカリ水溶液面が浸透圧によりめっき液面
より高い位置になるが、この現象を利用してアルカリ水
溶液面がある値より高くなった時点で、アルカリ水溶液
の入った分離槽内の液がめっき液の入った分離槽に溢れ
出して移行する手段を設ける方法である。例えば、図2
に示すように、隔膜上部に穴と配管13を付帯させること
で、アルカリ水溶液の移行を助けることができる。
In another method, in the diaphragm electrolysis method, the surface of the alkaline aqueous solution in the separation tank is located higher than the surface of the plating solution due to osmotic pressure. By utilizing this phenomenon, the surface of the alkaline aqueous solution becomes higher than a certain value. At this point, a solution is provided in which the solution in the separation tank containing the alkaline aqueous solution overflows into the separation tank containing the plating solution and is transferred. For example, in FIG.
As shown in (3), by providing a hole and a pipe 13 on the upper part of the diaphragm, it is possible to assist the migration of the alkaline aqueous solution.

【0013】[0013]

【作用】不溶性陽極を用いためっき方法においてめっき
浴内での反応は、被めっき材の陰極面で次式(1) で示さ
れる銅イオンの還元が、また陽極面で次式(2) で示され
る水酸化イオンの酸化が起こる。
[Function] In the plating method using an insoluble anode, the reaction in the plating bath is performed by the following formula (2) on the cathode surface of the material to be plated and the reduction of copper ions represented by the following formula (1). Oxidation of the indicated hydroxide ions occurs.

【0014】[0014]

【数1】Cu2++2e- → Cu (1) 2OH- →H2 O+1/2O2 +2e- (2)[Formula 1] Cu 2+ + 2e → Cu (1) 2OH → H 2 O + 1 / 2O 2 + 2e (2)

【0015】即ち、不溶性陽極を用いためっき方法にお
いて、めっき液中の銅イオンと水酸化イオンが消費され
るため、連続してめっき処理を行うには連続して銅イオ
ンと水酸化イオンを補給する必要がある。
That is, in the plating method using an insoluble anode, since copper ions and hydroxide ions in the plating solution are consumed, copper ions and hydroxide ions are continuously replenished for continuous plating treatment. There is a need to.

【0016】本発明における銅めっき液組成の制御方法
は、銅イオン補給槽の一方の分離槽内のめっき液に浸漬
した銅電極に正の電気を流すことで次式(3) で示す反応
により銅イオンを生成せしめ、かつ対極との間に銅イオ
ンを透過させない膜を介在させることで当該対極を電気
めっきすることなく銅イオンをめっき液中に滞在させる
ことで、めっき浴中への補給を可能にするものである。
The control method of the composition of the copper plating solution in the present invention is carried out by applying positive electricity to the copper electrode immersed in the plating solution in one of the separation tanks of the copper ion replenishment tank by the reaction represented by the following formula (3). By supplying a copper ion in the plating solution without electroplating the counter electrode by interposing a film that does not permeate the copper ion between the counter electrode and the counter electrode, the supply to the plating bath is replenished. It makes it possible.

【0017】[0017]

【数2】Cu →Cu2++2e- (3)[Number 2] Cu → Cu 2+ + 2e - ( 3)

【0018】また、アルカリ水溶液の入った分離槽内の
対極面上では次式(4) で示される水の電解によって水酸
化イオンが生成する。
On the counter surface in the separation tank containing the alkaline aqueous solution, hydroxide ions are generated by electrolysis of water represented by the following formula (4).

【0019】[0019]

【数3】2H2 O+2e- →2OH- +H2 (4)[Equation 3] 2H 2 O + 2e → 2OH + H 2 (4)

【0020】本発明の方法において、めっき液のpHを
制御することができる理由は以下の通りである。即ち、
図2に示すように隔膜内を透過する成分は、水酸化イオ
ン、銅イオン以外の陽イオンがあるが、ここで水酸化イ
オンのみを選択的に透過させる隔膜を用いる場合、アル
カリ水溶液の入った分離槽内で生成する上記式(4) で示
される水酸化イオンの全てが電導媒体として隔膜を透過
してめっき液中に移行し、上記式(2) で示される水酸化
イオンの消費を補給するため、補給用めっき液のpHは
安定する。
The reason why the pH of the plating solution can be controlled in the method of the present invention is as follows. That is,
As shown in FIG. 2, there are cations other than hydroxide ions and copper ions as the components that permeate the inside of the membrane. However, when a membrane that selectively permeates only hydroxide ions is used, an alkaline aqueous solution was introduced. All of the hydroxide ions represented by the above formula (4) generated in the separation tank permeate the diaphragm as an electrically conductive medium and move into the plating solution to replenish the consumption of the hydroxide ions represented by the above formula (2). Therefore, the pH of the replenishment plating solution is stable.

【0021】また、隔膜内の電導媒体として水酸化イオ
ンの外に銅イオン以外の陽イオンが隔膜を透過する場合
は、上記式(4) で示される水酸化イオンの全てが隔膜内
の電導媒体として隔膜を透過することはないが、一方の
分離槽内のアルカリ濃度がめっき液の入った分離槽内の
それより高いため自然浸透により分離槽内のアルカリ水
溶液がめっき槽に移行し、めっき液pHを安定させるこ
とができる。また、例え、電解条件等により自然浸透に
よるアルカリ水溶液の移行量が一時的に少ない場合で
も、アルカリ水溶液の移行量の不足分がアルカリ水溶液
の入った分離槽内に蓄積され、かかる分離槽内のアルカ
リ濃度が高くなるにつれて自然浸透速度が高くなるた
め、結果としてある一定のpHにおいてめっき液が安定
することになる。
When cations other than copper ions permeate the diaphragm as the conductive medium in the diaphragm, all the hydroxide ions represented by the above formula (4) are contained in the diaphragm. However, since the alkali concentration in one of the separation tanks is higher than that in the separation tank containing the plating solution, the alkaline aqueous solution in the separation tank moves to the plating tank due to natural permeation. The pH can be stabilized. Further, for example, even when the migration amount of the alkaline aqueous solution due to natural permeation due to electrolysis conditions is temporarily small, a shortage of the migration amount of the alkaline aqueous solution is accumulated in the separation tank containing the alkaline aqueous solution, Since the natural permeation rate increases as the alkali concentration increases, the plating solution becomes stable at a certain pH as a result.

【0022】本発明の好適例として、隔膜電流密度に上
限を設け、めっき液の入った分離槽の隔膜表面近傍でめ
っき液の攪拌を行うとした理由は、泥状生成物の生成を
抑制するためである。即ち、隔膜電流密度が高く隔膜表
面でのめっき液攪拌が弱いと、隔膜表面でのpHが高く
なり水酸化銅が生成し、隔膜面で沈澱、凝固し、電解電
圧が上昇すると共にめっき液組成を変化させるためであ
る。
As a preferred example of the present invention, the upper limit of the diaphragm current density is set and the plating solution is agitated in the vicinity of the diaphragm surface of the separation tank containing the plating solution because the production of mud-like products is suppressed. This is because. That is, when the diaphragm current density is high and the plating solution agitation on the diaphragm surface is weak, the pH on the diaphragm surface rises and copper hydroxide is produced, which precipitates and solidifies on the diaphragm surface, and the electrolytic voltage rises and the plating solution composition increases. Is to change.

【0023】[0023]

【実施例】次に、本発明をその実施例によって具体的に
説明する。図1に示すように、銅イオン補給槽1内を隔
膜3で2つに分離し、一方の側の分離槽5内に銅イオン
補給のための JIS H 2121 − 1961 で規定される金属銅
電極7を、他方の側の分離槽4内に対極6を設置した。
EXAMPLES Next, the present invention will be described in detail with reference to its examples. As shown in Fig. 1, the inside of the copper ion supply tank 1 is separated into two parts by the diaphragm 3, and the metal copper electrode specified in JIS H 2121-1961 for copper ion supply is provided in the separation tank 5 on one side. 7 and a counter electrode 6 in the separation tank 4 on the other side.

【0024】また、不溶性陽極8と被めっき物電極9と
を備えためっき浴2を銅イオン補給槽1に隣接して設
け、補給槽1とめっき浴2との間でめっき液の循環を行
わしめるようにした。
A plating bath 2 provided with an insoluble anode 8 and an electrode 9 to be plated is provided adjacent to the copper ion replenishing tank 1, and the plating solution is circulated between the replenishing tank 1 and the plating bath 2. I tried to tighten it.

【0025】次いで、分離槽5に、表1に示す所定の濃
度の水酸化カリウム水溶液を、またもう一方の分離槽4
にはピロりん酸銅、ピロりん酸カリウム及びピロりん酸
を水に溶解して銅イオン濃度22g /l、および(ピロり
ん酸イオン濃度)/(銅イオン濃度)の値が7.3 及びp
H値 8.3となるように、調整したピロりん酸銅めっき液
を入れ、槽内を50℃に加温した。尚、図1において10は
隔膜表面のめっき液攪拌を行うためのブロアー、11は補
給槽とめっき浴との間で液循環を行わしめるための補助
槽、12はめっき液循環のためのポンプを夫々示してい
る。
Next, an aqueous solution of potassium hydroxide having a predetermined concentration shown in Table 1 is placed in the separation tank 5 and the other separation tank 4 is placed.
Copper pyrophosphate, potassium pyrophosphate and pyrophosphate were dissolved in water to give a copper ion concentration of 22 g / l, and (pyrophosphate ion concentration) / (copper ion concentration) value of 7.3 and p.
A copper pyrophosphate plating solution adjusted to have an H value of 8.3 was added, and the inside of the tank was heated to 50 ° C. In FIG. 1, 10 is a blower for stirring the plating solution on the diaphragm surface, 11 is an auxiliary tank for circulating the solution between the replenishing tank and the plating bath, and 12 is a pump for circulating the plating solution. Each one is shown.

【0026】図1に示すように、銅金属電極7と不溶性
陽極8が正に、対極6と被めっき電極9が負になるよう
に、電気配線を行い、直流電流にて銅電極電流密度2A
/dm 2 、対極電流密度2〜4A/dm2 にて電解実験を行
った。従来例として、銅イオン補給をしないでバッチ処
理にて不溶性陽極8を用いた、めっき実験も併せて行っ
た。
As shown in FIG. 1, insoluble in the copper metal electrode 7
Make the anode 8 positive and the counter electrode 6 and the plated electrode 9 negative.
Electrical wiring is performed on the copper electrode and the current density of the copper electrode is 2A
/ Dm 2, Counter current density 2 to 4 A / dm2Electrolysis experiment at
It was. As a conventional example, batch processing without replenishing copper ions
In addition, a plating experiment using an insoluble anode 8 was also performed.
It was

【0027】かかる実験では、隔膜の種類として実施例
1ではアルミナの焼結材を用い、実施例2ではイオン交
換膜(アニオン交換膜)を用いた。また、各実施例とも
1400cc ピロりん酸銅めっき液、120 ccの水酸化カリウ
ム水溶液を各分離槽に入れ、隔膜面積100 cm2 で、めっ
き電流及び銅イオン補給電解電流共に1Aにて連続して
電解実験を行った。
In this experiment, as the type of the diaphragm, a sintered material of alumina was used in Example 1, and an ion exchange membrane (anion exchange membrane) was used in Example 2. Also, with each example
A 1400 cc copper pyrophosphate plating solution and a 120 cc aqueous solution of potassium hydroxide were placed in each separation tank, and an electrolysis experiment was continuously performed at a diaphragm area of 100 cm 2 with a plating current and a copper ion supply electrolytic current of 1 A.

【0028】めっき浴2中のめっき液の銅イオン濃度、
pHを経時的に分析、測定し、めっき液の組成安定性と
して銅イオン濃度とpHの評価を行った。得られた結果
を下記の表1及び表2に示す。
The copper ion concentration of the plating solution in the plating bath 2,
The pH was analyzed and measured over time, and the copper ion concentration and the pH were evaluated as the composition stability of the plating solution. The obtained results are shown in Tables 1 and 2 below.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】表1に示す実験結果からも明らかな通り、
従来のバッチ方法においては一日後には銅イオンはすべ
て消費され、めっき浴pHも大幅に低下するため正常な
めっきができず、めっき浴の更新を必要とする。これに
対し、本発明における何れの実施例においても、銅イオ
ン濃度、pHとも4日間に亘り安定しており、銅イオン
補給とpH制御が十分になされている。
As is clear from the experimental results shown in Table 1,
In the conventional batch method, after one day, all of the copper ions are consumed and the pH of the plating bath also drops significantly, so that normal plating cannot be performed and the plating bath needs to be renewed. On the other hand, in any of the examples of the present invention, both the copper ion concentration and pH were stable for 4 days, and copper ion replenishment and pH control were sufficiently performed.

【0032】表2は隔膜表面に生成する泥状の生成物に
与える隔膜電流密度とめっき液攪拌強度の影響について
の実験結果を示している。この実験では、図1で示す装
置を用い、上述のピロりん酸銅めっき液と、200 g/l
濃度の水酸化カリウム水溶液を用い、所定の隔膜電流密
度とめっき液攪拌強度を設定し、24時間電解処理を行っ
た後、隔膜表面を目視監察し、泥状生成物の有無を判定
した。尚、めっき液攪拌は空気攪拌で行い、その強度は
攪拌「弱」がめっき液1l当たり1l/minの流量の空気
で攪拌したもの、また攪拌「中」は流量3l/min を、
攪拌「強」は流量5l/min を夫々示している。表2か
ら明らかな通り、攪拌「強」でかつ隔膜電流密度を 1.5
A/dm2を超えない範囲とすることで、泥状生成物の生成
を十分に抑制することができる。この結果から、攪拌を
より強くすることで、より高い隔膜電流密度で電解する
ことができることが判る。
Table 2 shows the experimental results on the influence of the diaphragm current density and the plating solution stirring strength on the mud-like product formed on the diaphragm surface. In this experiment, the apparatus shown in FIG. 1 was used, and the above-mentioned copper pyrophosphate plating solution and 200 g / l were used.
Using a potassium hydroxide aqueous solution having a concentration, a predetermined diaphragm current density and plating solution stirring strength were set, and after electrolytic treatment for 24 hours, the diaphragm surface was visually inspected to determine the presence or absence of a mud-like product. The plating solution is agitated by air, and the strength is "weak" with air having a flow rate of 1 l / min per liter of plating solution, and "medium" with a flow rate of 3 l / min.
The stirring "strong" indicates a flow rate of 5 l / min. As is clear from Table 2, the stirring is "strong" and the diaphragm current density is 1.5.
By setting the range not to exceed A / dm 2 , it is possible to sufficiently suppress the production of mud-like products. From this result, it can be understood that the electrolysis can be performed at a higher diaphragm current density by increasing the stirring.

【0033】[0033]

【発明の効果】以上説明したように、本発明によれば、
不溶性陽極を用いた連続した銅めっき法において、銅イ
オンを透過させることなく水酸化イオンを選択的に透過
させることができる隔膜を備えた銅イオン補給槽を所定
の条件下で使用することにより、銅イオン供給の銅単価
が高くなるものを使用することなく、また液組成または
浴温度等の条件を変更したり、めっき液に第三成分を添
加するということなく銅イオンを供給し、かつ銅イオン
濃度及びpHを安定して保つことができ、これにより、
めっき液管理のための作業性の大幅な向上と生産性の改
善、不溶性陽極を用いることによる品質の向上と生産性
の向上が図られ、その実際上の効果は大なるものがあ
る。
As described above, according to the present invention,
In a continuous copper plating method using an insoluble anode, by using a copper ion replenishment tank provided with a diaphragm capable of selectively permeating hydroxide ions without permeating copper ions under predetermined conditions, Copper ions can be supplied without using copper ions supplied with a high copper unit price, without changing conditions such as solution composition or bath temperature, and without adding a third component to the plating solution. The ion concentration and pH can be kept stable, which allows
The workability for controlling the plating solution is greatly improved, the productivity is improved, and the quality and productivity are improved by using the insoluble anode, and the practical effect thereof is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で使用する銅イオン補給槽とめっき浴と
の間の液循環を示す配置図である。
FIG. 1 is a layout diagram showing liquid circulation between a copper ion replenishment tank and a plating bath used in the present invention.

【図2】本発明で使用する一例銅イオン補給槽の断面図
である。
FIG. 2 is a cross-sectional view of an example copper ion replenishment tank used in the present invention.

【図3】従来の不溶性陽極を用いためっき方法に用いた
めっき浴の断面図である。
FIG. 3 is a sectional view of a plating bath used in a conventional plating method using an insoluble anode.

【符号の説明】[Explanation of symbols]

1 銅イオン補給槽 2 めっき浴 3 隔膜 4 アルカリ水溶液の入った分離槽 5 補給用めっき液の入った分離槽 6 (分離槽内) 対極 7 銅金属電極 8 不溶性陽極 9 被めっき材(被めっき電極) 10 めっき液攪拌ブロアー 11 めっき液循環補助槽 12 めっき液循環ポンプ 13 分離槽内のアルカリ水溶液をめっき液分離槽に溢れ
出させる手段 (配管)
1 Copper ion replenishment tank 2 Plating bath 3 Separation membrane 4 Separation tank containing alkaline aqueous solution 5 Separation tank containing replenishment plating solution 6 (in separation tank) Counter electrode 7 Copper metal electrode 8 Insoluble anode 9 Plated material (plated electrode) ) 10 Plating solution stirring blower 11 Plating solution circulation auxiliary tank 12 Plating solution circulation pump 13 Means (pipe) for overflowing the alkaline aqueous solution in the separation tank into the plating solution separation tank

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 不溶性電極を用いた銅めっき法における
銅めっき浴に、銅イオン補給槽から銅イオンおよび水酸
化イオンを補給することで該銅めっき浴の組成を制御す
る方法において、銅イオンを透過させることなく水酸化
イオンを選択的に透過させる隔膜で分離された上記銅イ
オン補給槽の一方の側を銅めっき液で満しかつこの中に
銅金属電極を浸漬し、他方の側をアルカリ水溶液で満し
かつこの中に対極を浸漬し、上記銅金属電極が正に上記
対極が負となるようにして電解することにより該銅金属
電極から銅イオンを生ぜしめ、この際、上記銅イオン補
給槽での電解電流と上記めっき浴での電解電流とが等し
くなるように制御することにより、補給すべき銅イオン
および水酸化イオンの濃度を一定に保つことを特徴とす
る、不溶性陽極を用いた銅めっき法における銅めっき浴
の組成の制御方法。
1. A method for controlling the composition of a copper plating bath in a copper plating method using an insoluble electrode by supplying copper ions and hydroxide ions to the copper plating bath from a copper ion replenishing tank. One side of the copper ion replenishment tank separated by a diaphragm that selectively permeates hydroxide ions without permeation is filled with a copper plating solution and a copper metal electrode is immersed therein, and the other side is alkali A copper ion is generated from the copper metal electrode by electrolyzing it so that the counter electrode is positive and the counter electrode is negative when the counter electrode is filled with an aqueous solution and is immersed therein. By controlling the electrolytic current in the replenishment tank and the electrolytic current in the plating bath to be equal, the concentration of copper ions and hydroxide ions to be replenished is kept constant. Of controlling the composition of the copper plating bath in the copper plating method.
【請求項2】 隔膜電流密度に上限を設け、めっき液の
入った分離槽の隔膜表面近傍でめっき液の攪拌を行う請
求項1記載の方法。
2. The method according to claim 1, wherein an upper limit is set for the diaphragm current density, and the plating solution is stirred in the vicinity of the diaphragm surface of the separation tank containing the plating solution.
JP10673992A 1992-04-24 1992-04-24 Method for controlling composition of copper plating bath in copper plating using insoluble anode Pending JPH05302199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10673992A JPH05302199A (en) 1992-04-24 1992-04-24 Method for controlling composition of copper plating bath in copper plating using insoluble anode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10673992A JPH05302199A (en) 1992-04-24 1992-04-24 Method for controlling composition of copper plating bath in copper plating using insoluble anode

Publications (1)

Publication Number Publication Date
JPH05302199A true JPH05302199A (en) 1993-11-16

Family

ID=14441298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10673992A Pending JPH05302199A (en) 1992-04-24 1992-04-24 Method for controlling composition of copper plating bath in copper plating using insoluble anode

Country Status (1)

Country Link
JP (1) JPH05302199A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000014308A1 (en) * 1998-09-08 2000-03-16 Ebara Corporation Substrate plating device
WO2001092604A3 (en) * 2000-05-31 2002-04-25 De Nora Elettrodi Spa Electrolysis cell for restoring the concentration of metal ions in processes of electroplating
US6793794B2 (en) 2000-05-05 2004-09-21 Ebara Corporation Substrate plating apparatus and method
US9303329B2 (en) 2013-11-11 2016-04-05 Tel Nexx, Inc. Electrochemical deposition apparatus with remote catholyte fluid management

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0270087A (en) * 1988-09-01 1990-03-08 Nippon Kinzoku Co Ltd Method and apparatus for plating tin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0270087A (en) * 1988-09-01 1990-03-08 Nippon Kinzoku Co Ltd Method and apparatus for plating tin

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000014308A1 (en) * 1998-09-08 2000-03-16 Ebara Corporation Substrate plating device
EP1029954A1 (en) * 1998-09-08 2000-08-23 Ebara Corporation Substrate plating device
US6365017B1 (en) 1998-09-08 2002-04-02 Ebara Corporation Substrate plating device
EP1029954A4 (en) * 1998-09-08 2006-07-12 Ebara Corp Substrate plating device
KR100683268B1 (en) * 1998-09-08 2007-02-15 가부시키가이샤 에바라 세이사꾸쇼 Substrate plating device
US6793794B2 (en) 2000-05-05 2004-09-21 Ebara Corporation Substrate plating apparatus and method
WO2001092604A3 (en) * 2000-05-31 2002-04-25 De Nora Elettrodi Spa Electrolysis cell for restoring the concentration of metal ions in processes of electroplating
US9303329B2 (en) 2013-11-11 2016-04-05 Tel Nexx, Inc. Electrochemical deposition apparatus with remote catholyte fluid management

Similar Documents

Publication Publication Date Title
US6251255B1 (en) Apparatus and method for electroplating tin with insoluble anodes
US8801912B2 (en) Continuous copper electroplating method
US4111772A (en) Process for electrodialytically controlling the alkali metal ions in a metal plating process
US20040065543A1 (en) Insoluble electrode for electrochemical operations on substrates
US5478448A (en) Process and apparatus for regenerating an aqueous solution containing metal ions and sulfuric acid
US20140166492A1 (en) Sn ALLOY PLATING APPARATUS AND METHOD
US4490224A (en) Process for reconditioning a used ammoniacal copper etching solution containing copper solute
JP3131648B2 (en) Copper plating method using non-cyanating bath
JPH10317154A (en) Method for reclaiming solution for tin plating and apparatus therefor
US6899803B2 (en) Method and device for the regulation of the concentration of metal ions in an electrolyte and use thereof
JPH0452296A (en) Copper plating method
CA2054252A1 (en) Process for replenishing metals in aqueous electrolyte solutions
TW434328B (en) Apparatus and a process for regenerating a CUCl2 etchant
JPH10121297A (en) Electrolytic copper plating device using insoluble anode and copper plating method employing the device
JPH0681181A (en) Method of synthesizing palladium amine hydroxide compound
US4229280A (en) Process for electrodialytically controlling the alkali metal ions in a metal plating process
JPH05302199A (en) Method for controlling composition of copper plating bath in copper plating using insoluble anode
JPH04362199A (en) Electroplating device
JPH05171499A (en) Method and device for electroplating with tin or tin-lead alloy using insoluble anode
GB2041408A (en) Electroforming system including an electrolyzer for maintaining the ionic concentration of metal in the electrolyte
JPH10511743A (en) Plating equipment
JP2001514330A (en) Method and apparatus for adjusting the concentration of a substance in an electrolyte
CN117396638A (en) Device and method for coating a component or a semifinished product with a chromium layer
JP3110444U (en) Electrolytic recovery device for metal and electrolytic plating system
US3799850A (en) Electrolytic process of extracting metallic zinc