JPH0841695A - Reduction of ferric ion in plating solution - Google Patents
Reduction of ferric ion in plating solutionInfo
- Publication number
- JPH0841695A JPH0841695A JP18153394A JP18153394A JPH0841695A JP H0841695 A JPH0841695 A JP H0841695A JP 18153394 A JP18153394 A JP 18153394A JP 18153394 A JP18153394 A JP 18153394A JP H0841695 A JPH0841695 A JP H0841695A
- Authority
- JP
- Japan
- Prior art keywords
- plating solution
- reduction
- cathode
- current density
- plating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electroplating And Plating Baths Therefor (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、鉄系めっきおよび鉄
を含有する合金めっき液中でアノード酸化および空気酸
化によって生じる第二鉄イオン(Fe3+)を効率良く第
一鉄イオン(Fe2+)に還元するめっき液中の第二鉄イ
オンの還元方法に関する。BACKGROUND OF THE INVENTION This invention is ferric ion (Fe 3+) efficiently ferrous ions produced by the anode oxidation and air oxidation of an alloy plating solution containing an iron-based plating and iron (Fe 2 + ) To a reduction method of ferric ion in a plating solution.
【0002】[0002]
【従来の技術】亜鉛−鉄、鉄−亜鉛めっきは、鋼板の防
錆めっきとして多用されているが、めっき液中のFe2+
がアノード酸化および空気酸化によってFe3+に酸化さ
れるという製造上の問題点がある。Fe3+はめっき品質
を劣化させ、めっき効率を低下させるため、一定濃度以
下に管理しなければならない。BACKGROUND ART Zinc - iron, iron - galvanizing has been widely used as rust preventive plated steel plates, Fe 2+ in the plating solution
Has a manufacturing problem in that it is oxidized to Fe 3+ by anodic oxidation and air oxidation. Since Fe 3+ deteriorates the plating quality and reduces the plating efficiency, it must be controlled to a certain concentration or less.
【0003】このようにめっき液中のFe3+を一定濃度
以下に管理する方法としては、Fe3+をめっき液外に除
去する方法と、Fe2+に還元する方法がある。Fe3+を
めっき液から除去する方法としては、これをイオン交換
樹脂に吸着させる方法があるが、大規模な装置が必要な
うえにイオン交換樹脂が高価であるために、イニシャル
・ランニングコストが高く、工業生産上問題が多い。As a method of managing Fe 3+ in the plating solution in this way a certain concentration or less, a method of removing Fe 3+ outside plating solution, there is a method of reducing the Fe 2+. As a method of removing Fe 3+ from the plating solution, there is a method of adsorbing Fe 3+ on an ion exchange resin, but since the ion exchange resin is expensive in addition to requiring a large-scale apparatus, the initial running cost is low. It is expensive and has many problems in industrial production.
【0004】一方、Fe3+をFe2+に還元する方法とし
ては、特開昭58−151489号公報に開示されたも
のがある。この方法は、Fe3+を鉄や亜鉛と接触させ
て、以下の(1)〜(3)に示す式で表わされる反応を
生じさせるものである。On the other hand, as a method for reducing Fe 3+ to Fe 2+ , there is a method disclosed in JP-A-58-151489. In this method, Fe 3+ is brought into contact with iron or zinc to cause a reaction represented by the formulas (1) to (3) below.
【0005】 2Fe3+ + Fe → 3Fe2+ ……(1) 2Fe3+ + Zn → 2Fe2+ + Zn2+ ……(2) 2H+ + Fe(or Zn) → H2 + Fe2+(Zn2+) ……(3) この方法は、めっきによって減少するFe2+やZn2+の
補給も兼ねることになるため、上記(1),(2)式の
反応が効率的に起これば有効な還元方法になる。しか
し、実際には同時に起こる上記(3)式に示す水素イオ
ンの還元反応が優勢となるため、非効率的なものとなっ
てしまう。また、この公報によれば、Fe3+の還元効率
が30〜83%と記載されており、還元効率が低い場合
には、必要なFe3+の還元を起こさせるためには過剰な
量のFeやZnをめっき液中に溶解させなければなら
ず、めっき液中のFe2+やZn2+の濃度が過剰となり、
これらの濃度を一定に保つためにはめっき液の一部を廃
棄して水を加えなければならなくなる。2Fe 3+ + Fe → 3Fe 2+ (1) 2Fe 3+ + Zn → 2Fe 2+ + Zn 2+ (2) 2H + + Fe (or Zn) → H 2 + Fe 2+ (Zn 2+ ) ... (3) Since this method also serves as replenishment of Fe 2+ and Zn 2+ reduced by plating, the reactions of the above formulas (1) and (2) occur efficiently. This will be an effective method of reduction. However, in practice, the reduction reaction of hydrogen ions shown in the above formula (3) that occurs at the same time becomes predominant, which is inefficient. Further, according to this publication, the reduction efficiency of Fe 3+ is described as 30 to 83%, and when the reduction efficiency is low, an excessive amount of Fe 3+ is required to cause the required reduction of Fe 3+ . Fe and Zn must be dissolved in the plating solution, and the concentration of Fe 2+ and Zn 2+ in the plating solution becomes excessive,
In order to keep these concentrations constant, part of the plating solution must be discarded and water must be added.
【0006】Fe3+の還元効率に関しては、特公昭63
−11440号公報にポリオキシエチレン系誘導体化合
物、またはポリオキシプロピレン系誘導体化合物を0.
01〜10g/l添加することで還元効率が95%以上
となるとされているが、めっき皮膜特性に与える影響が
全く考慮されていない。これらの添加物は、めっき皮膜
特性に悪影響を与えることが十分に予測されるものであ
り、これらの添加剤をF3+還元促進のためにめっき液中
に混入させることは好ましくない。Regarding the reduction efficiency of Fe 3+ , Japanese Patent Publication No.
No. 11440 discloses a polyoxyethylene derivative compound or a polyoxypropylene derivative compound.
It is said that the addition efficiency of 01 to 10 g / l increases the reduction efficiency to 95% or more, but no consideration is given to the influence on the plating film characteristics. It is sufficiently predicted that these additives will adversely affect the plating film properties, and it is not preferable to mix these additives into the plating solution in order to promote F 3+ reduction.
【0007】上記技術と類似した技術として、可溶性金
属と不溶性金属とを導体で接続して電池を形成させ、不
溶性電極上でF3+を還元する方法が特公平5−1044
0号公報に示されている。しかしながら、この公報に示
された技術は、その実施例に示されているように、銅め
っき、ニッケルめっき液に混入したF3+の除去を目的と
したものであり、F3+の還元効率は一切考慮されておら
ず、Fe2+を主要なめっき成分とするめっき液にはその
まま適用することはできない。As a technique similar to the above technique, a method of connecting a soluble metal and an insoluble metal with a conductor to form a battery and reducing F 3+ on the insoluble electrode is disclosed in JP-B-5-1044.
No. 0 publication. However, the technique disclosed in this publication is intended to remove F 3+ mixed in a copper plating solution or a nickel plating solution, as shown in the examples, and the reduction efficiency of F 3+ is reduced. Is not considered at all, and it cannot be directly applied to a plating solution containing Fe 2+ as a main plating component.
【0008】さらに、特開昭59−25991号公報に
は、イオン交換隔膜を用いて陰極室および陽極室を分離
し、陰極電位をFeの平衡電位である{−0.44+
0.031log[Fe2+]}V(標準水素電極基準)
より貴にして電解を行う方法が示されており、その陰極
としてはチタン上に白金めっきや白金〜イリジウム酸化
物等の水素発生過電圧の低い電極が好適であるとされて
いる。しかしながら、周知のように、イオン交換膜は高
価であるばかりでなく、その寿命も短く、頻繁な交換が
必要であり、さらには隔膜電解は電解電圧が高い等でコ
ストが高いという問題がある。Further, in Japanese Patent Laid-Open No. 59-25991, an ion exchange membrane is used to separate the cathode chamber and the anode chamber, and the cathode potential is the equilibrium potential of Fe {-0.44+.
0.031log [Fe 2+ ]} V (standard hydrogen electrode standard)
A more noble electrolysis method has been disclosed, and an electrode having a low hydrogen generation overvoltage such as platinum plating on platinum or platinum-iridium oxide is said to be suitable as the cathode. However, as is well known, ion exchange membranes are not only expensive, but also have a short life and require frequent replacement, and membrane electrolysis has a problem that the electrolysis voltage is high and the cost is high.
【0009】[0009]
【発明が解決しようとする課題】以上示したように、従
来技術ではFe2+を主要なめっき成分とするめっき液中
のF3+を効率的に還元することはできない。この発明は
かかる事情に鑑みてなされたものであって、めっき液中
の金属イオン濃度の増加を可能な限り少なくして、めっ
き液を廃棄することなく、かつ低コストでめっき液中の
F3+を効率良くFe2+に還元する方法を提供することを
目的とする。As described above, the prior art cannot efficiently reduce F 3+ in the plating solution containing Fe 2+ as the main plating component. The present invention has been made in view of the above circumstances, and it is possible to reduce the increase of the metal ion concentration in the plating solution as much as possible, without discarding the plating solution, and at a low cost, to remove F 3 in the plating solution. and to provide a method for reducing + to efficiently Fe 2+.
【0010】[0010]
【課題を解決するための手段】本発明は、上記課題を解
決するために、第一鉄イオンを含有するめっき浴で、酸
化によって生成する第二鉄イオンを電解還元する方法で
あって、カソードにPb,Pb合金、Sn、Taを用
い、アノードに鉄またはめっきしようとする金属を用い
て電解することを特徴とするめっき液中の第二鉄イオン
の還元方法を提供するものである。In order to solve the above-mentioned problems, the present invention provides a method of electrolytically reducing ferric ions produced by oxidation in a plating bath containing ferrous ions, which comprises a cathode The present invention provides a method for reducing ferric ion in a plating solution, characterized in that Pb, Pb alloy, Sn, and Ta are used as the electrolyte and iron or a metal to be plated is used as an anode for electrolysis.
【0011】また、上記方法において前記電解還元の際
の電流密度(A/dm2 )を{めっき液中の3価鉄イオ
ン濃度(g/l)}×{めっき液流速(m/秒)}×
2.5以下にすることを特徴とするものである。In the above method, the current density (A / dm 2 ) during the electrolytic reduction is {concentration of ferric iron ion in the plating solution (g / l)} × {plating solution flow rate (m / sec)}. ×
It is characterized in that it is 2.5 or less.
【0012】以下、本発明について具体的に説明する。
経済性を考慮して最適なFe3+還元システムを考える
と、隔膜を用いずにめっき液中で直接にFe3+を電解還
元する方法が望ましい。従って、本発明では隔膜を用い
ずにFe3+を電解還元する。The present invention will be specifically described below.
Considering an optimal Fe 3+ reduction system in consideration of economy, a method of electrolytically reducing Fe 3+ directly in a plating solution without using a diaphragm is desirable. Therefore, in the present invention, Fe 3+ is electrolytically reduced without using a diaphragm.
【0013】ここでFe3+を効率的に還元するためには
H+ の還元反応を抑制することが必要である。そこで、
本願発明者らはH+ の還元反応の起こり易さが、還元反
応が起こる電極の水素過電圧に支配されることに着目し
た。従来検討されてきた電極の水素過電圧を表1(電気
学会 大学講座 「電気化学」135ページ)及び表2
(電気化学 Vol.38,No.1,17)に示す。Here, in order to reduce Fe 3+ efficiently, it is necessary to suppress the reduction reaction of H + . Therefore,
The inventors of the present application noted that the easiness of the H + reduction reaction is controlled by the hydrogen overvoltage of the electrode where the reduction reaction occurs. The hydrogen overvoltages of the electrodes that have been studied in the past are shown in Table 1 (Institute of Electrical Engineers, University Lecture “Electrochemistry” page 135) and Table 2.
(Electrochemistry Vol.38, No.1,17).
【0014】[0014]
【表1】 [Table 1]
【0015】[0015]
【表2】 [Table 2]
【0016】表1,2に示されている各電極の水素過電
圧の値自体は測定条件等が異なるため異なっているが、
その大小関係は各表ほぼ同じであり、Pt,Ni,Fe
等の水素過電圧は小さく、Sn,Pb,Zn,Taの水
素過電圧は大きい。従って、水素過電圧の大きなSn,
Pb,Zn,Ta等がFe3+を効率的に還元するために
はより適当であると考えられる。The values of the hydrogen overvoltage of each electrode shown in Tables 1 and 2 are different because of different measurement conditions.
The size relationship is almost the same in each table, and Pt, Ni, Fe
Has a small hydrogen overvoltage, and Sn, Pb, Zn, and Ta have a large hydrogen overvoltage. Therefore, Sn, which has a large hydrogen overvoltage,
It is considered that Pb, Zn, Ta and the like are more suitable for efficiently reducing Fe 3+ .
【0017】また、Fe3+の還元電極としては表面でF
e2+の還元反応が起こりにくいことが必要である。Fe
2+の還元反応が生じるとは金属Feが析出することであ
るから、その部分の水素過電圧はFe電極と同じにな
り、水素発生が優勢となるからである。表1には標準電
極電位も示したが、その意味では標準電極電位がFeよ
りも卑な電極では陰極にするためには電極電位をFeの
析出電位よりも卑にしなければならず、Feが析出する
可能性が高くなり、Fe3+還元電極としては不適であ
る。ただし、Cr,Taは標準電極電位はFeよりも卑
であるが、表面に不働体皮膜を生じるためにめっき液で
はFeよりも貴な電位を示し、Feの析出電位よりも貴
な電位で陰極として使用することができる。ここで、F
eの析出は比較的大きな過電圧(数百mV)を伴う場合
が多いために、実際の析出電位はこの析出過電圧により
卑な電位に移行する。従って、標準電極電位がFeより
も卑な電極でも、大きなFe析出過電圧を有する場合に
はFe3+還元電極として使用することができることが予
想される。また、標準電極電位がFeよりも貴な電極で
もFe析出防止の意味から大きなFe析出過電圧を有す
ることが望ましい。Further, as a reducing electrode for Fe 3+ , F is used on the surface.
It is necessary that the reduction reaction of e 2+ is difficult to occur. Fe
This is because the fact that the 2+ reduction reaction occurs means that metallic Fe is deposited, so that the hydrogen overvoltage in that portion becomes the same as that of the Fe electrode, and hydrogen generation becomes dominant. Table 1 also shows the standard electrode potential, but in that sense, in the case of an electrode whose standard electrode potential is lower than Fe, the electrode potential must be lower than the deposition potential of Fe in order to make it a cathode. The possibility of precipitation increases, and it is unsuitable as a Fe 3+ reduction electrode. However, the standard electrode potentials of Cr and Ta are baser than that of Fe, but since they form a passivation film on the surface, they show a nobler potential than Fe in the plating solution, and at a potential nobler than the Fe deposition potential, the cathode Can be used as Where F
Since the precipitation of e is often accompanied by a relatively large overvoltage (several hundred mV), the actual deposition potential shifts to a base potential due to this deposition overvoltage. Therefore, it is expected that even an electrode having a standard electrode potential lower than that of Fe can be used as an Fe 3+ reduction electrode when it has a large Fe precipitation overvoltage. Further, it is desirable that even an electrode having a standard electrode potential nobler than Fe has a large Fe precipitation overvoltage in order to prevent Fe precipitation.
【0018】以上の理由から、Fe3+還元電極としては
水素過電圧、Fe析出過電圧共に大きな電極が適当であ
り、さらに、標準電極電位がFeよりも貴であることが
適当であると考えられる。From the above reasons, it is considered that an electrode having a large hydrogen overvoltage and a large Fe precipitation overvoltage is suitable as the Fe 3+ reduction electrode, and that the standard electrode potential is more noble than Fe.
【0019】ここで、各種金属・合金のFe析出過電圧
に関する従来からの知見はほとんど無く、水素過電圧お
よび標準電極電位から、上記の条件を満足する電極とし
てPb,Sn,Ta及びこれらの合金を選択してFe3+
還元電極としての適性を検討した。その結果、これらの
電極をカソードにし、Fe又はめっきしようとする金属
例えばZnをアノードにして通電することにより、水素
発生、Feの析出をほとんど伴わずにFe3+の還元が可
能であることを見出した。また、このような方法は、原
理的にめっき液中の金属イオン濃度の増加させず、めっ
き液を廃棄する必要もない。Here, there is almost no conventional knowledge about the Fe precipitation overvoltage of various metals and alloys, and Pb, Sn, Ta and their alloys are selected as electrodes satisfying the above conditions from the hydrogen overvoltage and the standard electrode potential. Then Fe 3+
The suitability as a reduction electrode was investigated. As a result, it is possible to reduce Fe 3+ with almost no hydrogen generation or Fe precipitation by conducting electricity by using these electrodes as cathodes and Fe or a metal to be plated such as Zn as an anode. I found it. In addition, such a method does not increase the metal ion concentration in the plating solution in principle, and there is no need to discard the plating solution.
【0020】この際に、Fe3+の還元効率をできるだけ
大きくするためには、めっき液の流速が大きいことが望
ましい。これは以下のような理由による。工業的にFe
3+還元を行なうためには還元速度を大きくして反応装置
をできるだけ小規模なものにする必要があり、このため
には当然電流密度を高くしなければならない。一方、通
常Fe3+は低濃度に管理されるため、Fe3+の還元反応
はFe3+の拡散支配下にあり、拡散を促進させることが
Fe3+の還元反応促進に有効である。従って、めっき液
の流速を大きくしてFe3+の拡散を促進させ、もってF
e3+の還元効率を高めるのである。At this time, in order to maximize the reduction efficiency of Fe 3+ , it is desirable that the flow rate of the plating solution is high. This is for the following reasons. Fe industrially
In order to carry out 3+ reduction, it is necessary to increase the reduction rate and make the reactor as small as possible, and for this purpose, the current density must be increased. Meanwhile, since the normal Fe 3+ is managed at a low concentration, the reduction reaction of Fe 3+ is under diffusion control of Fe 3+, thereby promoting the diffusion is effective in the reduction reaction promoting Fe 3+. Therefore, the flow velocity of the plating solution is increased to promote the diffusion of Fe 3+ , and thus F
It enhances the reduction efficiency of e 3+ .
【0021】本願発明者の検討によれば、充分に還元効
率が高く(90%以上を想定)、工業的に適用できる還
元電流密度の上限(許容還元電流密度)は、めっき液中
のFe3+濃度と還元時のめっき液流速との関係において
以下の式で表されることが明らかとなった。According to the study by the inventors of the present application, the reduction efficiency is sufficiently high (assuming 90% or more), and the industrially applicable reduction current density upper limit (allowable reduction current density) is Fe 3 in the plating solution. It has been clarified that the relationship between the + concentration and the flow rate of the plating solution during reduction is expressed by the following formula.
【0022】許容還元電流密度(A/dm2 )={Fe
3+濃度(g/l)}×{めっき液流速(m/秒)}×
2.5 また、充分に還元効率が高い状態での陰極電位は水素電
極基準で−550〜−720mVであった。Feの平衡
電位(Fe2+/Fe、−440mV)から考えると、こ
の陰極電気はFeの還元が起こることが予想されるが、
実際にはFeの析出は認められず、長時間に亘って安定
した還元効率が得られた。これは陰極のFe析出過電圧
が大きいことに起因すると考えられる。Allowable reduction current density (A / dm 2 ) = {Fe
3+ concentration (g / l)} × {plating solution flow rate (m / sec)} ×
2.5 Further, the cathode potential in a state where the reduction efficiency was sufficiently high was −550 to −720 mV based on the hydrogen electrode. Considering the equilibrium potential of Fe (Fe 2+ / Fe, −440 mV), it is expected that this cathodic electricity causes reduction of Fe.
In fact, precipitation of Fe was not observed, and stable reduction efficiency was obtained over a long period of time. This is considered to be due to the large Fe precipitation overvoltage of the cathode.
【0023】なお、この発明が適用されるめっき液のp
Hは0.5〜3.0が望ましい。pHが0.5未満では
もともとめっき時の電解効率が低いので、工業生産には
不適当である上に、水素濃度が高いのでカソードでの水
素の還元反応が優勢となり、Fe3+還元反応の反応効率
が低くなる。pHが3.0を超えるとFe3+が水酸化物
となって沈殿し易くなるため望ましくない。The p of the plating solution to which the present invention is applied is
H is preferably 0.5 to 3.0. If the pH is less than 0.5, the electrolysis efficiency during plating is originally low, which is unsuitable for industrial production. In addition, since the hydrogen concentration is high, the hydrogen reduction reaction at the cathode becomes predominant, and the Fe 3+ reduction reaction The reaction efficiency becomes low. If the pH exceeds 3.0, Fe 3+ becomes hydroxide and easily precipitates, which is not desirable.
【0024】[0024]
【実施例】以下、本発明の実施例について説明する。 (実施例1)Fe−Znめっき液中でPb、Pb合金、
Sn、Taをカソード、冷延鋼板をアノードにして定電
流電解を行った。電解は20mmの間隔で対向するアノ
ード及びカソード間をめっき液が均一に流れる構造の循
環電解セルを用いて行った。めっき液流速は0.5〜2
m/secとした。Embodiments of the present invention will be described below. (Example 1) Pb, a Pb alloy in an Fe-Zn plating solution,
Constant current electrolysis was performed using Sn and Ta as cathodes and a cold-rolled steel sheet as an anode. The electrolysis was performed using a circulating electrolysis cell having a structure in which the plating solution uniformly flows between the opposing anode and cathode at an interval of 20 mm. Plating solution flow rate is 0.5-2
It was set to m / sec.
【0025】なお、ここで用いためっき液の組成及び条
件は以下の通りである。 硫酸第一鉄 : 380g/l 硫酸亜鉛 : 20g/l 硫酸ナトリウム : 30g/l pH : 2.0 温度 : 50℃ ここで、Fe3+還元速度を正確に評価するために、電解
無しでめっき液を循環させ、空気酸化でFe2+がFe3+
に酸化される速度を求めた。実際の電解還元時にはこの
空気酸化が生じているものとして還元効率を計算した。
また、冷延鋼板表面でのFe3+の還元は無視できるもの
として還元効率を計算した。なお、通電量は3500ク
ーロン/lとしたが、この電気量においてほぼ100%
の還元効率の場合には、Fe3+濃度は約2g/l低下す
る。この際のカソード電極の種類、めっき液のFe3+濃
度、めっき液流速、許容電流密度、還元電流密度、Fe
3+還元効率を表3に示す。なお、許容還元電流密度は、
Fe3+濃度×めっき液流速×2.5の値である。The composition and conditions of the plating solution used here are as follows. Ferrous sulfate: 380 g / l Zinc sulfate: 20 g / l Sodium sulfate: 30 g / l pH: 2.0 Temperature: 50 ° C. Here, in order to accurately evaluate the Fe 3+ reduction rate, a plating solution without electrolysis Is circulated and Fe 2+ is converted to Fe 3+ by air oxidation.
The rate of oxidization was calculated. The reduction efficiency was calculated assuming that this air oxidation occurred during the actual electrolytic reduction.
The reduction efficiency was calculated assuming that the reduction of Fe 3+ on the surface of the cold-rolled steel sheet can be ignored. The energization amount was 3500 coulombs / l, but with this amount of electricity, almost 100%
In the case of the reduction efficiency of, the Fe 3+ concentration decreases by about 2 g / l. At this time, type of cathode electrode, concentration of Fe 3+ in plating solution, flow rate of plating solution, allowable current density, reduction current density, Fe
The 3+ reduction efficiency is shown in Table 3. The allowable reduction current density is
The value of Fe 3+ concentration × plating solution flow rate × 2.5.
【0026】[0026]
【表3】 [Table 3]
【0027】表3に示すように、カソードにPb、Pb
合金、Sn、Taを用いた実施例のNo.1〜20は5
6%以上の還元効率が得られたのに対し、Pt、Feを
用いた比較例のNo.21〜28は高々14%の還元効
率しか示さなかった。また、実施例のうちNo.1〜1
6は還元電流密度がFe3+濃度×めっき液流速×2.5
で表される許容電流密度以下であるため、90%以上の
高い還元効率が得られた。No.17〜20は還元電流
密度が許容電流密度以上であるため、還元効率が70%
以下に止まった。なお、アノードとカソードとを短絡さ
せて無通電での還元を試みたが、いずれの電極でも明確
なFe3+還元は測定されなかった。 (実施例2)Fe−Znめっき液中でPb、Pb合金、
Sn、Taをカソード、冷延鋼板をアノードにして定電
流電解を行った。電解は実施例1と同じ方法で行った。As shown in Table 3, Pb and Pb were added to the cathode.
No. of the example using alloy, Sn, and Ta. 1 to 20 is 5
While the reduction efficiency of 6% or more was obtained, No. 6 of the comparative example using Pt and Fe. 21-28 showed a reduction efficiency of at most 14%. Further, in the examples, No. 1-1
No. 6 has a reduction current density of Fe 3+ concentration × plating solution flow rate × 2.5
Since the allowable current density is less than or equal to, the high reduction efficiency of 90% or more was obtained. No. Since the reduction current densities of 17 to 20 are equal to or higher than the allowable current density, the reduction efficiency is 70%.
Stopped below. Although the anode and the cathode were short-circuited and an attempt was made to carry out reduction without energization, no clear Fe 3+ reduction was measured at any of the electrodes. (Example 2) Pb, Pb alloy in Fe-Zn plating solution,
Constant current electrolysis was performed using Sn and Ta as cathodes and a cold-rolled steel sheet as an anode. The electrolysis was performed in the same manner as in Example 1.
【0028】なお、ここで用いためっき液の組成及び条
件は以下の通りである。 硫酸第一鉄 : 300g/l 硫酸亜鉛 : 200g/l 硫酸ナトリウム : 30g/l pH : 1.5 温度 : 60℃ 通電量は7000クーロン/lとしたが、この電気量に
おいてほぼ100%の還元効率の場合には、Fe3+濃度
は約4g/l低下する。この際のカソード電極の種類、
めっき液のFe3+濃度、めっき液流速、許容電流密度、
還元電流密度、Fe3+還元効率を表4に示す。The composition and conditions of the plating solution used here are as follows. Ferrous sulphate: 300 g / l Zinc sulphate: 200 g / l Sodium sulphate: 30 g / l pH: 1.5 Temperature: 60 ° C The amount of electricity passed was 7,000 coulomb / l, but at this amount of electricity the reduction efficiency was almost 100%. In the case of, the Fe 3+ concentration decreases by about 4 g / l. The type of cathode electrode at this time,
Fe 3+ concentration of plating solution, plating solution flow rate, allowable current density,
Table 4 shows the reduction current density and the Fe 3+ reduction efficiency.
【0029】[0029]
【表4】 [Table 4]
【0030】表4に示すように、カソードにPb、Pb
合金、Sn、Taを用いた実施例のNo.29〜45は
59%以上の還元効率が得られたのに対し、Pt、Fe
を用いた比較例のNo.46〜51は高々18%の還元
効率しか示さなかった。また、実施例のうちNo.29
〜41は還元電流密度がFe3+濃度×めっき液流速×
2.5で表される許容電流密度以下であるため、90%
以上の高い還元効率が得られた。No.42〜45は還
元電流密度が許容電流密度以上であるため、還元効率が
70%以下に止まった。 (実施例3)Fe−Crめっき液中でPb、Sn、Ta
をカソード、冷延鋼板をアノードにして定電流電解を行
った。電解は実施例1,2と同じ方法で行った。As shown in Table 4, Pb and Pb were added to the cathode.
No. of the example using alloy, Sn, and Ta. 29-45 obtained reduction efficiency of 59% or more, whereas Pt, Fe
No. of the comparative example using. 46-51 showed a reduction efficiency of at most 18%. Further, in the examples, No. 29
~ 41 is the reduction current density Fe 3+ concentration × plating solution flow rate ×
90% because it is less than the allowable current density represented by 2.5
The above high reduction efficiency was obtained. No. Since the reduction current densities of Nos. 42 to 45 were not less than the allowable current density, the reduction efficiency was 70% or less. (Example 3) Pb, Sn, Ta in a Fe-Cr plating solution
Was used as a cathode and a cold-rolled steel sheet as an anode to carry out constant current electrolysis. The electrolysis was performed in the same manner as in Examples 1 and 2.
【0031】なお、ここで用いためっき液の組成及び条
件は以下の通りである。 硫酸第一鉄 : 200g/l 硫酸クロム : 300g/l 硫酸アンモニウム : 50g/l pH : 1.8 温度 50℃ 通電量は3500クーロン/lとしたが、この電気量に
おいてほぼ100%の還元効率の場合には、Fe3+濃度
は約2g/l低下する。この際のカソード電極の種類、
めっき液のFe3+濃度、めっき液流速、許容電流密度、
還元電流密度、Fe3+還元効率を表5に示す。The composition and conditions of the plating solution used here are as follows. Ferrous sulphate: 200 g / l Chromium sulphate: 300 g / l Ammonium sulphate: 50 g / l pH: 1.8 Temperature 50 ° C The energization amount was 3500 coulombs / l, but in the case of a reduction efficiency of almost 100% at this electricity amount The Fe 3+ concentration is reduced by about 2 g / l. The type of cathode electrode at this time,
Fe 3+ concentration of plating solution, plating solution flow rate, allowable current density,
Table 5 shows the reduction current density and the Fe 3+ reduction efficiency.
【0032】[0032]
【表5】 [Table 5]
【0033】表5に示すように、カソードにPb、S
n、Taを用いた実施例のNo.52〜64は52%以
上の還元効率が得られたのに対し、Pt、Feを用いた
比較例のNo.46〜51は高々12%の還元効率しか
示さなかった。また、実施例のうちNo.52〜60は
還元電流密度がFe3+濃度×めっき液流速×2.5で表
される許容電流密度以下であるため、90%以上の高い
還元効率が得られた。No.61〜64は還元電流密度
が許容電流密度以上であるため、還元効率が65%以下
に止まった。As shown in Table 5, Pb and S are added to the cathode.
No. of the example using n and Ta. Nos. 52 to 64 obtained a reduction efficiency of 52% or more, whereas Nos. 52 to 64 of Comparative Examples using Pt and Fe. 46-51 showed a reduction efficiency of at most 12%. Further, in the examples, No. In Nos. 52 to 60, the reduction current density was not more than the allowable current density represented by Fe 3+ concentration × plating solution flow rate × 2.5, so that a high reduction efficiency of 90% or more was obtained. No. In Nos. 61 to 64, the reduction current density was equal to or higher than the allowable current density, so that the reduction efficiency was 65% or less.
【0034】[0034]
【発明の効果】以上説明したように、本発明によれば、
めっき液中の金属イオン濃度の増加を可能な限り少なく
して、めっき液を廃棄することなく、かつ低コストでめ
っき液中のF3+を効率良くFe2+に還元する方法が提供
される。また、還元電流密度を許容電流密度以下にコン
トロールすることにより、極めて高い還元効率を得るこ
とができる。As described above, according to the present invention,
Provided is a method for efficiently reducing F 3+ in a plating solution to Fe 2+ at a low cost, without discarding the plating solution, by minimizing the increase in the concentration of metal ions in the plating solution. . Further, by controlling the reduction current density to be equal to or lower than the allowable current density, extremely high reduction efficiency can be obtained.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 豊文 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toyofumi Watanabe 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Pipe Co., Ltd.
Claims (2)
化によって生成する第二鉄イオンを電解還元する方法で
あって、カソードにPb,Pb合金、Sn、Taを用
い、アノードに鉄またはめっきしようとする金属を用い
て電解することを特徴とするめっき液中の第二鉄イオン
の還元方法。1. A method for electrolytically reducing ferric ions produced by oxidation in a plating bath containing ferrous ions, wherein Pb, Pb alloy, Sn, Ta is used for the cathode, and iron or iron is used for the anode. A method for reducing ferric ion in a plating solution, which comprises electrolyzing using a metal to be plated.
2 )を{めっき液中の3価鉄イオン濃度(g/l)}×
{めっき液流速(m/秒)}×2.5以下にすることを
特徴とする請求項1に記載のめっき液中の第二鉄イオン
の還元方法。2. The current density (A / dm) during the electrolytic reduction.
2 ) = {trivalent iron ion concentration in plating solution (g / l)} x
The method for reducing ferric ion in the plating solution according to claim 1, wherein {plating solution flow rate (m / sec)} × 2.5 or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18153394A JPH0841695A (en) | 1994-08-02 | 1994-08-02 | Reduction of ferric ion in plating solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18153394A JPH0841695A (en) | 1994-08-02 | 1994-08-02 | Reduction of ferric ion in plating solution |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0841695A true JPH0841695A (en) | 1996-02-13 |
Family
ID=16102444
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18153394A Pending JPH0841695A (en) | 1994-08-02 | 1994-08-02 | Reduction of ferric ion in plating solution |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0841695A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1300385C (en) * | 2003-06-13 | 2007-02-14 | 三洋电机株式会社 | Method for recycling of plating solutions |
KR101726092B1 (en) * | 2015-12-24 | 2017-04-12 | 주식회사 포스코 | Method and apparatus for reducing ferric ions in electroplating solution comprising iron |
-
1994
- 1994-08-02 JP JP18153394A patent/JPH0841695A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1300385C (en) * | 2003-06-13 | 2007-02-14 | 三洋电机株式会社 | Method for recycling of plating solutions |
KR101726092B1 (en) * | 2015-12-24 | 2017-04-12 | 주식회사 포스코 | Method and apparatus for reducing ferric ions in electroplating solution comprising iron |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20010054557A1 (en) | Electroplating of metals using pulsed reverse current for control of hydrogen evolution | |
US4140596A (en) | Process for the electrolytic refining of copper | |
US5302260A (en) | Galvanic dezincing of galvanized steel | |
EP0043854A1 (en) | Aqueous electrowinning of metals. | |
US5198095A (en) | Method for continuously manganese-electroplating or manganese-alloy-electroplating steel sheet | |
Dew et al. | The effect of Fe (II) and Fe (III) on the efficiency of copper electrowinning from dilute acid Cu (II) sulphate solutions with the chemelec cell: Part I. Cathodic and anodic polarisation studies | |
JPS6338436B2 (en) | ||
JPH0841695A (en) | Reduction of ferric ion in plating solution | |
Parker et al. | Solvation of ions. Some applications. I. Electrorefining of silver by means of silver sulphate solutions in mixtures of water with 3-hydroxypropionitrile | |
EP0088192B1 (en) | Control of anode gas evolution in trivalent chromium plating bath | |
US3470074A (en) | Depositing zinc coatings | |
US5250162A (en) | Method of reducing Ti(IV) to Ti(III) in acid solution | |
US5534131A (en) | Process for heavy metals electrowinning | |
JPH05331696A (en) | Iron-based electroplating method | |
Nidola | Electrode materials for oxygen evolution cobalt treated lead vs. commercial lead and lead alloys | |
JP2624079B2 (en) | Method and apparatus for zinc-based electroplating on aluminum strip | |
JPS5925991A (en) | Reducing method of metallic ions | |
JPH1136099A (en) | Plating device and plating method thereby | |
US20030106806A1 (en) | Electrochemical process for preparation of zinc metal | |
Hardee et al. | Application of titanium mesh-on-lead technology to metal electrowinning systems | |
Wilcox et al. | The kinetics of electrode reactions III practical aspects | |
JPH09111492A (en) | Method for continuously and electroplating metallic sheet | |
EP0446701A1 (en) | Method for manufacturing electrogalvanized steel sheet excellent in spot weldability | |
JPH01136995A (en) | Composite zinc or zinc-based alloy plating method | |
JPH0413436B2 (en) |