JPH0713319B2 - Fin material for copper heat exchanger and manufacturing method thereof - Google Patents

Fin material for copper heat exchanger and manufacturing method thereof

Info

Publication number
JPH0713319B2
JPH0713319B2 JP1020275A JP2027589A JPH0713319B2 JP H0713319 B2 JPH0713319 B2 JP H0713319B2 JP 1020275 A JP1020275 A JP 1020275A JP 2027589 A JP2027589 A JP 2027589A JP H0713319 B2 JPH0713319 B2 JP H0713319B2
Authority
JP
Japan
Prior art keywords
fin material
alloy
heat exchanger
corrosion resistance
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1020275A
Other languages
Japanese (ja)
Other versions
JPH02200794A (en
Inventor
英男 須田
康 相吉沢
矩正 佐藤
澄男 須佐
勝彦 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP1020275A priority Critical patent/JPH0713319B2/en
Priority to US07/454,460 priority patent/US5063117A/en
Priority to AU47255/89A priority patent/AU620958B2/en
Priority to KR1019890019469A priority patent/KR900010028A/en
Priority to DE68916631T priority patent/DE68916631T2/en
Priority to CA002006660A priority patent/CA2006660A1/en
Priority to EP89123942A priority patent/EP0376248B1/en
Publication of JPH02200794A publication Critical patent/JPH02200794A/en
Priority to US07/737,430 priority patent/US5176812A/en
Publication of JPH0713319B2 publication Critical patent/JPH0713319B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 自動車などの腐食環境の激しい条件で使用される熱交換
器に好適な銅製熱交換器用フィン材とその製造方法に関
するもので、特にフィンとしての熱伝導性を低下させる
ことなく、耐食性を改善し、フィンの薄肉化を可能にし
たものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a fin material for a heat exchanger made of copper, which is suitable for a heat exchanger used in a severe corrosive environment such as an automobile, and a manufacturing method thereof, and particularly as a fin. The corrosion resistance is improved and the fins can be made thinner without lowering the thermal conductivity.

〔従来の技術と発明が解決しようとする課題〕[Problems to be Solved by Conventional Techniques and Inventions]

近年自動車用熱交換器の軽量化に伴なう熱交換器用フィ
ン材の薄肉化の指向が高まる一方、NaCl等の塩化物を融
雪剤として散布する地域や海岸地帯において、塩化物に
よる激しいフィンの腐食損耗に起因する放熱性の低下が
問題となっている。
In recent years, as the weight of heat exchangers for automobiles has become lighter, the trend toward thinner wall thickness of fin materials for heat exchangers has increased. The decrease in heat dissipation due to corrosion wear has become a problem.

一般に熱交換器用フィン材には耐食性と共に熱伝導性や
強度等が要求されており、Cu−Ni系耐食合金の如く、第
2,第3の元素の添加によるフィン材そのものの合金化に
よって塩害腐食に耐える耐食性を持たせた場合には、熱
伝導性の大幅な低下を招き、熱交換器用フィン材として
は適さないものとなる。従って熱交換器用フィン材に
は、薄肉化によっても十分な熱伝導性を示すと共に、苛
酷な環境下において優れた耐食性を示す材料が要望され
ている。
Generally, fin materials for heat exchangers are required to have corrosion resistance as well as thermal conductivity and strength.
If the fin material itself is alloyed by the addition of the second and third elements to have corrosion resistance to withstand salt corrosion, it will lead to a significant decrease in thermal conductivity, making it unsuitable as a fin material for heat exchangers. Become. Therefore, there is a demand for a fin material for a heat exchanger that has sufficient thermal conductivity even when it is made thin and that has excellent corrosion resistance in a harsh environment.

かかる状況において高導電性Cu系材料の表面にZnの拡散
層を形成し、犠牲陽極的に内部の芯材を保護し、熱伝導
性は芯材にもたせた熱交換器用フィン材が提案されてい
る。しかしながらZn合金特有の脱亜鉛腐食によりZnが消
失し、長期間に亘ってZnの犠牲陽極効果を保持すること
ができない問題がある。しかし表面に形成されるZnの拡
散層は熱伝導性との兼ね合いにより、片側数μm程度に
限定されてはいるがZnの拡散層の脱亜鉛腐食が効果的に
抑制防止できれば、更に耐食性に優れた熱交換器用フィ
ン材が期待でき、薄肉化も可能となる。黄銅特有の脱亜
鉛を抑制するためには、Cu−Zn拡散層中に耐食性の改善
に有効な第3元素を添加し、拡散層自体の高耐食化を計
る必要がある。
In such a situation, a fin material for a heat exchanger has been proposed in which a Zn diffusion layer is formed on the surface of a highly conductive Cu-based material, the inner core material is protected by a sacrificial anode, and the thermal conductivity is given to the core material. There is. However, there is a problem that Zn disappears due to the dezincification corrosion peculiar to Zn alloys, and the sacrificial anode effect of Zn cannot be maintained for a long period of time. However, the Zn diffusion layer formed on the surface is limited to about several μm on one side due to the balance with thermal conductivity, but if the dezincification corrosion of the Zn diffusion layer can be effectively suppressed and prevented, the corrosion resistance will be even better. It is possible to expect fin materials for heat exchangers, and it is possible to reduce the wall thickness. In order to suppress the dezincification peculiar to brass, it is necessary to add a third element effective in improving the corrosion resistance to the Cu-Zn diffusion layer to measure the corrosion resistance of the diffusion layer itself.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明はこれに鑑み、Cu又はCu合金条の表面に形成され
たCu−Zn拡散層の耐食性改善の効果に対する添加元素の
影響について検討の結果、Niの添加が好適であることを
知見し、更に検討の結果耐食性に優れた銅製熱交換器用
フィン材とその製造方法を開発したものである。
In view of this, the present invention, as a result of studying the influence of additional elements on the effect of improving the corrosion resistance of the Cu-Zn diffusion layer formed on the surface of Cu or Cu alloy strip, found that the addition of Ni is suitable, As a result of further study, a fin material for a heat exchanger made of copper having excellent corrosion resistance and a manufacturing method thereof have been developed.

即ち本発明フィン材は、Cu又はCu合金条の表面に、Ni含
有率6〜18wt%のZn−Ni合金を被覆して加熱拡散処理に
より、表面側にCu−Zn−Ni合金層を形成し、その下層に
Cu−Zn合金層を形成したことを特徴とするものである。
That is, in the fin material of the present invention, the surface of Cu or a Cu alloy strip is coated with a Zn-Ni alloy having a Ni content of 6 to 18 wt% and subjected to a heat diffusion treatment to form a Cu-Zn-Ni alloy layer on the surface side. , Underneath
It is characterized in that a Cu-Zn alloy layer is formed.

また本発明フィン材の製造方法は、Cu又はCu合金条の表
面に、電気メッキによりNi含有率6〜18wt%のZn−Ni合
金を被覆した後、加熱拡散処理するか、又は加熱拡散処
理と圧延加工を施すことを特徴とするものである。
Further, the method for producing the fin material of the present invention is such that the surface of a Cu or Cu alloy strip is coated with a Zn-Ni alloy having a Ni content of 6 to 18 wt% by electroplating and then subjected to heat diffusion treatment or heat diffusion treatment. It is characterized by being rolled.

〔作用〕[Action]

本発明はCu又はCu合金条の表面に耐食性の優れたNi含有
率6〜18wt%のZn−Ni合金をメッキすることにより、Zn
合金の脱亜鉛腐食を軽減し、かつZnの犠牲陽極的効果に
より内部のCu又はCu合金を保護するものであり、Zn−Ni
合金メッキ浴としてメッキ膜中のNi含有率6〜18wt%と
なるメッキ浴及びメッキ条件であれば、硫酸塩浴、塩化
物浴、硫酸塩と塩化物の混合浴及びスルファミン酸浴等
何れも使用できる。
According to the present invention, the surface of a Cu or Cu alloy strip is plated with a Zn-Ni alloy having a Ni content of 6 to 18 wt%, which has excellent corrosion resistance.
It reduces the dezincification corrosion of the alloy and protects the internal Cu or Cu alloy by the sacrificial anodic effect of Zn.
As the alloy plating bath, if the plating content is such that the Ni content in the plating film is 6 to 18 wt% and the plating conditions are, sulfate bath, chloride bath, sulfate and chloride mixed bath, sulfamic acid bath, etc. are all used. it can.

Ni含有率6〜18wt%としたのは、Ni含有率が6wt%以上
で耐食性の優れたγ相主体の形態となりはじめ、約10wt
%以上でほぼγ相単相となり耐食性が改善されるが、6w
t%未満ではZnにNiが固溶した相が主体となるため、耐
食性の改善効果はほとんどないか、あってもわずがであ
り、高価なNiを使用するZn−Ni合金メッキのメリットが
生かされないためである。また18wt%以下としたのは、
これ以上Ni含有率を増加させても、更に耐食性が改善さ
れることがないことと、高価なNiが増加する分経済的に
不利となるためで、好ましくはNi含有率10〜15wt%が望
ましい。
The Ni content of 6-18 wt% is about 10 wt% when the Ni content is 6 wt% or more and the γ-phase-based morphology with excellent corrosion resistance begins to occur.
%, The γ phase becomes almost single phase and the corrosion resistance is improved, but 6w
If it is less than t%, the phase in which Ni is solid-dissolved in Zn is the main component, so there is little or no improvement effect on corrosion resistance, or even if there is, there is a merit of Zn-Ni alloy plating using expensive Ni. This is because it is not alive. In addition, the reason why the amount is 18 wt% or less is
Even if the Ni content is increased more than this, the corrosion resistance is not further improved, and it is economically disadvantageous because the expensive Ni increases, so the Ni content is preferably 10 to 15 wt%. .

Zn−Ni合金メッキ後の加熱拡散処理はメッキ層とCu又は
Cu合金条との相互拡散により、両者の密着性を強固にす
るとともに、Cu中へのZnとNiの拡散速度の差(Znの方が
Niより速い)を利用し、Zn−Niγ相の形態を維持しなが
らZnの一部をCuに置きかえ、拡散層の表面側を高耐食性
のCu−Zn−Ni合金層とし、その下層をCu−Zn合金層とす
る2層の拡散層とすることで拡散層に犠牲陽極効果と高
耐食性を兼ねそなえさせるためである。また圧延加工は
加熱拡散と相俟って密着性を改善し、寸法精度を向上す
ると共に、メッキ層を加工組織とすることにより、フィ
ン材の強度を改善するためである。加熱拡散処理と圧延
加工は何れを先に施しても、本発明の効果は得られる
が、最終工程で圧延加工を施すことか望ましい。
The heat diffusion treatment after the Zn-Ni alloy plating is performed with the plating layer and Cu or
The mutual diffusion with the Cu alloy strip strengthens the adhesion between the two, and the difference in the diffusion rate between Zn and Ni in Cu (Zn is
Faster than Ni), part of Zn is replaced with Cu while maintaining the morphology of the Zn-Niγ phase, and the surface side of the diffusion layer is made a highly corrosion resistant Cu-Zn-Ni alloy layer, and the lower layer is Cu- This is because the two diffusion layers, which are Zn alloy layers, allow the diffusion layers to have both a sacrificial anode effect and high corrosion resistance. Further, the rolling process improves the adhesiveness and the dimensional accuracy in combination with the heat diffusion, and improves the strength of the fin material by forming the plated layer into a processed structure. The effect of the present invention can be obtained by performing either the heat diffusion treatment or the rolling process first, but it is desirable to perform the rolling process in the final step.

〔実施例〕〔Example〕

厚さ0.065mmのMgを0.02wt%含む耐熱銅条(導電率95.5
% IACS)を用い、下記メッキ浴(1),(2),
(3),(4),(5),(6),(7)を用い、両面
に厚さ2.4μのZn−Ni合金メッキを施した後、500℃で1
分間加熱拡散処理し、これを圧延加工して厚さ0.036mm
のフィン材とした。
Heat-resistant copper strip containing 0.02 wt% Mg with a thickness of 0.065 mm (conductivity 95.5
% IACS) using the following plating baths (1), (2),
Using (3), (4), (5), (6), and (7), apply 2.4-μm thick Zn-Ni alloy plating on both sides, and
Heat-diffused for minutes, rolled to 0.036mm
Of fin material.

これについて腐食試験を行なって、引張り強度の劣化率
を測定した。その結果を厚さ2.4μの純Znをメッキした
後、450℃で1分間加熱拡散処理を行ない、しかる後圧
延加工により、厚さ0.036mmとしたものと比較して第1
表に示す。
A corrosion test was performed on this, and the deterioration rate of the tensile strength was measured. The result was compared with the result of plating pure Zn with a thickness of 2.4μ, followed by heat diffusion treatment at 450 ° C for 1 minute, and then rolling it to a thickness of 0.036mm.
Shown in the table.

腐食試験はJIS Z 2371に基づく塩水噴霧を1時間行なっ
た後、温度70℃、湿度95%の恒温恒湿槽内に23時間保持
することを30回繰り返した。
In the corrosion test, salt spray based on JIS Z 2371 was carried out for 1 hour, and then kept in a thermo-hygrostat at a temperature of 70 ° C. and a humidity of 95% for 23 hours, which was repeated 30 times.

メッキ浴(1) NiSO4・6H2O 300g/ ZnSO4・7H2O 80g/ Na2SO4 100g/ Al(SO4・14−18H2O 30g/ pH 2.5 温度 50℃ 電流密度 5A/dm2 メッキ浴(2) NiCl4・6H2O 180g/ ZnCl2 80g/ NH4Cl 230g/ H3BO 20g/ pH 5.0 温度 30℃ 電流密度 5A/dm2 メッキ浴(3) NiSO4・6H2O 300g/ ZnSO4・7H2O 250g/ Na2SO4 100g/ Al2(SO4・14−18H2O 30g/ pH 2.0 温度 50℃ 電流密度 35A/dm2 メッキ浴(4) NiSO4・6H2O 80g/ ZnSO4・7H2O 240g/ Na2SO4 100g/ Al2(SO4・14−18H2O 30g/ pH 1.5 温度 50℃ 電流密度 5A/dm2 メッキ浴(5) NiSO4・6H2O 50g/ ZnSO4・7H2O 250g/ Na2SO4 100g/ Al2(SO4・14−18H2O 30g/ pH 1.5 温度 50℃ 電流密度 5A/dm2 メッキ浴(6) NiSO4・6H2O 300g/ ZnSO4・7H2O 20g/ Na2SO4 100g/ Al2(SO4・14−18H2O 30g/ pH 1.5 温度 50℃ 電流密度 5A/dm2 メッキ浴(7) ZnSO4・7H2O 250g/ Na2SO4 100g/ Al2(SO4・14−18H2O 30g/ pH 1.5 温度 50℃ 電流密度 5A/dm2 第1表から明らかなように、純Znをメッキした後、加熱
拡散と圧延加工を加えた比較フィン材No.7は脱亜鉛が著
しく強度劣化が大きいのに対し、本発明フィン材No.1〜
4は、何れも脱亜鉛が少なく、強度劣化が小さいことが
判る。
Plating bath (1) NiSO 4・ 6H 2 O 300g / ZnSO 4・ 7H 2 O 80g / Na 2 SO 4 100g / Al (SO 4 ) 3・ 14-18H 2 O 30g / pH 2.5 Temperature 50 ℃ Current density 5A / dm 2 plating bath (2) NiCl 4・ 6H 2 O 180g / ZnCl 2 80g / NH 4 Cl 230g / H 3 BO 20g / pH 5.0 Temperature 30 ℃ Current density 5A / dm 2 plating bath (3) NiSO 4・ 6H 2 O 300g / ZnSO 4 · 7H 2 O 250g / Na 2 SO 4 100g / Al 2 (SO 4) 3 · 14-18H 2 O 30g / pH 2.0 temperature 50 ° C. current density 35A / dm 2 plating bath (4) NiSO 4・ 6H 2 O 80g / ZnSO 4・ 7H 2 O 240g / Na 2 SO 4 100g / Al 2 (SO 4 ) 3・ 14-18H 2 O 30g / pH 1.5 Temperature 50 ℃ Current density 5A / dm 2 Plating bath (5 ) NiSO 4 · 6H 2 O 50g / ZnSO 4 · 7H 2 O 250g / Na 2 SO 4 100g / Al 2 (SO 4) 3 · 14-18H 2 O 30g / pH 1.5 temperature 50 ° C. current density 5A / dm 2 plating Bath (6) NiSO 4・ 6H 2 O 300g / ZnSO 4・ 7H 2 O 20g / Na 2 SO 4 100g / Al 2 (SO 4 ) 3・ 14-18H 2 O 30g / pH 1.5 Temperature 50 ℃ Current density 5A / dm 2 plating bath (7) ZnSO 4・ 7H 2 O 250g / Na 2 SO 4 100g / Al 2 (S O 4 ) 3・ 14-18H 2 O 30g / pH 1.5 Temperature 50 ℃ Current density 5A / dm 2 As is clear from Table 1, the comparative fin material No. 7 in which pure Zn is plated, followed by heat diffusion and rolling, has a markedly deteriorated strength when dezincified, whereas the fin material No. 1 of the present invention ~
It can be seen that in Nos. 4 and 4, the dezincification is small and the strength deterioration is small.

これに対しメッキ膜中のNi含有率が少ない比較フィン材
No.5は脱亜鉛が著しく、強度劣化が大きいことが判る。
またNi含有率が上限の18wt%を越える比較フィン材No.6
は、より以上の耐食性を改善する効果が認められず、Ni
を多く含有させた分コストアップにつながり不利とな
る。
On the other hand, a comparative fin material with a low Ni content in the plated film
It can be seen that in No. 5, the dezincification is remarkable and the strength is greatly deteriorated.
Also, the comparative fin material No. 6 whose Ni content exceeds the upper limit of 18 wt%
Does not show the effect of improving the corrosion resistance further,
Since a large amount is contained, it leads to an increase in cost and is disadvantageous.

〔発明の効果〕〔The invention's effect〕

このように本発明によれば、銅製熱交換器用フィン材の
耐食性を効果的に改善すると共に、熱伝導性の低下を低
くおさえることが可能となり、放熱用フィンとしての使
用寿命を向上させ、かつ薄肉軽量化を可能にする等工業
上顕著な効果を奏するものである。
Thus, according to the present invention, while effectively improving the corrosion resistance of the copper heat exchanger fin material, it is possible to suppress the decrease in thermal conductivity low, improve the service life as a heat dissipation fin, and It has a remarkable industrial effect such as a reduction in thickness and weight.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 矩正 栃木県日光市清滝町500番地 古河電気工 業株式会社日光事業所内 (72)発明者 須佐 澄男 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 (72)発明者 高田 勝彦 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 (56)参考文献 特開 昭61−172690(JP,A) 特開 昭61−110794(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Norimasa Sato, No. 500 Kiyotaki-cho, Nikko City, Tochigi Prefecture, Furukawa Electric Co., Ltd. Nikko Works (72) Sumio Susa, 1-1, Showa-cho, Kariya City, Aichi Japan Within Denso Co., Ltd. (72) Inventor Katsuhiko Takada 1-1, Showa-cho, Kariya City, Aichi Prefecture Within Nihon Denso Co., Ltd. (56) Reference JP 61-172690 (JP, A) JP 61-110794 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】Cu又はCu合金条の表面に、Ni含有率6〜18
wt%のZn−Ni合金を被覆して加熱拡散処理により、表面
側にCu−Zn−Ni合金層を形成し、その下層にCu−Zn合金
層を形成したことを特徴とする銅製熱交換器用フィン
材。
1. A Ni content of 6 to 18 on the surface of Cu or Cu alloy strip.
For a copper heat exchanger characterized by forming a Cu-Zn-Ni alloy layer on the surface side by coating a wt% Zn-Ni alloy by heat diffusion treatment and forming a Cu-Zn alloy layer below it. Fin material.
【請求項2】Cu又はCu合金条の表面に、電気メッキによ
りNi含有率6〜18wt%のZn−Ni合金を被覆した後、加熱
拡散処理するか、又は加熱拡散処理と圧延加工を施すこ
とを特徴とする銅製熱交換器用フィン材の製造方法。
2. A surface of a Cu or Cu alloy strip is coated with a Zn-Ni alloy having a Ni content of 6 to 18 wt% by electroplating and then subjected to heat diffusion treatment or heat diffusion treatment and rolling. A method of manufacturing a fin material for a copper heat exchanger, comprising:
JP1020275A 1988-12-27 1989-01-30 Fin material for copper heat exchanger and manufacturing method thereof Expired - Lifetime JPH0713319B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP1020275A JPH0713319B2 (en) 1989-01-30 1989-01-30 Fin material for copper heat exchanger and manufacturing method thereof
US07/454,460 US5063117A (en) 1988-12-27 1989-12-21 Copper fin material for heat-exchanger and method of producing the same
AU47255/89A AU620958B2 (en) 1988-12-27 1989-12-22 Copper fin material for heat-exchanger and method of producing the same
KR1019890019469A KR900010028A (en) 1988-12-27 1989-12-26 Copper fin material for heat exchanger and manufacturing method thereof
CA002006660A CA2006660A1 (en) 1988-12-27 1989-12-27 Copper fin material for heat-exchanger and method of producing the same
DE68916631T DE68916631T2 (en) 1988-12-27 1989-12-27 Copper-based material for the cooling fins of a heat exchanger and process for its production.
EP89123942A EP0376248B1 (en) 1988-12-27 1989-12-27 Copper fin material for heat-exchanger and method of producing the same
US07/737,430 US5176812A (en) 1988-12-27 1991-07-29 Copper fin material for heat-exchanger and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1020275A JPH0713319B2 (en) 1989-01-30 1989-01-30 Fin material for copper heat exchanger and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH02200794A JPH02200794A (en) 1990-08-09
JPH0713319B2 true JPH0713319B2 (en) 1995-02-15

Family

ID=12022623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1020275A Expired - Lifetime JPH0713319B2 (en) 1988-12-27 1989-01-30 Fin material for copper heat exchanger and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0713319B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02228495A (en) * 1989-03-01 1990-09-11 Furukawa Electric Co Ltd:The Fin material for heat exchanger made of copper and production thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61110794A (en) * 1984-11-06 1986-05-29 Mitsui Mining & Smelting Co Ltd Surface treatment of copper foil
JPH07116634B2 (en) * 1985-01-29 1995-12-13 古河電気工業株式会社 Heat exchanger fin material and its manufacturing method

Also Published As

Publication number Publication date
JPH02200794A (en) 1990-08-09

Similar Documents

Publication Publication Date Title
TWI729129B (en) Tinned copper terminal material and terminal and wire end part structure
EP0214667B1 (en) Palladium and palladium alloy composite electrodeposits and method for their production
JPH10287986A (en) Magnesium alloy member excellent in adhesion and its production
JP2018147777A (en) Anticorrosive terminal material and anticorrosive terminal and wire terminal structure
US3892637A (en) Method of treatment of metal surfaces
JPWO2018122935A1 (en) Slide fastener or button member made of plated aluminum or aluminum alloy
US5063117A (en) Copper fin material for heat-exchanger and method of producing the same
TWI752184B (en) Corrosion-resistant terminal material, corrosion-resistant terminal, and wire termination structure
JPH0713319B2 (en) Fin material for copper heat exchanger and manufacturing method thereof
JPH0660435B2 (en) Fin material for copper heat exchanger and manufacturing method thereof
WO2017104682A1 (en) Method for manufacturing tin-plated copper terminal material
JP2019011503A (en) Anticorrosion terminal material, manufacturing method thereof, anticorrosion terminal and wire terminal part structure
JP2018147778A (en) Anticorrosive terminal material, anticorrosive terminal, and wire terminal structure
JPS63137193A (en) Stainless steel contact material for electronic parts and its production
JPS63243295A (en) Rust preventive steel sheet having superior corrosion resistance
WO2020079904A1 (en) Electroconductive material, molded article, and electronic component
JP6978287B2 (en) Plating material
WO2019087926A1 (en) Anticorrosive terminal material, anticorrosive terminal, and electric wire end structure
US5176812A (en) Copper fin material for heat-exchanger and method of producing the same
Bahrololoom et al. Microstructure, morphology and corrosion resistance of electrodeposited zinc-cobalt compositionally modulated alloy multilayer coatings
WO2021261348A1 (en) Corrosion-resistant terminal material for aluminum core wire, method for manufacturing same, corrosion-resistant terminal, and electric wire terminal structure
JPH07116634B2 (en) Heat exchanger fin material and its manufacturing method
JPH01201460A (en) Manufacture of heat-exchanger fin material made of copper
JPH0329878B2 (en)
JP2560842B2 (en) Method for manufacturing corrosion resistant film