JPS637024B2 - - Google Patents

Info

Publication number
JPS637024B2
JPS637024B2 JP57132428A JP13242882A JPS637024B2 JP S637024 B2 JPS637024 B2 JP S637024B2 JP 57132428 A JP57132428 A JP 57132428A JP 13242882 A JP13242882 A JP 13242882A JP S637024 B2 JPS637024 B2 JP S637024B2
Authority
JP
Japan
Prior art keywords
signal
deflection
blanking
circuit
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57132428A
Other languages
Japanese (ja)
Other versions
JPS5922325A (en
Inventor
Sadao Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP13242882A priority Critical patent/JPS5922325A/en
Publication of JPS5922325A publication Critical patent/JPS5922325A/en
Publication of JPS637024B2 publication Critical patent/JPS637024B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Electron Beam Exposure (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、電子ビーム描画装置の改良に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to improvements in electron beam lithography apparatus.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近時、半導体ウエーハやマスク等の試料に微細
パターンを形成するものとして、各種の電子ビー
ム描画装置が開発されている。この装置では、電
子ビームの寸法がある有限の値より小さいため、
与えられた図形を描画するためには有限寸法のビ
ームで順次シヨツトしていくか、或いはラスタ走
査を行うようにしている。電子ビームのプロフア
イルは第1図a,bに示す如く有限の傾斜を持つ
ており(通常この幅は10〔%〕−90〔%〕で0.2〜
0.5〔μm〕程度)、試料上のドーズ分布傾斜とし
て現われる。なお、第1図aは単一ビームのプロ
フアイル、同図bは可変寸法ビームのプロフアイ
ルを示している。
Recently, various electron beam lithography apparatuses have been developed to form fine patterns on samples such as semiconductor wafers and masks. In this device, the dimensions of the electron beam are smaller than a certain finite value, so
In order to draw a given figure, a beam of finite dimensions is shot sequentially or raster scanning is performed. The profile of the electron beam has a finite slope as shown in Figure 1 a and b (normally this width is 10 [%] - 90 [%] and has a slope of 0.2 to 90 [%]).
(approximately 0.5 [μm]), which appears as a slope of the dose distribution on the sample. Note that FIG. 1a shows a profile of a single beam, and FIG. 1b shows a profile of a variable-dimension beam.

ところで、このようなビーム、例えば第1図a
に示すビーム1を用い第2図に示す如く矩形のパ
ターン2を描画した場合、ビームの走査方向とこ
れに直交する方向とでは異つたドーズプロフアイ
ルが得られる。すなわち、ビームの走査方向と直
交する方向(図中A1−A2方向)では上記ビーム
1と略同様なドーズプロフアイルAとなる。ま
た、ビームの走査方向(図中B1−B2方向)では
非常に緩やかな傾斜を持つドーズプロフアイルB
となる。このため、プロセス変動、レジスト膜厚
変動及びビーム電流変動等による影響が、走査方
向とそれに直交する方向とで異つてくる。したが
つて、現像条件による寸法制御が不可能となり、
描画精度の低下を招くと共に分解能が制約される
等の問題があつた。また、このような問題は前記
第1図bに示す如き可変寸法ビームを用いる場合
にあつても同様に云えることである。
By the way, such a beam, for example, Fig. 1a
When a rectangular pattern 2 is drawn as shown in FIG. 2 using the beam 1 shown in FIG. 2, different dose profiles are obtained in the scanning direction of the beam and the direction orthogonal thereto. That is, in the direction perpendicular to the scanning direction of the beam (direction A 1 -A 2 in the figure), the dose profile A is substantially the same as that of the beam 1 described above. In addition, the dose profile B has a very gentle slope in the beam scanning direction (B 1 - B 2 direction in the figure).
becomes. Therefore, the effects of process variations, resist film thickness variations, beam current variations, etc. differ between the scanning direction and the direction perpendicular thereto. Therefore, it becomes impossible to control the dimensions by changing the development conditions.
There were problems such as a decrease in drawing accuracy and a restriction in resolution. Further, such problems also apply when a variable dimension beam as shown in FIG. 1B is used.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、構成の複雑化を招くことな
く、走査の始点および終点におけるドーズプロフ
アイルを急峻化でき、走査方向とこれに直交する
方向とのドーズ量分布を略等しくすることがで
き、もつて描画精度の向上をはかり得る電子ビー
ム描画装置を提供することにある。
An object of the present invention is to make it possible to steepen the dose profile at the start point and end point of scanning without complicating the configuration, and to make the dose distribution in the scanning direction and the direction orthogonal thereto substantially equal. An object of the present invention is to provide an electron beam lithography apparatus that can improve lithography accuracy.

〔発明の概要〕[Summary of the invention]

本発明の骨子は、走査の始点及び終点における
ビームの偏向走査速度を制御し、これらの点にお
けるドーズプロフアイルを急峻なものとすること
にある。
The gist of the present invention is to control the deflection and scanning speed of the beam at the start and end points of scanning to make the dose profile steep at these points.

すなわち本発明は、電子ビームをブランキング
する機能及び偏向走査する機能を備え試料上に所
望パターンを描画する電子ビーム描画装置におい
て、ブランキング情報から描画の始点及び終点を
求め、これらの点におけるビームの偏向走査を制
御し、ビームの走査方向とそれに直交する方向と
のドーズ量分布が略等しくなるようにしたもので
ある。
In other words, the present invention provides an electron beam lithography apparatus that is equipped with an electron beam blanking function and a deflection scanning function and that draws a desired pattern on a sample. The deflection scanning of the beam is controlled so that the dose distribution in the beam scanning direction and the direction perpendicular thereto are approximately equal.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ビームの走査方向とこれに直
交する方向との描画パターン端部におけるドーズ
プロフアイルを略等しくすることができるので、
描画寸法の制御が容易となり、描画精度の向上を
はかり得る。また、走査方向のドーズプロフアイ
ルが急峻となるので、実用分解能を向上させるこ
とができる。つまり、より微細なパターンの描画
が可能となる。また、ブランキング情報から描画
の始点と終点とを検出し、これに基いて偏向走査
を制御するようにしているので、描画の始点およ
び終点に対する同期が取り易く、したがつて装置
の複雑化を招くようなこともない。
According to the present invention, the dose profile at the end of the drawing pattern in the beam scanning direction and the direction perpendicular thereto can be made approximately equal.
The drawing dimensions can be easily controlled, and drawing accuracy can be improved. Furthermore, since the dose profile in the scanning direction becomes steep, practical resolution can be improved. In other words, it becomes possible to draw finer patterns. In addition, since the start and end points of drawing are detected from the blanking information and the deflection scanning is controlled based on this, it is easy to synchronize the start and end points of drawing, thereby reducing the complexity of the device. There was no invitation.

〔発明の実施例〕[Embodiments of the invention]

第3図は電子ビーム描画装置の標準構成から本
発明に関連する部分を描出して示す概略構成図で
ある。図中1は電子銃、2はブランキング板、3
は偏向板、4は試料、5は試料ステージであり、
6は制御回路、7はブランキング回路、8は偏向
走査回路を示している。この装置では描画すべき
パターン情報に応じて制御回路6からブランキン
グ回路7及び偏向走査回路8にそれぞれブランキ
ング情報及び偏向情報が与えられる。そして、電
子銃1から発射された電子ビームは偏向走査回路
8及び偏向板3により上記パターン情報に応じて
偏向され、試料4に照射される。また、上記電子
ビームはブランキング回路7及びブランキング板
2によりパターン情報に応じてブランキングされ
るものとなつている。
FIG. 3 is a schematic configuration diagram depicting portions related to the present invention from the standard configuration of an electron beam lithography apparatus. In the figure, 1 is an electron gun, 2 is a blanking plate, and 3
is a deflection plate, 4 is a sample, 5 is a sample stage,
Reference numeral 6 indicates a control circuit, 7 a blanking circuit, and 8 a deflection scanning circuit. In this apparatus, blanking information and deflection information are provided from a control circuit 6 to a blanking circuit 7 and a deflection scanning circuit 8, respectively, in accordance with pattern information to be drawn. The electron beam emitted from the electron gun 1 is deflected by the deflection scanning circuit 8 and the deflection plate 3 according to the pattern information, and is irradiated onto the sample 4. Further, the electron beam is blanked by a blanking circuit 7 and a blanking plate 2 according to pattern information.

第4図は本発明の一実施例に係わる電子ビーム
描画装置の要部を示す概略構成図である。なお、
第3図と同一部分には同一符号を付して、その詳
しい説明は省略する。この実施例装置が第3図の
装置と異なる点は、光学鏡筒内に補正用偏向板1
1を設け、走査の始点及び終点において偏向板3
による主偏向方向と逆方向にビームを偏向走査す
るようにしたことである。すなわち、前記制御回
路6からのブランキング情報は遅延回路DL12
を介してブランキング回路7に供給されると共
に、補正回路13に供給される。補正回路13は
第5図に示す如く微分回路13a、フイルタ13
b、位相補正回路13cおよび整流加算増幅回路
13dからなるもので、上記ブランキング情報か
らビーム走査の始点及び終点を求め、これらの点
における走査速度を制御するための補正用偏向情
報を得ている。そして、この偏向情報が補正用偏
向回路14に与えられ前記補正用偏向板11によ
る偏向走査がなされるものとなつている。なお、
前記DL12は補正回路13及び補正用偏向回路
14による偏向走査とブランキング回路7による
ブランキングとの位相を合わせるためのものであ
る。
FIG. 4 is a schematic diagram showing the main parts of an electron beam lithography apparatus according to an embodiment of the present invention. In addition,
Components that are the same as those in FIG. 3 are designated by the same reference numerals, and detailed explanation thereof will be omitted. The difference between this embodiment device and the device shown in FIG. 3 is that there is a correction deflection plate inside the optical lens barrel.
1, and a deflection plate 3 at the start and end points of scanning.
The beam is deflected and scanned in a direction opposite to the main deflection direction. That is, the blanking information from the control circuit 6 is sent to the delay circuit DL12.
The signal is supplied to the blanking circuit 7 via the blanking circuit 7 and also to the correction circuit 13. The correction circuit 13 includes a differentiation circuit 13a and a filter 13 as shown in FIG.
b. Consists of a phase correction circuit 13c and a rectification/summing amplification circuit 13d, which determines the start and end points of beam scanning from the blanking information and obtains correction deflection information for controlling the scanning speed at these points. . Then, this deflection information is given to the correction deflection circuit 14, and the correction deflection plate 11 performs deflection scanning. In addition,
The DL 12 is for aligning the phases of the deflection scanning by the correction circuit 13 and the correction deflection circuit 14 and the blanking by the blanking circuit 7.

このように構成された本装置の作用を第6図を
参照して説明する。まず、ビームのブランキング
信号S1(ブランキング情報)が補正回路13に供
給されると、補正回路13ではその微分回路13
aにより微分信号S2が出力される。この微分信号
S2はフイルタ13bを介して信号S3となり位相補
正回路13cに供給される。位相補正回路13c
では、ビーム走査の始点に対応する信号S4及び終
点に対応する信号5と前記ブランキング信号S1
の位相が補正される。すなわち、信号S4はブラン
キング信号S1を遅延時間t1だけ遅らせた信号
S1′の始点から時間t2だけ遅延され、信号S5は上
記信号S1′の終点から時間t3だけ進められる。位
相補正回路13cの出力信号S4,S5は整流加算増
幅回路13dにより波形整形され、補正用偏向信
号S6として出力される。この出力信号S6、つまり
補正回路13の出力に応じて補正用偏向回路14
が補正用偏向板11に偏向電圧(補正用偏向電
圧)を印加する。これにより、偏向板3及び補正
用偏向板11によるビームの偏向走査波形S7は、
第6図の最下段に示す如く所望の偏向領域P内で
走査の始点Q1及び終点Q2において傾きが略零と
なる。すなわち、ビーム走査の始点Q1及び終点
Q2における偏向走査速度が略零となり、これに
より上記各点におけるドーズプロフアイルが急峻
なものとなる。
The operation of this apparatus configured in this way will be explained with reference to FIG. 6. First, when the beam blanking signal S 1 (blanking information) is supplied to the correction circuit 13, the correction circuit 13 converts the beam blanking signal S 1 (blanking information) to the differentiating circuit 13.
A differential signal S2 is output by a. This differential signal
S2 passes through the filter 13b and becomes a signal S3 , which is supplied to the phase correction circuit 13c. Phase correction circuit 13c
Then, the phases of the blanking signal S 1 and the signal S 4 corresponding to the start point of beam scanning, the signal 5 corresponding to the end point, and the blanking signal S 1 are corrected. In other words, the signal S 4 is a signal obtained by delaying the blanking signal S 1 by the delay time t 1 .
The signal S 5 is delayed by a time t 2 from the start point of S 1 ', and the signal S 5 is advanced by a time t 3 from the end point of the signal S 1 '. The output signals S 4 and S 5 of the phase correction circuit 13c are waveform-shaped by the rectification/summing amplification circuit 13d and outputted as a correction deflection signal S 6 . In response to this output signal S 6 , that is, the output of the correction circuit 13, the correction deflection circuit 14
applies a deflection voltage (correction deflection voltage) to the correction deflection plate 11. As a result, the deflection scanning waveform S 7 of the beam by the deflection plate 3 and the correction deflection plate 11 is
As shown in the bottom row of FIG. 6, the slope becomes approximately zero at the scanning start point Q 1 and end point Q 2 within the desired deflection region P. i.e. starting point Q 1 and ending point of beam scanning
The deflection scanning speed at Q 2 becomes approximately zero, and as a result, the dose profile at each of the above points becomes steep.

かくして本装置によれば、ブランキング情報に
基づいてビーム走査の始点及び終点における偏向
走査速度を制御することにより、走査方向及びこ
れに直交する方向とのドーズ量分布を略等しいも
のとすることができる。このため、描画寸法の制
御が容易となり、描画精度の大幅な向上をはかる
ことができる。しかも、ブランキング情報に基い
てビーム走査の始点および終点を検出し、この検
出信号に基いて補正用偏向電圧の形成および印加
を行なうようにしているので、非常に簡単な回路
構成で実現でき、技術的な困難が伴うようなこと
もない。したがつて、装置全体が複雑化するのを
抑制した状態で、なおかつ上述した効果を発揮さ
せることができる。なお、この実施例では、ビー
ム走査の始点及び終点における偏向制御のために
補正用偏向板11を格別に設けているので、この
偏向板11として応答性の良いものを用いること
ができ、これにより上記偏向制御を応答性良く正
確に行い得る等の利点がある。
Thus, according to the present apparatus, by controlling the deflection scanning speed at the start point and end point of beam scanning based on the blanking information, it is possible to make the dose distribution in the scanning direction and the direction perpendicular thereto substantially equal. can. Therefore, the drawing dimensions can be easily controlled, and the drawing accuracy can be greatly improved. Moreover, the start and end points of beam scanning are detected based on the blanking information, and the correction deflection voltage is formed and applied based on this detection signal, so it can be realized with a very simple circuit configuration. There are no technical difficulties involved. Therefore, the above-mentioned effects can be achieved while suppressing the complexity of the entire device. In this embodiment, since a correction deflection plate 11 is specially provided for deflection control at the start and end points of beam scanning, a deflection plate 11 with good responsiveness can be used. There are advantages such as the ability to accurately perform the deflection control with good responsiveness.

なお、本発明は上述した実施例に限定されるも
のではない。例えば、前記偏向板3の周波数応答
性に余裕があれば、前記補正用偏向板11を設け
る必要はなく、第7図に示す如く補正回路13の
出力信号である補正用偏向信号を偏向走査回路8
による偏向信号に重畳するようにしてもよい。ま
た、スポツトビームに限らず可変整形ビームに適
用することも可能であり、ベクタ走査型であつて
もその中でパターンの描画にラスタ走査方式を用
いているものに適用することが可能である。その
他、本発明の要旨を逸脱しない範囲で、種々変形
して実施することができる。
Note that the present invention is not limited to the embodiments described above. For example, if the frequency response of the deflection plate 3 has a margin, it is not necessary to provide the correction deflection plate 11, and as shown in FIG. 8
The deflection signal may be superimposed on the deflection signal. Further, the present invention can be applied not only to spot beams but also to variable shaped beams, and even if it is a vector scanning type, it can be applied to a vector scanning type in which a raster scanning method is used for pattern drawing. In addition, various modifications can be made without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bは電子ビームのプロフアイルを示
す模式図、第2図はパターンの描画方法及びその
断面におけるドーズプロフアイルを示す模式図、
第3図は従来装置の要部概略構成図、第4図は本
発明の一実施例に係わる電子ビーム描画装置の要
部を示す概略構成図、第5図は上記実施例の補正
回路部を示すブロツク図、第6図は上記実施例の
作用を説明するための信号波形図、第7図は変形
例を示す概略構成図である。 1……電子銃、2……ブランキング板、3……
偏向板、4……試料、5……試料ステージ、6…
…制御回路、7……ブランキング回路、8……偏
向走査回路、11……補正用偏向板、12……遅
延回路、13……補正回路、14……補正用偏向
回路、13a……微分回路、13b……フイル
タ、13c……位相補正回路、13d……整流加
算増幅回路。
Figures 1a and b are schematic diagrams showing the electron beam profile; Figure 2 is a schematic diagram showing the pattern drawing method and the dose profile in its cross section;
FIG. 3 is a schematic diagram showing the main parts of a conventional apparatus, FIG. 4 is a schematic diagram showing the main parts of an electron beam lithography apparatus according to an embodiment of the present invention, and FIG. 5 is a diagram showing the correction circuit section of the above embodiment. FIG. 6 is a signal waveform diagram for explaining the operation of the above embodiment, and FIG. 7 is a schematic configuration diagram showing a modified example. 1...Electron gun, 2...Blanking plate, 3...
Deflection plate, 4...sample, 5...sample stage, 6...
... Control circuit, 7 ... Blanking circuit, 8 ... Deflection scanning circuit, 11 ... Deflection plate for correction, 12 ... Delay circuit, 13 ... Correction circuit, 14 ... Deflection circuit for correction, 13a ... Differentiation Circuit, 13b...filter, 13c...phase correction circuit, 13d...rectification addition amplifier circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 電子ビームをブランキングおよび偏向制御し
てラスタ走査方式で試料上に所望のパターンを描
画する電子ビーム描画装置において、ブランキン
グ信号を一定時間遅延させてブランキング板を制
御する手段と、遅延前のブランキング信号を導入
して上記ブランキング信号上にビーム照射始点お
よびビーム照射終点として現われる信号変化を微
分する微分回路と、この微分回路で得られた微分
信号に基いて遅延された前記ブランキング信号の
ビーム照射始点から所定だけピーク点が遅れた始
点側補正偏向信号とビーム照射終点より所定だけ
ピーク点が進んだ終点側補正偏向信号とを得る手
段と、実質的に前記手段で得られた始点側補正偏
向信号分を偏向電圧から差し引くとともに終点側
補正偏向信号を偏向電圧に加算して現実のビーム
照射の始点および終点での偏向走査速度をほぼ零
にする手段とを具備してなることを特徴とする電
子ビーム描画装置。
1. In an electron beam drawing device that draws a desired pattern on a sample in a raster scanning manner by blanking and controlling the deflection of an electron beam, there is provided a means for controlling a blanking plate by delaying a blanking signal for a certain period of time, and a means for controlling a blanking plate by delaying a blanking signal for a certain period of time, and a differentiation circuit that introduces a blanking signal of and differentiates a signal change appearing as a beam irradiation start point and a beam irradiation end point on the blanking signal; and the blanking that is delayed based on the differential signal obtained by the differentiation circuit. means for obtaining a starting point side corrected deflection signal whose peak point is delayed by a predetermined amount from the beam irradiation starting point of the signal and an end point side corrected deflection signal whose peak point is advanced by a predetermined amount from the beam irradiation end point of the signal; and means for subtracting the starting point side corrected deflection signal from the deflection voltage and adding the ending point side corrected deflection signal to the deflection voltage to make the deflection scanning speed at the starting point and ending point of actual beam irradiation almost zero. An electron beam lithography device featuring:
JP13242882A 1982-07-29 1982-07-29 Electron beam drawing device Granted JPS5922325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13242882A JPS5922325A (en) 1982-07-29 1982-07-29 Electron beam drawing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13242882A JPS5922325A (en) 1982-07-29 1982-07-29 Electron beam drawing device

Publications (2)

Publication Number Publication Date
JPS5922325A JPS5922325A (en) 1984-02-04
JPS637024B2 true JPS637024B2 (en) 1988-02-15

Family

ID=15081141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13242882A Granted JPS5922325A (en) 1982-07-29 1982-07-29 Electron beam drawing device

Country Status (1)

Country Link
JP (1) JPS5922325A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3379333A2 (en) 2017-03-24 2018-09-26 Canon Kabushiki Kaisha Detection apparatus, pattern forming apparatus, obtaining method, detection method, and article manufacturing method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0732110B2 (en) * 1984-05-18 1995-04-10 株式会社日立製作所 Electron beam exposure system
JPS6159827A (en) * 1984-08-31 1986-03-27 Fujitsu Ltd Electron beam exposure system
JPH0744145B2 (en) * 1989-12-12 1995-05-15 株式会社東芝 Electron beam exposure method and apparatus therefor
JP2009038706A (en) * 2007-08-03 2009-02-19 Shindengen Electric Mfg Co Ltd Blanking circuit
JP5927067B2 (en) * 2012-07-06 2016-05-25 株式会社日立ハイテクノロジーズ Measurement inspection apparatus and measurement inspection method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642343A (en) * 1979-09-14 1981-04-20 Jeol Ltd Exposing method of electron beam

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642343A (en) * 1979-09-14 1981-04-20 Jeol Ltd Exposing method of electron beam

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3379333A2 (en) 2017-03-24 2018-09-26 Canon Kabushiki Kaisha Detection apparatus, pattern forming apparatus, obtaining method, detection method, and article manufacturing method

Also Published As

Publication number Publication date
JPS5922325A (en) 1984-02-04

Similar Documents

Publication Publication Date Title
JP2835097B2 (en) Correction method for charged beam astigmatism
JPS5693318A (en) Electron beam exposure device
US4433243A (en) Electron beam exposure apparatus
US4500789A (en) Electron beam exposing method
JPS637024B2 (en)
US6605811B2 (en) Electron beam lithography system and method
US4167676A (en) Variable-spot scanning in an electron beam exposure system
US4891524A (en) Charged particle beam exposure system and method of compensating for eddy current effect on charged particle beam
JPH039606B2 (en)
US4152599A (en) Method for positioning a workpiece relative to a scanning field or a mask in a charged-particle beam apparatus
JP2824340B2 (en) Section processing observation method
JP2000182937A (en) Charged particle beam plotting apparatus
JP3101100B2 (en) Electron beam exposure system
JPH048938B2 (en)
JPH0587014B2 (en)
JPS6212624B2 (en)
JPS6312145A (en) Pattern-dimension measuring apparatus
JPH10199786A (en) Electron beam drawing method and drawer
JPS6010723A (en) Electron beam exposure system
JPS6312146A (en) Pattern-dimension measuring apparatus
JPS59193026A (en) Electron beam drawing device
JPH07272994A (en) Signal detection method for charged particle beam lithography equipment
JPH08264420A (en) Charged particle beam drawing device
JPS631741B2 (en)
JPS6262047B2 (en)