JPS631741B2 - - Google Patents

Info

Publication number
JPS631741B2
JPS631741B2 JP55122854A JP12285480A JPS631741B2 JP S631741 B2 JPS631741 B2 JP S631741B2 JP 55122854 A JP55122854 A JP 55122854A JP 12285480 A JP12285480 A JP 12285480A JP S631741 B2 JPS631741 B2 JP S631741B2
Authority
JP
Japan
Prior art keywords
electron beam
signal
exposed
irradiation position
exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55122854A
Other languages
Japanese (ja)
Other versions
JPS5748230A (en
Inventor
Eiji Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Denshi KK filed Critical Nihon Denshi KK
Priority to JP12285480A priority Critical patent/JPS5748230A/en
Publication of JPS5748230A publication Critical patent/JPS5748230A/en
Publication of JPS631741B2 publication Critical patent/JPS631741B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電子線露光方法に関し、特に被露光材
料を載置した台を連続的に移動させて露光する方
法に関する。 任意形状の矩形断面を有する電子線を2枚のス
リツト板とその間に配置された電子線偏向器とよ
りなるビーム断面形状可変装置により取り出し、
該取り出された電子線の照射位置をデジタル制御
信号により順次指定して露光する方式が近時行な
われるようになつた。この方式は比較的大きな断
面積を有する電子線を使用し、電子線の偏向を照
射位置にのみ向けて行つているため、所謂ラスタ
ー走査方式等に比して高速の露光が行い得、又矩
形断面の形状も任意に可変できることから、精度
の良い露光が行い得る。このような方式の電子線
露光方法においては、従来第1図に示すようなチ
ツプを露光する場合、チツプTを電子光学系の歪
の影響をあまり受けずに電子線偏向のみによつて
露光できる小領域(以下フイールドと称す)F
1,F2,…,F9に分割し、被露光材料を静止
させた状態でフイールドF1を露光し、次にフイ
ールドF2が露光できる位置まで被露光材料を移
動させた後、被露光材料を静止させた状態でフイ
ールドF2を露光する如き方法をとつていた。こ
のような被露光材料のフイールド間のステツプ移
動は時間がかかるため、前述した方式の露光方法
の高速露光が可能であるという長所も充分生かす
ことができなかつた。 本発明はこのような従来の欠点を解決し、材料
を連続的に移動させて露光すると共に、材料の帯
状領域の移動に応じて電子線制御することによ
り、高速且つ高精度で材料を露光することのでき
る電子線露光方法を提供することを目的としてい
る。 そのため本発明は、被露光材料上に照射される
電子線の照射位置を順次指定して所望の図形パタ
ーンを被露光材料上に形成する方法において、被
露光材料の露光域を電子線の偏向のみによつて露
光できる幅よりも狭い帯状の複数の露光域f1,
f2,…,fi-1,fi,…に分割し、該露光材料を
該帯状の露光域に対して略垂直な方向へ一定速度
にて移動させ、各帯状露光域内における電子線の
照射位置を指定するための信号を電子線偏向器に
供給すると共に、iを1、2、3、4、…のいず
れかとするとき各帯状露光域fiの電子線照射回数
又は時間Niに応じた時間幅だけ前記一定速度に
対応した傾きで立ち上つた後瞬時に立ち下がる信
号を電子線照射位置移動信号と呼び、該電子線照
射回数又は時間Niと標準照射回数又は時間Nと
の差(N−Ni)の積算値
The present invention relates to an electron beam exposure method, and more particularly to a method of exposing a material by continuously moving a table on which a material to be exposed is placed. An electron beam having a rectangular cross section of an arbitrary shape is taken out by a beam cross-sectional shape variable device consisting of two slit plates and an electron beam deflector placed between them.
Recently, a method has been used in which the irradiation position of the extracted electron beam is sequentially designated by a digital control signal for exposure. This method uses an electron beam with a relatively large cross-sectional area and deflects the electron beam only toward the irradiation position, so it can perform high-speed exposure compared to the so-called raster scanning method. Since the cross-sectional shape can also be changed arbitrarily, exposure with high precision can be performed. Conventionally, in this type of electron beam exposure method, when exposing a chip as shown in FIG. Small area (hereinafter referred to as field) F
1, F2, ..., F9, expose field F1 with the exposed material stationary, then move the exposed material to a position where field F2 can be exposed, and then keep the exposed material stationary. A method was used in which field F2 was exposed in the same state. Since such step movement between fields of the material to be exposed takes time, the advantage of the above-described exposure method in that high-speed exposure is possible cannot be fully utilized. The present invention solves these conventional drawbacks and exposes the material at high speed and with high precision by continuously moving the material and controlling the electron beam according to the movement of the band-shaped region of the material. The purpose of this invention is to provide an electron beam exposure method that can Therefore, the present invention provides a method for forming a desired graphic pattern on a material by sequentially specifying the irradiation positions of the electron beam on the material to be exposed, and in which the exposed area of the material to be exposed is controlled only by deflection of the electron beam. A plurality of strip-shaped exposure areas f1, which are narrower than the width that can be exposed by
The exposure material is divided into f2,..., f i-1 , fi,..., and the exposed material is moved at a constant speed in a direction substantially perpendicular to the strip-shaped exposure area, and the electron beam irradiation position within each strip-shaped exposure area is determined. A signal for specifying is supplied to the electron beam deflector, and when i is 1, 2, 3, 4,... A signal that rises with a slope corresponding to the constant speed and then falls instantly is called an electron beam irradiation position movement signal, and the difference between the number of electron beam irradiations or time Ni and the standard number of irradiations or time N (N - Ni ) integrated value

【式】に比例 した直流レベルを有し前記Niに応じた時間幅を
有する信号を帯状露光域位置補正信号と呼ぶと
き、前記露光域fiを露光するに当たり前記電子線
照射位置移動信号と該帯状露光域位置補正信号と
を加算した信号に実質的に等しい信号を被露光材
料の移動方向に電子線を偏向するための偏向器に
供給して露光するようにしたことを特徴としてい
る。 以下、図面に基づき本発明の実施例を詳述す
る。 第2図は本発明を実施するための装置の一例を
示すためのブロツク図であり、図中1は電子銃を
示し、該電子銃からの電子線はビーム断面形状可
変装置2の第1のスリツト板3、第2のスリツト
板4、両者間に配置された偏向系5及びレンズ6
から構成されている。前記第1、第2のスリツト
板には同一(異なる場合もある)の大きさをもつ
矩形(正方形)のスリツト孔3a,4aが穿たれ
ている。又レンズ6は1対1の拡大率をもち、第
1のスリツト板3の像を第2のスリツト板4上に
結像する。該偏向系5には電子計算機7よりの
DA変換を受けた偏向信号が増幅器8を介して順
次供給され、偏向系5による電子線の偏向が順次
制御される。従つて、第2のスリツト板4からは
種々の形状をした矩形断面を有する電子線9が取
り出される。該取り出された電子線9は投影レン
ズ10によつて被露光材料11上に縮少投影され
る。該被露光材料11はXYステージ12上に載
置されている。XYステージ12はX方向及びY
方向のいずれにも摺動可能となるように構成され
ている。X方向及びY方向の移動ステージ12
X,12Yは各々X方向及びY方向移動機構13
X,13Yによつて移動する。これら移動機構は
ステツプモータを有し、電子計算機7から送られ
てくる制御信号に基づいて各々前記ステージ12
X,12Yを移動させる。14X,14Yはレー
ザ測長系であり、該レーザ測長系は各々X方向及
びY方向移動ステージの現在位置を測定して、そ
の測定信号を電子計算機7に供給する。電子計算
機7においては供給された測定値と電子計算機7
の指令した位置との誤差に対応した信号を作り、
この信号を電子線の照射位置を決定する偏向系に
供給し、誤差のない図形を描画する。15は各フ
イールド内の電子線照射位置を指定する信号、即
ち例えばフイールドの左上隅を原点とするときフ
イールド内における電子線照射位置をこの原点を
基準として指定する信号が供給される第1の偏向
器である。16はX方向移動ステージ12Xの露
光中における移動による露光位置のずれを補償す
ると共に、露光フイールドを変えるために電子線
を偏向するための偏向器であり、17はフイール
ド毎に電子線の照射回数又は時間が異なつても常
に各フイールドの原点を基準として描画できるよ
うにするために補正信号が供給される第3の偏向
器である。又18,19,20は増幅器である。 さて、このような構成の装置を使うと共に、チ
ツプTを第3図のように電子線の偏向のみによつ
て描画可能なフイールド幅より狭い幅を有する帯
状のフイールドf1,f2,f3,…に分割する。 一方、被露光材料を載置したステージ12Xを
電子計算機7よりの制御信号を移動機構13Xに
供給することによりX方向に一定速度vで移動さ
せる。又、フイールドf1,f2,f3,…を露光する
ための電子線照射回数を各々N1、N2、N3、…と
すると、電子計算機7より偏向器17のX方向偏
向板に第4図aに示すような三角波の集りからな
る電子線照射位置移動信号を供給する。三角波の
立ち上がり期間は各々前記フイールドにおける電
子線照射回数に比例した値kN1、kN2、kN3、…
(但しkは比例定数)となつており、又その立ち
上がり角度は前記速度vに比例した一定値であ
り、立ち上がり期間の後は瞬時に立ち下がる。更
に、偏向器16のX方向偏向板には電子計算機7
より第4図bに示す如き、各フイールド毎の電子
線照射回数(又は時間)が異なることによる照射
位置の誤差を補正するための帯状露光域位置補正
信号が偏向器17のX方向偏向板に供給される。
該信号は幅が各々kN2、kN3、…、kNi、…を有
し、そのレベルが各々K(N―N1)、K(N−N1)
+K(N−N2)、…、
When a signal having a DC level proportional to [Formula] and a time width corresponding to the Ni is called a band-shaped exposure area position correction signal, when exposing the exposure area fi, there is a difference between the signal and the electron beam irradiation position movement signal. The present invention is characterized in that a signal substantially equal to the signal obtained by adding the band-shaped exposure area position correction signal is supplied to a deflector for deflecting the electron beam in the moving direction of the material to be exposed for exposure. Embodiments of the present invention will be described in detail below based on the drawings. FIG. 2 is a block diagram showing an example of an apparatus for carrying out the present invention. In the figure, reference numeral 1 indicates an electron gun, and the electron beam from the electron gun is transmitted to the first beam cross-sectional shape variable device 2. A slit plate 3, a second slit plate 4, a deflection system 5 and a lens 6 arranged between them.
It consists of The first and second slit plates are provided with rectangular (square) slit holes 3a, 4a having the same (sometimes different) sizes. Further, the lens 6 has a 1:1 magnification ratio and forms an image of the first slit plate 3 onto the second slit plate 4. The deflection system 5 is provided with a signal from an electronic computer 7.
Deflection signals subjected to DA conversion are sequentially supplied via an amplifier 8, and the deflection of the electron beam by the deflection system 5 is sequentially controlled. Therefore, electron beams 9 having rectangular cross sections of various shapes are taken out from the second slit plate 4. The extracted electron beam 9 is reduced and projected onto a material to be exposed 11 by a projection lens 10. The exposed material 11 is placed on an XY stage 12. The XY stage 12 is
It is configured to be slidable in any direction. Moving stage 12 in the X direction and Y direction
X, 12Y are X direction and Y direction movement mechanisms 13, respectively.
Move by X, 13Y. These moving mechanisms each have a step motor, and each move the stage 12 according to a control signal sent from the electronic computer 7.
Move X, 12Y. Reference numerals 14X and 14Y indicate laser length measurement systems, which measure the current positions of the X-direction and Y-direction moving stages, respectively, and supply the measurement signals to the computer 7. In the electronic computer 7, the supplied measurement value and the electronic computer 7
Create a signal corresponding to the error with the commanded position,
This signal is supplied to a deflection system that determines the irradiation position of the electron beam, thereby drawing a figure without errors. Reference numeral 15 denotes a first deflection which is supplied with a signal specifying the electron beam irradiation position in each field, that is, for example, when the upper left corner of the field is set as the origin, a signal specifying the electron beam irradiation position in the field with this origin as a reference. It is a vessel. 16 is a deflector for compensating for the shift in the exposure position due to the movement of the X-direction moving stage 12X during exposure, and for deflecting the electron beam in order to change the exposure field; 17 is the number of times the electron beam is irradiated for each field; Alternatively, it is a third deflector to which a correction signal is supplied so that drawing can always be performed using the origin of each field as a reference even if the time is different. Further, 18, 19, and 20 are amplifiers. Now, in addition to using an apparatus having such a configuration, the chip T is formed into strip-shaped fields f 1 , f 2 , f 3 each having a width narrower than the field width that can be drawn only by deflection of an electron beam, as shown in FIG. ,... On the other hand, the stage 12X on which the material to be exposed is placed is moved at a constant speed v in the X direction by supplying a control signal from the electronic computer 7 to the moving mechanism 13X. Also, if the number of electron beam irradiations for exposing fields f 1 , f 2 , f 3 , ... is respectively N 1 , N 2 , N 3 , ... An electron beam irradiation position movement signal consisting of a collection of triangular waves as shown in FIG. 4a is supplied. The rising period of the triangular wave is a value kN 1 , kN 2 , kN 3 , . . . which is proportional to the number of electron beam irradiations in the field, respectively.
(where k is a proportionality constant), and the rising angle is a constant value proportional to the speed v, and falls instantly after the rising period. Furthermore, an electronic computer 7 is installed on the X-direction deflection plate of the deflector 16.
Therefore, as shown in FIG. 4b, a band-shaped exposure area position correction signal for correcting the error in the irradiation position due to the difference in the number of times (or time) of electron beam irradiation for each field is applied to the X-direction deflection plate of the deflector 17. Supplied.
The signals have widths of kN 2 , kN 3 , . . . , kNi, . . . and levels of K(N-N 1 ) and K(N-N1), respectively.
+K(N-N2),...

【式】…で あるような矩形波の集りからなる。但し、Nは基
準となる照射回数(又は時間)であり、Nとして
は例えばN1、N2、N3、…の平均値を使用でき
る。さてこのような偏向信号を供給した状態で偏
向器15に電子計算機7より前述した各フイール
ド内における電子線照射位置を指定する信号を供
給する。斯くして、例えば、フイールドf1,f2
…が第5図において実線で示されるような位置に
あるとき、フイールドf1の描画を開始したとする
と、フイールドのX方向への速度vでの移動に追
随するように偏向器17により電子線9が偏向さ
れ、更にフイールドf1内において順次Y方向に電
子線照射位置が移動しながら一定時間々隔でN1
回の照射が行なわれて、フイールドf1の露光が終
了する。フイールドf1の露光が終了すると同時に
偏向器17に供給される信号が立ち下がり、電子
線の偏向角はフイールドf2を露光するための位置
に戻され、フイールドf2の描画が開始される。即
ち、この時フイールドf1,f2,f3,…が点線で示
された位置f1′,f2′,f3′…まで移動したものとす
ると、フイールドf2の描画開始時におけるX方向
位置はフイールドf1の照射回数が仮りに前記基準
値Nであるときの位置(第4図において太線で示
される)に対してずれてしまうが、このずれに追
随するようにフイールドf2の描画開始時には偏向
器16のX方向偏向器にレベルK(N−N1)の矩
形波が供給される。同様にしてフイールドf1(i
=2、3、4、…)の描画のときにはレベル
It consists of a collection of rectangular waves such that [Formula]... However, N is the reference number of irradiation times (or time), and as N, for example, the average value of N 1 , N 2 , N 3 , . . . can be used. Now, with such a deflection signal being supplied, a signal designating the electron beam irradiation position in each field described above is supplied to the deflector 15 from the electronic computer 7. Thus, for example, fields f 1 , f 2 ,
... is at the position shown by the solid line in FIG. 5, and if we start drawing the field f1 , the electron beam is moved by the deflector 17 so as to follow the movement of the field in the X direction at a speed v. 9 is deflected, and the electron beam irradiation position is sequentially moved in the Y direction within the field f 1 while N 1 is deflected at regular intervals.
After three irradiations, the exposure of field f1 is completed. At the same time as the exposure of the field f 1 is completed, the signal supplied to the deflector 17 falls, the deflection angle of the electron beam is returned to the position for exposing the field f 2 , and drawing of the field f 2 is started. That is, at this time, if the fields f 1 , f 2 , f 3 , ... have moved to the positions f 1 ', f 2 ', f 3 ', etc. indicated by the dotted lines, then the X The directional position will deviate from the position (indicated by the bold line in Fig. 4) when the number of irradiations of field f 1 is the reference value N, but the direction position of field f 2 will follow this deviation. At the start of drawing, a rectangular wave of level K (N-N 1 ) is supplied to the X-direction deflector of the deflector 16. Similarly, field f 1 (i
= 2, 3, 4, ...) when drawing the level

【式】を有しNiに応じた時間幅を有 する矩形波が偏向器16のX方向偏向板に供給さ
れ、偏向器17による偏向と協同して次々に露光
すべきフイールドが切換えられ、フイールドf3
f4,…の露光がステージ12Xを一定速度vで連
続的に移動させながら行なわれる。 上述した本発明においては、被露光材料の露光
域を電子線の偏向のみによつて露光できる幅より
も狭い帯状の複数の露光域f1,f2,…,f,fi,
…に分割すると共に、iを1、2、3、4、…の
いずれかとするとき各帯状露光域fiの電子線照射
回数又は時間Niに応じた時間幅だけ前記一定速
度に対応した傾きで立ち上つた後瞬時に立ち下が
る信号を電子線照射位置移動信号と呼び、該電子
線照射回数又は時間Niと標準照射回数又は時間
Nとの差(N−Ni)の積算値
A rectangular wave having a time width corresponding to Ni is supplied to the X-direction deflection plate of the deflector 16, and in cooperation with the deflection by the deflector 17, the fields to be exposed are switched one after another, and the field f 3 ,
Exposure of f 4 , . . . is performed while the stage 12X is continuously moved at a constant speed v. In the present invention described above, the exposure area of the material to be exposed is formed into a plurality of strip-shaped exposure areas f 1 , f 2 , ..., f, fi,
..., and when i is 1, 2, 3, 4, ..., each band-shaped exposure area fi is irradiated with an electron beam for a time period corresponding to the number of electron beam irradiations or time Ni, and the slope is set at a slope corresponding to the constant speed. The signal that rises and then instantly falls is called the electron beam irradiation position movement signal, and is the integrated value of the difference (N-Ni) between the number of electron beam irradiations or time Ni and the standard number of irradiations or time N.

【式】に 比例した直流レベルを有し前記Niに応じた時間
幅を有する信号を帯状露光域位置補正信号と呼ぶ
とき、前記露光域fiを露光するに当たり前記電子
線照射位置移動信号と該帯状露光域位置補正信号
とを加算した信号に実質的に等しい信号を被露光
材料の移動方向に電子線を偏向するための偏向器
に供給して露光するようにしたため、材料を該帯
状露光域における最大電子線照射回数又は時間に
合わせた比較的低い速度では無く、電子線偏向の
みにより精度良く露光できる幅を前記積算値が越
えない範囲のより早い速度で連続移動させて露光
できるため、高速且つ高精度で露光を行なうこと
ができる。 尚、上述した実施例においては、第4図aに示
した信号と第4図bに示した信号とを別個の偏向
器に供給するようにしたが、これらを先に加算し
ておき、加算された信号を単一の偏向器に供給す
るようにしても良い。 更に又、上述した実施例においては被露光材料
に照射する電子線の断面形状を任意の矩形に変化
させることのできる電子線露光装置を用いたが、
電子線の断面形状が固定式の電子線露光装置を用
いても本発明は同様に実施することができる。
When a signal having a DC level proportional to [Formula] and a time width corresponding to the Ni is called a band-shaped exposure area position correction signal, when exposing the exposure area fi, there is a difference between the signal and the electron beam irradiation position movement signal. Since a signal substantially equal to the signal obtained by adding the band-shaped exposure area position correction signal is supplied to the deflector for deflecting the electron beam in the moving direction of the material to be exposed, the material is It is possible to perform high-speed exposure by moving continuously at a faster speed within the range where the integrated value does not exceed the width that can be exposed with high precision only by deflecting the electron beam, rather than at a relatively low speed that matches the maximum number of electron beam irradiations or time. Moreover, exposure can be performed with high precision. In the above-described embodiment, the signal shown in FIG. 4a and the signal shown in FIG. 4b were supplied to separate deflectors. The resulting signal may be supplied to a single deflector. Furthermore, in the above-described embodiments, an electron beam exposure apparatus was used which can change the cross-sectional shape of the electron beam irradiated onto the material to be exposed to an arbitrary rectangle.
The present invention can be similarly implemented using an electron beam exposure apparatus in which the cross-sectional shape of the electron beam is fixed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の露光方法を説明するための図、
第2図は本発明を実施するための装置の一例を示
すための図、第3図は本発明の露光方法における
フイールドを例示するための図、第4図は偏向信
号を説明するための図、第5図は被露光材料の移
動に伴うフイールドの位置の移動を説明するため
の図である。 1:電子銃、2:ビーム断面形状可変装置、
3,4:スリツト板、3a,4a:スリツト孔、
5:偏向系、6:レンズ、7:電子計算機、8,
18,19,20:増幅器、9:電子線、10:
投影レンズ、11:被露光材料、12X,12
Y:ステージ、12:XYステージ、13X,1
3Y:移動機構、14X,14Y:レーザ測長
系、15,16,17:偏向器。
Figure 1 is a diagram for explaining the conventional exposure method.
FIG. 2 is a diagram illustrating an example of an apparatus for carrying out the present invention, FIG. 3 is a diagram illustrating fields in the exposure method of the present invention, and FIG. 4 is a diagram illustrating a deflection signal. , FIG. 5 is a diagram for explaining the movement of the position of the field due to the movement of the material to be exposed. 1: Electron gun, 2: Beam cross-sectional shape variable device,
3, 4: slit plate, 3a, 4a: slit hole,
5: Deflection system, 6: Lens, 7: Electronic computer, 8,
18, 19, 20: Amplifier, 9: Electron beam, 10:
Projection lens, 11: Material to be exposed, 12X, 12
Y: stage, 12: XY stage, 13X, 1
3Y: moving mechanism, 14X, 14Y: laser length measurement system, 15, 16, 17: deflector.

Claims (1)

【特許請求の範囲】 1 被露光材料上に照射される電子線の照射位置
を順次指定して所望の図形パターンを被露光材料
上に形成する方法において、被露光材料の露光域
を電子線の偏向のみによつて露光できる幅よりも
狭い帯状の複数の露光域f1,f2,…,fi-1,fi,…
に分割し、該露光材料を該帯状の露光域に対して
略垂直な方向へ一定速度にて移動させ、各帯状露
光域内における電子線の照射位置を指定するため
の信号を電子線偏向器に供給すると共に、iを
1、2、3、4、…のいずれかとするとき各帯状
露光域fiの電子線照射回数又は時間Niに応じた時
間幅だけ前記一定速度に対応した傾きで立ち上つ
た後瞬時に立ち下がる信号を電子線照射位置移動
信号と呼び、該電子線照射回数又は時間Niと標
準照射回数又は時間Nとの差(N―Ni)の積算
i-1 Σi=1 (N−Ni)に比例した直流レベルを有し前
記Niに応じた時間幅を有する信号を帯状露光域
位置補正信号と呼ぶとき、前記露光域fiを露光す
るに当たり前記電子線照射位置移動信号と該帯状
露光域位置補正信号とを加算した信号に実質的に
等しい信号を被露光材料の移動方向に電子線を偏
向するための偏向器に供給して露光するようにし
た電子線露光方法。
[Scope of Claims] 1. A method for sequentially specifying the irradiation positions of an electron beam on a material to be exposed to form a desired graphic pattern on the material to be exposed, in which the exposed area of the material to be exposed is A plurality of strip-shaped exposure areas f 1 , f 2 , ..., f i-1 , fi, ... narrower than the width that can be exposed by deflection alone.
The exposed material is moved at a constant speed in a direction substantially perpendicular to the strip-shaped exposure region, and a signal for specifying the electron beam irradiation position within each strip-shaped exposure region is sent to an electron beam deflector. At the same time, when i is 1, 2, 3, 4, . The signal that instantly falls after the electron beam irradiation position movement signal is called the electron beam irradiation position movement signal, and the integrated value i-1 Σ i=1 ( When a signal having a DC level proportional to N-Ni and a time width corresponding to the Ni is called a band-shaped exposure area position correction signal, the electron beam irradiation position movement signal and the electron beam irradiation position movement signal are used when exposing the exposure area fi. An electron beam exposure method in which a signal substantially equal to a signal obtained by adding the band-shaped exposure area position correction signal is supplied to a deflector for deflecting an electron beam in a moving direction of a material to be exposed.
JP12285480A 1980-09-04 1980-09-04 Electron ray exposure Granted JPS5748230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12285480A JPS5748230A (en) 1980-09-04 1980-09-04 Electron ray exposure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12285480A JPS5748230A (en) 1980-09-04 1980-09-04 Electron ray exposure

Publications (2)

Publication Number Publication Date
JPS5748230A JPS5748230A (en) 1982-03-19
JPS631741B2 true JPS631741B2 (en) 1988-01-13

Family

ID=14846280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12285480A Granted JPS5748230A (en) 1980-09-04 1980-09-04 Electron ray exposure

Country Status (1)

Country Link
JP (1) JPS5748230A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60130121A (en) * 1983-12-16 1985-07-11 Toshiba Mach Co Ltd Electron beam exposure
JP6174862B2 (en) * 2013-01-18 2017-08-02 株式会社ニューフレアテクノロジー Charged particle beam drawing method and charged particle beam drawing apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52120686A (en) * 1977-04-21 1977-10-11 Jeol Ltd Electronic ray exposure method
JPS5359374A (en) * 1976-11-09 1978-05-29 Fujitsu Ltd Electron beam exposure unit
JPS5572033A (en) * 1978-11-27 1980-05-30 Toshiba Corp Electron beam exposure device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5359374A (en) * 1976-11-09 1978-05-29 Fujitsu Ltd Electron beam exposure unit
JPS52120686A (en) * 1977-04-21 1977-10-11 Jeol Ltd Electronic ray exposure method
JPS5572033A (en) * 1978-11-27 1980-05-30 Toshiba Corp Electron beam exposure device

Also Published As

Publication number Publication date
JPS5748230A (en) 1982-03-19

Similar Documents

Publication Publication Date Title
US4151422A (en) Electron beam exposure method
DE2516390A1 (en) METHOD AND DEVICE FOR MANUFACTURING MICROMINIATURIZED COMPONENTS
JP3310400B2 (en) Electron beam exposure method and exposure apparatus
JPS631741B2 (en)
EP0153864B1 (en) A method of electron beam exposure
JP2002260982A (en) Drawing method using variable area electron beam lithography device
JP2005302868A (en) Electronic beam plotting method and device
JPH10270341A (en) Electron beam lithography
JPS6229893B2 (en)
JPS62149126A (en) Method for charged beam exposure
JP3607989B2 (en) Charged particle beam transfer device
JPH05267142A (en) Electron beam lithography equipment
JPS6091636A (en) Electron beam drawing device
JPH02278711A (en) Method for forming fine pattern
JPS62172724A (en) Charged beam exposure method
JPH04309213A (en) Charger particle beam lithography method
JPH0574690A (en) Electron-beam plotting method
JP2001332485A (en) Electron beam drawing method
JPH04309214A (en) Electron beam exposure system
JPH02183516A (en) Electron beam exposure method
JPS5868928A (en) Electron beam exposure
JPH10242025A (en) Variable area type method for plotting electron beam
JPH03104112A (en) Electron beam exposure device
JPS62229941A (en) Electric charged particle beam exposure method
JPH06140309A (en) Method for electron beam expoure