JPS6262047B2 - - Google Patents

Info

Publication number
JPS6262047B2
JPS6262047B2 JP10776781A JP10776781A JPS6262047B2 JP S6262047 B2 JPS6262047 B2 JP S6262047B2 JP 10776781 A JP10776781 A JP 10776781A JP 10776781 A JP10776781 A JP 10776781A JP S6262047 B2 JPS6262047 B2 JP S6262047B2
Authority
JP
Japan
Prior art keywords
pattern
exposure
electron beam
correction
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10776781A
Other languages
Japanese (ja)
Other versions
JPS5810824A (en
Inventor
Yasuhide Machida
Shigeru Furuya
Noriaki Nakayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP10776781A priority Critical patent/JPS5810824A/en
Publication of JPS5810824A publication Critical patent/JPS5810824A/en
Publication of JPS6262047B2 publication Critical patent/JPS6262047B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Electron Beam Exposure (AREA)

Description

【発明の詳細な説明】 本発明は電子ビーム露光方法に関し、特に、所
謂、近接効果を補正して、高精度の電子ビーム露
光パターンを形成する方法に関するものである。
電子ビーム露光によるパターン形成技術において
は、パターン精度の向上のためには、所謂、近接
効果の補正が不可欠である。良く知られているよ
うに、近接効果は被露光物に塗布形成されたレジ
スト層中での電子ビーム散乱(前方散乱)及び被
露光物である基板からの電子ビーム散乱(後方散
乱)によつて、描画後のレジストパターンが電子
ビーム照射パターンより大きく拡がるという現象
であり、特にパターン間の間隔が2μm以下にな
ると、結果的にパターン形状の著しい歪をもたら
し、精度を低下させる悪影響が顕著になる。この
散乱によるレジスト中での電子ビーム散乱強度分
布は、外部から照射するビーム中心からの距離γ
の関数として次式 (γ)=e−(γ/A)2+Be−(γ/C)2……
(1) で表わされ第1項目は、前方散乱、第2項目は後
方散乱によつて与えられるものであることが知ら
れている。なお、(1)式中、A,B,Cはそれぞれ
レジストの厚みや基板材料等の条件によつて定ま
る定数である。近接効果を補正するための最も一
般的な法は、各パターン毎に、電子ビーム散乱強
度分布とその形状及び隣接パターンからの距離を
考慮して、最適な照射量をあらかじめ、各パター
ン毎に設定したり、あるいは描画パターンを変形
しておいたりする方法である。いずれも、あらか
じめパターンデータ作成の時点で、補正量を決定
しなければならない。電子ビームをウエハーに直
接描画して、パターンを形成する(直接露光)場
合、加工プロセス上、レジスト残膜厚を厚く保つ
必要がある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electron beam exposure method, and more particularly to a method of forming a highly accurate electron beam exposure pattern by correcting the so-called proximity effect.
In pattern forming technology using electron beam exposure, correction of so-called proximity effect is essential in order to improve pattern accuracy. As is well known, the proximity effect is caused by electron beam scattering (forward scattering) in the resist layer coated on the exposed object and electron beam scattering (backward scattering) from the substrate, which is the exposed object. , is a phenomenon in which the resist pattern after drawing expands to a greater extent than the electron beam irradiation pattern. Especially when the interval between patterns becomes 2 μm or less, the result is significant distortion of the pattern shape, and the negative effect of reducing precision becomes noticeable. . The electron beam scattering intensity distribution in the resist due to this scattering is determined by the distance γ from the center of the beam irradiated from the outside.
As a function of the following formula (γ)=e−(γ/A)2+Be−(γ/C)2...
It is known that the first term is given by forward scattering, and the second term is given by backscatter. Note that in formula (1), A, B, and C are constants determined by conditions such as the thickness of the resist and the material of the substrate. The most common method for correcting the proximity effect is to set the optimal irradiation dose for each pattern in advance, taking into consideration the electron beam scattering intensity distribution, its shape, and the distance from adjacent patterns. Alternatively, the drawing pattern may be modified. In either case, the amount of correction must be determined in advance at the time of creating pattern data. When forming a pattern by directly drawing an electron beam on a wafer (direct exposure), it is necessary to maintain a large residual resist film thickness due to the processing process.

しかしながら、ネガレジストの場合、照射量を
少なくすると残膜厚が薄くなるので、照射量補正
による近接効果補正では、パターン形状、間隔に
応じて残膜厚に差がでる。従つて、直接露光の場
合、ネガレジストの残膜厚を厚く保つには、描画
パターンを変形しておく、寸法補正による近接効
果補正が、不可欠である。
However, in the case of a negative resist, the residual film thickness becomes thinner when the irradiation dose is reduced, so when the proximity effect correction is performed by the irradiation dose correction, the residual film thickness differs depending on the pattern shape and spacing. Therefore, in the case of direct exposure, in order to maintain a large residual film thickness of the negative resist, it is essential to perform proximity effect correction by dimensional correction, which deforms the drawing pattern.

しかしながら、特に寸法補正による方法は、従
来補正量を実験結果に、基づき経験的に決定して
いる。
However, particularly in the method using dimension correction, the correction amount has conventionally been determined empirically based on experimental results.

このことは要求される露光パターンの微細化、
複雑化につれて、近接効果の確実な補正を著しく
困難にしている。
This means that the required finer exposure pattern,
As complexity increases, it becomes extremely difficult to reliably correct for proximity effects.

そこで寸法補正量を定量的に決定するために、
第1図に示す様に各パターン毎にパターンの縁よ
り内側(具体的にはx1,x2,x3,x4の所)に、適
当なサンプル点a,b,c,dを設定し他の全パ
ターンからの影響分を前記(1)式によつて求め、各
サンプル点での露光強度が一定になる様に連立方
程式により求める方法が、考えられる。
Therefore, in order to quantitatively determine the amount of dimensional correction,
As shown in Figure 1, set appropriate sample points a, b, c, and d inside the edge of the pattern (specifically at x 1 , x 2 , x 3 , and x 4 ) for each pattern. A conceivable method is to calculate the influences from all other patterns using equation (1) above, and use simultaneous equations so that the exposure intensity at each sample point is constant.

しかしながら、(1)式で示されている様に電子ビ
ーム散乱強度分布は距離の増加に対して指数関数
的に減少するため、距離に対しては非線性の強い
方程式となる。そのため、任意の大きさをもつ、
集積回路パターンでは解が求まらないことが多
く、寸法補正量を厳密に求めることは、困難であ
る。
However, as shown in equation (1), the electron beam scattering intensity distribution decreases exponentially as the distance increases, resulting in an equation that is strongly nonlinear with respect to distance. Therefore, with any size,
In many cases, a solution cannot be found for integrated circuit patterns, and it is difficult to accurately determine the amount of dimensional correction.

本発明の目的は、かかる問題点に鑑み、近似的
方法であるが、簡便に寸法補正量を求め、高精度
パターンを得る電子ビーム露光方法を提供するこ
とにある。
SUMMARY OF THE INVENTION In view of these problems, it is an object of the present invention to provide an electron beam exposure method that, although an approximate method, easily determines the amount of dimensional correction and obtains a highly accurate pattern.

本発明の基体とするところは、例えば第2図に
示すような補正すべき隣接パターンを考えたとき
は、パターン中心線上の露光強度分布10を考
え、パターンの縁部の露光強度の比(図のa′,
b′点の勾配)に着目すると、近接効果の影響のあ
る場合(第2図aは、勾配は急であり、影響の少
ない場合(第2図b)は、勾配は小さく、平らに
なることに着目し、勾配をパラメータにして勾配
を閾値以下にするにはどの程度、寸法補正(縮
少)する必要があるかということにより、寸法補
正量を求めることにある。
The base of the present invention is, for example, when considering an adjacent pattern to be corrected as shown in FIG. a′,
If we focus on the slope at point b', we can see that when there is an influence of the proximity effect (Figure 2a, the slope is steep, and when the influence is small (Figure 2b), the slope is small and flat. Focusing on this, the amount of dimension correction is determined based on how much dimension correction (reduction) is necessary in order to make the gradient less than the threshold value using the gradient as a parameter.

以下で、本発明による寸法補正量設定の手順を
詳述する。
Below, the procedure for setting the amount of dimensional correction according to the present invention will be explained in detail.

第3図はこれを説明するためのパターンを示
し、a点、b点は露光パターンの辺上に設定した
サンプル点であつて、b点側は寸法補正を施した
後の実際の電子ビーム描画パターンの辺上にある
ものとする。a点、b点での露光強度Fa、Fbは
以下の式(2)で求められる。
Figure 3 shows a pattern to explain this, where points a and b are sample points set on the sides of the exposure pattern, and point b is the actual electron beam drawing after dimension correction. Assume that it is on the edge of the pattern. The exposure intensities Fa and Fb at points a and b are determined by the following equation (2).

Fa=F(r1)+F(r3) Fb=F(r2)+F(r4) ………(2) ここで、ri(i=1〜4)は各パターンの中
心からa点、b点までの距離であつて、近接効果
を考慮したとき、各点での露光強度は周囲の描画
パターンからの距離の関数になることから、便宜
上このように表現できる。但し、厳密に求めるに
はF(ri)は、(1)式で与えられるf(r)を、
面積Sの微小ビームで当該パターン中の点(a点
またはb点までの距離がrである点)を露光した
ときのa点またはb点での露光強度とし、当該パ
ターン全体にわたつて積分した次式(3)で得られる
ことになる。
Fa=F(r 1 )+F(r 3 ) Fb=F(r 2 )+F(r 4 ) ......(2) Here, r i (i=1 to 4) is point a from the center of each pattern. , b, and when considering the proximity effect, the exposure intensity at each point becomes a function of the distance from the surrounding drawing pattern, so it can be expressed in this way for convenience. However, to find exactly F(r i ), f(r) given by equation (1) is
The exposure intensity at point a or b when a point in the pattern (a point where the distance to point a or b is r) is exposed with a minute beam of area S, and is integrated over the entire pattern. It is obtained by the following equation (3).

F(ri)=∫sf(r)ds ………(3) 作成すべき露光パターンの各単位パターンに対
する寸法補正量の決定と露光パターン描画の処理
手順は以下の通りとする。
F(r i )=∫ s f(r) ds (3) The processing procedure for determining the dimensional correction amount for each unit pattern of the exposure pattern to be created and for drawing the exposure pattern is as follows.

(i) 寸法補正量lの初期値を設定する。(i) Set the initial value of the dimensional correction amount l.

(ii) その寸法補正量lに対応して、(2)、(3)式によ
りFa、Fbを算出し、露光強度比Fb/Faを計算
する。
(ii) Corresponding to the dimensional correction amount l, calculate Fa and Fb using equations (2) and (3), and calculate the exposure intensity ratio Fb/Fa.

(iii) Fb/Fa>ε(εは予め与えられた閾値で、
露光条件が定まれば決まる一定量)であればl
を更新(増加)し、(i)、(ii)を繰り返す。(尚、
これは寸法補正量lの初期値を十分小さい値に
設定した場合であり、これとは逆にlの初期値
を十分大きく設定しておいてFb/Fa<εであ
ればlを減少させるように更新する手順を採つ
てもよい。) (iv) Fb/Fa=εとなつた時点のl(=lo)を求
める。
(iii) Fb/Fa>ε (ε is a pre-given threshold,
(a constant amount determined once the exposure conditions are determined), then l
Update (increase) and repeat (i) and (ii). (still,
This is the case when the initial value of the dimension correction amount l is set to a sufficiently small value.On the other hand, if the initial value of l is set to a sufficiently large value and Fb/Fa<ε, then l is decreased. You may also take steps to update the information. ) (iv) Find l (=lo) at the time when Fb/Fa=ε.

(v) loで寸法補正した描画パターンで当該露光パ
ターンを描画する。
(v) Draw the exposure pattern using the drawing pattern whose dimensions have been corrected using lo.

以 上 上記の予め与えられた閾値εは、電子ビーム加
速電圧やレジストの種類、塗布厚などの露光条件
が定まれば決定される一定値であつて、その導出
は以下の手順で行う。
The above-described predetermined threshold value ε is a constant value that is determined once the exposure conditions such as the electron beam accelerating voltage, the type of resist, and the coating thickness are determined, and its derivation is performed by the following procedure.

即ち、εとしては、近接効果によるパターン寸
法誤差が最も強く現れ、かつパターン形成上も最
も重大な問題となる第2図aのような場合、つま
り2つのパターンが最小解像限界ギヤツプを介し
て近接している場合に、ちようど最小解像限界ギ
ヤツプを与えるような寸法補正量loをもつて描画
したときのFb/Faを用いる。
That is, as for ε, the pattern dimensional error due to the proximity effect appears most strongly and is the most serious problem in pattern formation, as shown in Figure 2a, that is, when two patterns are separated by a minimum resolution limit gap. When they are close, Fb/Fa is used when drawing is done with a dimension correction amount lo that just gives the minimum resolution limit gap.

具体的算出は次のようにする。即ち、上記の場
合に、b点について寸法補正量lを変えてa点の
露光強度と2つのパターンの中間での露光強度を
(2)、(3)式に基いて求め、この2つの露光強度が何
れも現像エネルギ(レジストが溶解可能となる電
子ビーム照射量)となるときの寸法loを求める。
そして寸法補正量をloとしたときのa点、b点で
の露光強度比Fb/Faをεとする。
The specific calculation is as follows. That is, in the above case, by changing the size correction amount l for point b, the exposure intensity at point a and the exposure intensity at the middle of the two patterns can be changed.
It is determined based on equations (2) and (3), and the dimension lo is determined when both of these two exposure intensities become the development energy (the amount of electron beam irradiation that can dissolve the resist).
Then, when the dimension correction amount is lo, the exposure intensity ratio Fb/Fa at point a and point b is assumed to be ε.

第4図はこのような近接パターンを露光する場
合の各サンプル点での露光強度比と寸法補正量と
の関係を示す図で、縦軸に露光強度比Fb/Fa
を、横軸に寸法補正量lをとり、プロツトしたも
のである。同図から、寸法補正量lが小さい程a
点での近接効果による露光強度が大となる傾向が
明らかであり、最小解像限界ギヤツプを介して相
対向する2つのパターンについても、補正量loの
とき露光強度比Fb/Faがεとなり、最小解像限
界ギヤツプのパターンの形成が可能となる。
Figure 4 is a diagram showing the relationship between the exposure intensity ratio and the dimension correction amount at each sample point when exposing such a close pattern.The vertical axis shows the exposure intensity ratio Fb/Fa.
is plotted with the dimensional correction amount l on the horizontal axis. From the same figure, the smaller the dimensional correction amount l, the more a
It is clear that the exposure intensity tends to increase due to the proximity effect at a point, and even for two patterns facing each other across the minimum resolution limit gap, when the correction amount is lo, the exposure intensity ratio Fb / Fa becomes ε, It becomes possible to form a pattern with a minimum resolution limit gap.

パターン間のギヤツプ幅が異なる他の隣接パタ
ーンの場合は、両パターンの対向する外側の辺間
及び内側の辺間の間隔が異なり、これは(2)式にお
いてr3とr4が変わることを意味する。このような
場合についても、それぞれ、外側の辺上の点(a
点相当)及び内側の辺上の点(b点相当)での露
光強度の比Fb/Faを算出し、かくして第4図の
ようなFb/Faと補正量lとの関係を求める。そ
して内側の辺の寸法補正量として、両パターンの
対向する内側の辺上の点と外側の辺上の点での露
光強度がεとなるだけの幅lを選定する。露光強
度比が、補正量0でもεに達しない場合は、補正
量0とする。これによれば、近似的ではあるが、
近接効果による寸法誤差を一定の大きさ以下に抑
え込むことができ、しかも、一般的には最も寸法
精度上の要求のきびしい最小解像限界ギヤツプの
パターンは正確に形成できることになる。そし
て、上記の露光強度比と寸法補正量の関係は(2)、
(3)式から一義的に求められるので、露光データ作
成のための演算が容易である。
In the case of other adjacent patterns with different gap widths between the patterns, the distances between the opposing outer sides and inner sides of both patterns are different, which means that r 3 and r 4 change in equation (2). means. In such cases, the point on the outer side (a
The ratio Fb/Fa of the exposure intensity at a point (equivalent to point b) and a point on the inner side (equivalent to point b) is calculated, and the relationship between Fb/Fa and the correction amount l as shown in FIG. 4 is thus determined. Then, as the size correction amount for the inner side, a width l is selected such that the exposure intensity at a point on the opposing inner side and a point on the outer side of both patterns becomes ε. If the exposure intensity ratio does not reach ε even with a correction amount of 0, the correction amount is set to 0. According to this, although it is approximate,
It is possible to suppress dimensional errors due to the proximity effect to a certain level or less, and moreover, it is possible to accurately form a pattern with a minimum resolution limit gap, which generally requires the most severe dimensional accuracy. The relationship between the above exposure intensity ratio and dimensional correction amount is (2),
Since it can be uniquely determined from equation (3), calculations for creating exposure data are easy.

これに反して、厳密に寸法補正量を求めるため
には、対向する内側の辺がいかなる位置のとき現
像エネルギとなるかを求める必要があり、この位
置を寸法補正量に対して独立に種々設定して露光
強度を求める計算が必要となる。これには、一般
的には膨大な計算が必要となり、実用上は実施困
難である。
On the other hand, in order to accurately determine the amount of dimensional correction, it is necessary to determine the position of the opposing inner sides at which development energy is generated, and this position can be set in various ways independently of the amount of dimensional correction. Calculations are required to determine the exposure intensity. This generally requires a huge amount of calculation and is difficult to implement in practice.

本発明の方法では露光データ作成の計算は比較
的容易であり、かつ実用上満足すべき寸法補正結
果を得ることができるものである。実際的には上
記寸法補正量はパターンデータ作成時に決定して
しまい、そのデータは第5図の如き装置なら電子
計算機6に格納され電子計算機6によつて、XY
偏向器4を駆動しビームスポツトを歩進させ所定
のパターンを塗り潰すように照射して描画を行な
う。第5図は典型的な電子ビーム露光装置の基本
構成の概念図である。電子ビーム露光装置本体1
は電子銃2収束電子レンズ系3、XY偏向器4を
有し細く絞られた電子ビームをレジストが塗布さ
れた基板、試料5に照射するものでその試料5上
の電子ビームスポツトの位置は電子計算機6から
のパターンデータでDA変換器7、増幅器8を介
して、XY偏向器4を駆動することによつて制御
される。電子ビームは計算機6からの信号に応じ
て、ブランキング装置によつて試料5上へ照射さ
れるものである。
In the method of the present invention, calculations for creating exposure data are relatively easy, and it is possible to obtain practically satisfactory dimensional correction results. In practice, the above-mentioned dimensional correction amount is determined at the time of creating the pattern data, and if the device is as shown in FIG.
The beam spot is stepped by driving the deflector 4, and irradiation is performed so as to cover a predetermined pattern. FIG. 5 is a conceptual diagram of the basic configuration of a typical electron beam exposure apparatus. Electron beam exposure equipment main body 1
The device has an electron gun 2, a converging electron lens system 3, and an XY deflector 4, and irradiates a thinly focused electron beam onto a resist-coated substrate and a sample 5, and the position of the electron beam spot on the sample 5 is determined by the electron beam. It is controlled by driving the XY deflector 4 with pattern data from the computer 6 via the DA converter 7 and amplifier 8. The electron beam is irradiated onto the sample 5 by a blanking device in response to a signal from the computer 6.

なお、実施例ではネガレジストの膜厚の厚い場
合に対して述べたが、レジスト膜厚の薄い場合、
又ポジレジストの場合に対しても、本発明よる手
法を適用することにより高精度のパターンを得る
ことができるのは、勿論である。
In addition, in the example, the case where the negative resist film thickness is thick is described, but when the resist film thickness is thin,
It goes without saying that even in the case of positive resist, a highly accurate pattern can be obtained by applying the method according to the present invention.

以上の様に本発明によれば、容易にパターン寸
法補正量を見い出すことができ、寸法補正による
近接効果補正により、レジスト膜厚が厚い場合で
も高精度のパターンを得ることができる。
As described above, according to the present invention, the amount of pattern dimension correction can be easily found, and a highly accurate pattern can be obtained even when the resist film thickness is thick by proximity effect correction based on dimension correction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、寸法補正量を決定するため、従来考
えられていた手順を説明するためのパターン、第
2図〜第4図は、本発明の手法を説明するための
図、第5図は、電子ビーム露光システムの基本的
構成の例を示している。
FIG. 1 is a pattern for explaining the conventionally considered procedure for determining the amount of dimensional correction, FIGS. 2 to 4 are diagrams for explaining the method of the present invention, and FIG. , shows an example of the basic configuration of an electron beam exposure system.

Claims (1)

【特許請求の範囲】[Claims] 1 電子ビームをレジストが塗布された試料上に
照射して描画することにより、所定の露光パター
ンを作成する電子ビーム露光方法において、作成
すべき露光パターン中の各単位パターンの設計パ
ターンに対し寸法補正を施した描画パターンに基
づいて電子ビーム描画を行なうに際し、描画パタ
ーンの相対する縁部における露光強度を求め、該
パターン縁部間の露光強度比が所定の閾値以下と
なるように寸法補正を行つて前記縁部を設定し、
縮小補正した描画パターンを定めることを特徴と
する電子ビーム露光方法。
1 In an electron beam exposure method in which a predetermined exposure pattern is created by irradiating and drawing an electron beam onto a sample coated with resist, dimensional correction is performed on the design pattern of each unit pattern in the exposure pattern to be created. When performing electron beam lithography based on a lithographic pattern, the exposure intensity at opposing edges of the lithographic pattern is determined, and dimension correction is performed so that the exposure intensity ratio between the pattern edges is below a predetermined threshold. and set the edge,
An electron beam exposure method characterized by determining a drawing pattern that has been subjected to reduction correction.
JP10776781A 1981-07-10 1981-07-10 Electron beam exposing method Granted JPS5810824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10776781A JPS5810824A (en) 1981-07-10 1981-07-10 Electron beam exposing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10776781A JPS5810824A (en) 1981-07-10 1981-07-10 Electron beam exposing method

Publications (2)

Publication Number Publication Date
JPS5810824A JPS5810824A (en) 1983-01-21
JPS6262047B2 true JPS6262047B2 (en) 1987-12-24

Family

ID=14467480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10776781A Granted JPS5810824A (en) 1981-07-10 1981-07-10 Electron beam exposing method

Country Status (1)

Country Link
JP (1) JPS5810824A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6041220A (en) * 1983-08-17 1985-03-04 Fujitsu Ltd Exposure pattern inspection

Also Published As

Publication number Publication date
JPS5810824A (en) 1983-01-21

Similar Documents

Publication Publication Date Title
US8461555B2 (en) Charged particle beam writing method and charged particle beam writing apparatus
US8816276B2 (en) Electron beam writing apparatus and electron beam writing method
JPH06124883A (en) Method for correcting charged beam and method for mark detection
JPS6234136B2 (en)
JPH01154064A (en) Forming method for minute pattern
JPS6262047B2 (en)
JPH03183118A (en) Method and apparatus for electron beam exposure
JPH0336292B2 (en)
JPS6246059B2 (en)
JP3083428B2 (en) Charged particle beam drawing method
JPH09186070A (en) Variable shaped beam estimation method
JPH0336293B2 (en)
JP2000306827A (en) Charged particle beam drawing apparatus and pattern formation method
JPS6041223A (en) Electron beam exposure
JPS6246058B2 (en)
JPS61191027A (en) Electron beam exposure method
JPS6314866B2 (en)
JPS6041222A (en) Electron beam exposure
JPH05335222A (en) Electron-beam exposure device
JPH11186151A (en) Proximity effect correcting method and reticle for correction used therefor
JPS61156732A (en) Method of electron beam exposure
JPH0336294B2 (en)
JPH0547969B2 (en)
JPH0336295B2 (en)
JPH03127818A (en) Manufacture of reticle