JPS6246058B2 - - Google Patents

Info

Publication number
JPS6246058B2
JPS6246058B2 JP16249481A JP16249481A JPS6246058B2 JP S6246058 B2 JPS6246058 B2 JP S6246058B2 JP 16249481 A JP16249481 A JP 16249481A JP 16249481 A JP16249481 A JP 16249481A JP S6246058 B2 JPS6246058 B2 JP S6246058B2
Authority
JP
Japan
Prior art keywords
pattern
electron beam
beam irradiation
irradiation density
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16249481A
Other languages
Japanese (ja)
Other versions
JPS5863135A (en
Inventor
Yasuhide Machida
Shigeru Furuya
Noriaki Nakayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP16249481A priority Critical patent/JPS5863135A/en
Publication of JPS5863135A publication Critical patent/JPS5863135A/en
Publication of JPS6246058B2 publication Critical patent/JPS6246058B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Electron Beam Exposure (AREA)

Description

【発明の詳細な説明】 〔概要〕 本発明は電子ビーム露光方法に関し、特に所謂
近接効果を補正して高精度の電子ビーム露光パタ
ーンを形成する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Summary] The present invention relates to an electron beam exposure method, and more particularly to a method for forming a highly accurate electron beam exposure pattern by correcting the so-called proximity effect.

〔従来の技術〕[Conventional technology]

電子ビーム露光によるパターン形成技術に於い
ては、パターン精度の向上のために所謂近接効果
の補正が不可欠である。
In pattern forming technology using electron beam exposure, correction of so-called proximity effect is essential to improve pattern accuracy.

良く知られている様に、近接効果は被露光物に
塗布形成されたレジスト層中での電子ビーム散乱
(前方散乱)、及び被露光物である基板からの電子
ビーム散乱(後方散乱)によつて、描画後のレジ
ストパターンが電子ビーム照射パターンより大き
く拡がるという現象であり、特にパターン間の間
隔が2μm以下になると、結果的にパターン形状
の著しい歪をもたらし、精度を低下させる悪影響
が顕著になる。
As is well known, the proximity effect is caused by electron beam scattering (forward scattering) in the resist layer coated on the exposed object and electron beam scattering (backward scattering) from the substrate, which is the exposed object. This is a phenomenon in which the resist pattern after drawing expands to a greater extent than the electron beam irradiation pattern. Especially when the distance between the patterns becomes 2 μm or less, this results in significant distortion of the pattern shape and has a significant negative effect of reducing accuracy. Become.

この散乱によるレジスト中での電子ビーム散乱
強度分布は、外部から照射するビーム中心からの
距離rの関数として、次式 であらわされ、第1項目は前方散乱、第2項目は
後方散乱によつて与えられるものであることがし
られている。尚、(1)式中A、B、Cはそれぞれレ
ジストの厚みや基板材料等の条件によつて定まる
定数である。
The electron beam scattering intensity distribution in the resist due to this scattering is calculated by the following equation as a function of the distance r from the center of the beam irradiated from the outside. It is known that the first term is given by forward scattering and the second term is given by backscatter. Note that in formula (1), A, B, and C are constants determined by conditions such as the thickness of the resist and the material of the substrate.

近接効果によるパターンの拡がりは、他のパタ
ーンの影響によつて生ずる拡がり(パターン間近
接効果)と、自分自身のパターン描画から生じる
拡がり(パターン内近接効果)がある。
The spread of a pattern due to the proximity effect includes spread caused by the influence of other patterns (inter-pattern proximity effect) and spread caused by drawing the own pattern (intra-pattern proximity effect).

従来、自分自身のパターン描画から生じる拡が
りを補正する方法として、単位矩形パターンの大
きさに関係なく一律にパターン寸法を縮小した補
正パターン寸法で描画を行い、拡がりを補正して
いた。
Conventionally, as a method of correcting the spread caused by drawing one's own pattern, the spread is corrected by drawing with a corrected pattern size that is uniformly reduced in pattern size regardless of the size of the unit rectangular pattern.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第1図は、レジスト膜厚をパラメータとし、描
画矩形の大きさ(面積)とパターンの拡がりとの
関係を表したグラフである。
FIG. 1 is a graph showing the relationship between the size (area) of a drawing rectangle and the spread of a pattern, using the resist film thickness as a parameter.

上述の様に単位矩形パターンの大きさに関係な
く一律にパターン寸法を縮小した補正パターン寸
法で描画を行つたので問題が生じる。ネガレジス
トに於いて初期膜厚が大となつた場合、第1図に
示す様に矩形の大きさが大きいときには特に自分
自身の拡がりが顕著になり、この傾向は膜厚が大
きい程顕著になる。よつて、描画寸法を一律に縮
小しただけでは十分な補正をすることは困難であ
る。
A problem arises because, as described above, drawing is performed using a corrected pattern size that is uniformly reduced in pattern size regardless of the size of the unit rectangular pattern. When the initial film thickness of a negative resist becomes large, as shown in Figure 1, when the rectangular size is large, self-spreading becomes particularly noticeable, and this tendency becomes more pronounced as the film thickness increases. . Therefore, it is difficult to make sufficient correction just by uniformly reducing the drawing dimensions.

更に、電子ビーム露光でフオト・マスクを作成
する場合はレジスト膜厚は薄くても良いが、電子
ビームでウエハー上のレジストに直接描画してパ
ターンを形成する(直接露光)場合、加工プロセ
ス上、露光、現像後のレジスト膜厚を厚く保つ必
要がある。この場合、所定のレジスト残膜を確保
すべく電子ビーム照射密度を補正すると、パター
ン内近接効果によるパターンの拡がりが電子ビー
ム照射密度に応じて変わつてくる。
Furthermore, when creating a photomask using electron beam exposure, the resist film thickness may be thin, but when forming a pattern by directly writing onto the resist on the wafer with an electron beam (direct exposure), the processing process It is necessary to keep the resist film thick after exposure and development. In this case, when the electron beam irradiation density is corrected to ensure a predetermined resist remaining film, the spread of the pattern due to the intra-pattern proximity effect changes depending on the electron beam irradiation density.

従つて、特に直接露光方式の場合は、従来の様
な一律の寸法縮小補正では高精度パターンは実用
上得られず、電子ビーム照射密度補正とパターン
サイズに応じた寸法補正が不可欠となつてくる。
Therefore, especially in the case of the direct exposure method, it is practically impossible to obtain high-precision patterns with the conventional uniform size reduction correction, and electron beam irradiation density correction and size correction according to the pattern size are essential. .

上記問題点を第2図を用いて更に詳細に説明す
る。第2図は描画矩形の大きさ(正方形の一辺の
長さ:μm)をパラメータとし、描画時の単位面
積当たりの電子ビーム照射量(縦軸)、即ち電子
ビーム照射密度(C/cm2)と、現像処理後のネガ
型レジストの残膜パターン幅(横軸)との関係を
表したグラフである。曲線a,b,cは各々電子
ビーム描画矩パターンが一辺の長さが1μm、2
μm及び5μmの正方形であるときの描画時の電
子ビーム照射密度と生成パターン幅との関係を表
している。
The above problem will be explained in more detail with reference to FIG. In Figure 2, the size of the drawing rectangle (length of one side of the square: μm) is used as a parameter, and the electron beam irradiation amount per unit area during drawing (vertical axis), that is, the electron beam irradiation density (C/cm 2 ) It is a graph showing the relationship between the pattern width and the residual film pattern width (horizontal axis) of the negative resist after development processing. Curves a, b, and c each have an electron beam drawn rectangular pattern with a side length of 1 μm and 2
It shows the relationship between the electron beam irradiation density and the width of the generated pattern during drawing when the pattern is a square of μm and 5 μm.

第2図を参照すると、各々の描画矩形に対し特
定の電子ビーム照射密度で描画したときに、描画
パターンと同一サイズのレジスト残膜パターンが
得られることがわかる。例えば、一辺1μmの矩
形を描画したときに描画矩形と同一サイズの残膜
パターンが得られるのは点Aoに於ける電子ビー
ム照射密度QAoで描画したときであり、描画矩
形の一辺が2μm、5μmの場合は、各々点
Bo,Coに於ける電子ビーム照射密度QBo,QCo
に於ける電子ビーム照射密度QBo,QCoで描画し
たときである(QAo>QBo>QCo)。即ち第2図
は、描画矩形と同じサイズの残膜パターンを得る
には、描画矩形が小さい程より大きな電子ビーム
照射密度が必要なことを示している。この様に描
画矩形サイズと残膜パターンサイズが同一になる
様に電子ビーム照射密度を設定した場合には、レ
ジスト残膜厚は一般的に不十分であつて、要求残
膜率(例えば、初期レジスト膜厚の90%)を確保
するにはより大きな電子ビーム照射密度が必要で
ある。第2図に於いて、要求される一定の残膜率
(例えば、初期レジスト膜厚の90%)を得る為に
必要な電子ビーム照射密度を各描画矩形に対応す
る曲線a,b,c上にプロツトした点がA1
B1,C1であり、これらを結ぶのが曲線dであ
る。要求残膜率を確保する為に上記電子ビーム照
射密度QA1,QB1,QC1で各サイズの矩形を描画
を行つた場合には、レジスト残膜パターンのサイ
ズは第2図に見られるとおり描画パターンのサイ
ズよりも拡大してしまう。
Referring to FIG. 2, it can be seen that when each drawing rectangle is drawn at a specific electron beam irradiation density, a resist remaining film pattern of the same size as the drawn pattern is obtained. For example, when drawing a rectangle with a side of 1 μm, a residual film pattern of the same size as the drawing rectangle can be obtained when drawing is performed at the electron beam irradiation density QAo at point Ao, and when the sides of the drawing rectangle are 2 μm and 5 μm. In the case of , each point
Electron beam irradiation density QBo, QCo in Bo, Co
This is when drawing is performed with electron beam irradiation densities QBo and QCo at (QAo>QBo>QCo). That is, FIG. 2 shows that in order to obtain a residual film pattern of the same size as the drawing rectangle, the smaller the drawing rectangle, the higher the electron beam irradiation density is required. In this way, when the electron beam irradiation density is set so that the drawing rectangle size and the remaining film pattern size are the same, the resist remaining film thickness is generally insufficient and the required remaining film rate (for example, the initial 90% of the resist film thickness) requires a higher electron beam irradiation density. In Figure 2, the electron beam irradiation density required to obtain the required constant film remaining rate (for example, 90% of the initial resist film thickness) is plotted on curves a, b, and c corresponding to each drawing rectangle. The point plotted is A 1 ,
B 1 and C 1 , and a curve d connects them. When drawing rectangles of each size at the above electron beam irradiation densities QA 1 , QB 1 , and QC 1 to ensure the required residual film rate, the size of the resist residual film pattern will be as shown in Figure 2. The size of the pattern will be larger than the drawing pattern.

従つて第2図に示される関係からネガ型レジス
トに対する電子ビーム露光では、寸法補正と照射
量補正とを相互に関連付けて、要求される残膜矩
形パターンの大きさに応じて行うことが高精度パ
ターン作成には必要となることが判る。
Therefore, from the relationship shown in Figure 2, in electron beam exposure of a negative resist, it is possible to achieve high accuracy by correlating the dimension correction and the dose correction according to the required size of the remaining film rectangular pattern. It turns out that this is necessary for pattern creation.

第2図に示した関係は、レジストの種類やレジ
スト塗布形成膜厚(初期膜厚)、或いは現像処理
の条件を一定とすれば一義的に定められるもので
ある。そこで従来一般的には、これら条件を定め
各種の大きさの矩形を種々の電子ビーム照射密度
で描画し、現像してレジスト層パターンを試験的
に作成して第2図の如き関係をあらゆる大きさの
矩形パターンに対して求めておき、実際の露光パ
ターンに対しては、その中の単位矩形パターン毎
に寸法補正量及び電子ビーム照射密度補正量を定
めるという経験的手法が採られている。しかしな
がら、この方法は上記関係を求めるための実験に
膨大な工数を要し、これをレジスト塗布膜厚や現
像条件を変える都度実施するのは多大な時間と手
間を要することになる。
The relationship shown in FIG. 2 is uniquely determined if the type of resist, the thickness of the resist coated film (initial film thickness), or the conditions of the development process are held constant. Conventionally, it has been common practice to set these conditions, write rectangles of various sizes at various electron beam irradiation densities, develop them, and create experimental resist layer patterns to obtain the relationships shown in Figure 2 for all sizes. An empirical method is adopted in which the size correction amount and the electron beam irradiation density correction amount are determined for each unit rectangular pattern in the actual exposure pattern. However, this method requires a huge number of man-hours for experiments to determine the above relationship, and it takes a great deal of time and effort to carry out this process every time the resist coating thickness or development conditions are changed.

本発明は、以上の点に鑑み、形成すべきレジス
ト層パターンに対し、寸法補正した描画パターン
寸法と所要残膜厚を得るに必要な電子ビーム照射
密度との両方を容易に決定し、高精度パターンを
形成できる方法を提供することを目的とする。
In view of the above points, the present invention easily determines both the dimension-corrected drawing pattern dimensions and the electron beam irradiation density necessary to obtain the required residual film thickness for the resist layer pattern to be formed, and achieves high accuracy. The purpose is to provide a method by which patterns can be formed.

〔問題点を解決する為の手段〕[Means for solving problems]

本発明による電子ビーム露光方法は、電子ビー
ムをネガ型レジスト層が塗布形成された基板上に
照射して所定パターンを描画し、現像工程後には
所要のネガ型レジスト層パターンが残置されるよ
うな露光パターンを前記ネガ型レジスト層に形成
する方法であつて、任意の1つの描画パターンに
対し、該描画パターンと同一寸法のレジスト層パ
ターンが現像後に残置されるような電子ビーム照
射密度と所要のレジスト残膜厚が得られるような
電子ビーム照射密度との比率を予め求めておき、
所要の残置すべきレジスト層パターンに対する描
画パターン及びその電子ビーム照射密度を決定す
るに当つて、該残置すべきパターン寸法と前記比
率とに基づいて前記所要レジスト残膜厚が得られ
る電子ビーム照射密度と描画パターン寸法とを求
め、かくして決定した電子ビーム照射密度と描画
パターン寸法でもつて電子ビーム描画することを
特徴とするものである。
In the electron beam exposure method according to the present invention, a predetermined pattern is drawn by irradiating an electron beam onto a substrate coated with a negative resist layer, and the desired negative resist layer pattern is left behind after the development process. A method for forming an exposure pattern on the negative resist layer, the method comprising: forming an exposure pattern on the negative resist layer with an electron beam irradiation density and a required amount of radiation so that a resist layer pattern having the same dimensions as the drawing pattern remains after development for any one drawing pattern; Find in advance the ratio to the electron beam irradiation density that will give you the resist residual film thickness.
In determining the drawing pattern and the electron beam irradiation density for the resist layer pattern to be left, the electron beam irradiation density is such that the required resist remaining film thickness can be obtained based on the dimensions of the pattern to be left and the ratio. This method is characterized in that the electron beam irradiation density and the drawing pattern size are determined, and the electron beam drawing is performed using the electron beam irradiation density and the drawing pattern size thus determined.

〔作用〕[Effect]

即ち本発明は、任意の矩形描画パターンに対
し、現像後に描画パターンと全く同一寸法のレジ
スト層パターンを残し得る様な電子ビーム照射密
度と、該矩形描画パターンにおいて所要の一定残
膜厚を得るのに必要な電子ビーム照射密度との比
は、レジストの種類及び塗布膜厚や現像条件等の
周囲の条件が定まれば矩形パターンの寸法には依
存せずほぼ一定であるという事実を実験的に見出
し、この比率一定の関係から補正寸法及び電子ビ
ーム照射密度を任意の寸法のパターンに対して求
めうるという知見をえて成されたものである。
That is, the present invention provides an electron beam irradiation density that can leave a resist layer pattern with exactly the same dimensions as the drawn pattern after development for any rectangular drawn pattern, and a method to obtain a required constant residual film thickness in the rectangular drawn pattern. It has been experimentally proven that the ratio of the electron beam irradiation density required for the irradiation to the electron beam irradiation density is almost constant, independent of the dimensions of the rectangular pattern, once the surrounding conditions such as the type of resist, coating film thickness, and development conditions are determined. This heading was made based on the knowledge that the correction dimension and the electron beam irradiation density can be determined for a pattern of any size from this constant ratio relationship.

〔実施例〕〔Example〕

先ず、上記した比率一定という関係について説
明することとする。
First, the above-mentioned relationship of constant ratio will be explained.

本発明は、第2図の関係を求める為の実験を多
数繰り返すうちに、ある描画パターンに対してそ
れと同一寸法のレジスト残膜パターンを生成する
電子ビーム照射密度(第2図の点A0,B0、或い
はC0に於ける電子ビーム照射密度)と一定の残
膜率を生ずる電子ビーム照射密度(第2図の点
A1,B1、或いはC1に於ける電子ビーム照射密
度)との比が一定となる関係が存在することを見
出した。即ち第2図に於いて点A0,B0,C0の電
子ビーム照射密度を各々QA0,QB0,QC0とし、
点A1,B1,C1にの電子ビーム照射密度をQA1
QB1,QC1とすると、 QA1/QA0=QB1/QB0=QC1/QC0=D ……(2) (但しDは定数)なる関係がある。定数Dの値は
レジストの種類や厚み、現像条件や所要の残膜率
(残膜厚)を定めれば決定されるものであり、こ
の定数Dを定めるための実験のみなら、既述した
ような全パターンに対する電子ビーム照射密度−
パターン幅関係を求める実験と比べて、遥かに短
い工数しか必要ではない。従つて、この定数Dを
用いることにより、任意の大きさの矩形パターン
に対して寸法及び電子ビーム照射密度の補正値を
数値計算で定めることができれば、予め必要な実
験工数は大幅に削減されるものであり、本発明は
その方法を提供するものである。
In the present invention, after repeating many experiments to obtain the relationship shown in FIG. 2, the electron beam irradiation density (point A 0 in FIG. 2, electron beam irradiation density (electron beam irradiation density at B 0 or C 0 ) and electron beam irradiation density that produces a constant film residual rate (points in Figure 2).
It has been found that there is a relationship in which the ratio of electron beam irradiation density at A 1 , B 1 , or C 1 is constant. That is, in Fig. 2, let the electron beam irradiation densities at points A 0 , B 0 , and C 0 be QA 0 , QB 0 , and QC 0 , respectively.
The electron beam irradiation density at points A 1 , B 1 , C 1 is QA 1 ,
Assuming QB 1 and QC 1 , there is the following relationship: QA 1 /QA 0 =QB 1 /QB 0 =QC 1 /QC 0 =D (2) (where D is a constant). The value of the constant D is determined by determining the type and thickness of the resist, the development conditions, and the required residual film rate (residual film thickness). Electron beam irradiation density for all patterns −
Compared to experiments to determine pattern width relationships, much fewer man-hours are required. Therefore, if it is possible to numerically determine the dimensions and electron beam irradiation density correction values for a rectangular pattern of any size by using this constant D, the number of experimental man-hours required in advance can be significantly reduced. The present invention provides a method for doing so.

いま第3図に示す如く、必要な残膜パターンの
寸法(幅2L)に対してSだけ寸法補正された幅
2M(L>M)の描画パターンP′を電子ビーム照
射密度Q1で電子ビーム描画することによつて幅
2L、残膜率90%の残膜パターンが得られる場合
を考えることとする。レジストの種類及び塗布厚
や現像条件は実際の製造プロセスを考慮して固定
されているものとし、予め1つの矩形描画パター
ンでの実験で前記定数Dが既に定められているも
のとする。これらの関係を、電子ビーム照射密度
−パターン幅の関係を表すグラフ上で表現すると
第4図のとおりである。即ち、曲線l,mは各々
幅2L,2Mの正方形パターンを電子ビーム描画
したときの電子ビーム照射密度とレジスト残膜パ
ターン幅との関係を示す。尚、ここで曲線lは既
知の曲線であるが、Sが未知なので曲線mは未知
の曲線である。第4図を見ると点M1は幅2Mの
パターンを電子ビーム照射密度Q1をもつて電子
ビーム描画すると、所要の残膜厚をもつて幅2L
の残膜パターンが得られることを示している。即
ち、本発明では予め求めた定数Dを用いて縮小寸
法S(言い換えればM)と電子ビーム照射密度
Q1を求める。
As shown in Fig. 3, a drawing pattern P' with a width of 2M (L>M), which has been corrected by S with respect to the required dimension of the residual film pattern (width 2L), is irradiated with an electron beam at an electron beam irradiation density of Q 1 . Let us consider a case where a residual film pattern with a width of 2L and a residual film ratio of 90% can be obtained by drawing. It is assumed that the type of resist, coating thickness, and development conditions are fixed in consideration of the actual manufacturing process, and that the constant D has already been determined in advance through an experiment using one rectangular drawing pattern. These relationships are expressed on a graph representing the relationship between electron beam irradiation density and pattern width as shown in FIG. That is, curves l and m show the relationship between the electron beam irradiation density and the resist remaining film pattern width when square patterns of widths 2L and 2M are drawn with the electron beam, respectively. Note that here, the curve l is a known curve, but since S is unknown, the curve m is an unknown curve. Looking at Figure 4, when a pattern with a width of 2M is drawn with an electron beam at an electron beam irradiation density Q1 , a point M1 has a width of 2L with the required residual film thickness.
This shows that a residual film pattern of That is, in the present invention, the reduced dimension S (in other words, M) and the electron beam irradiation density are determined using a constant D determined in advance.
Find Q 1 .

ここで第4図の曲線mに注目し、点M0の如く
描画パターン寸法通りの寸法(幅2M)のレジス
ト残膜パターンが得られる電子ビーム照射密度
Q0を考えると、前記の比率が定数Dに等しくな
る関係が存在することから次式が成立する。
Now, paying attention to the curve m in Fig. 4, the electron beam irradiation density is such that a resist remaining film pattern with the same dimensions (width 2M) as the drawing pattern is obtained, as indicated by point M0 .
Considering Q 0 , since there is a relationship in which the above-mentioned ratio is equal to the constant D, the following equation holds true.

Q1/Q0=D ……(3) 次に一辺の長さが2Mの正方形パターンP′を描
画したときの正方形パターンP′の中心から距離R
の点でのレジスト膜中の露光強度F(R)は(1)式
で表される散乱強度分布f(r)を描画パターン
P′内全面にわたり次式の如く積分することにより
得られる。ここでrはパターンP′から距離Rだけ
離れた点とパターンP′内の電子ビームスポツトの
中心との間の距離である。
Q 1 /Q 0 = D ...(3) Next, when drawing a square pattern P' with a side length of 2M, the distance R from the center of the square pattern P'
The exposure intensity F(R) in the resist film at the point is the scattering intensity distribution f(r) expressed by equation (1) in the drawing pattern.
It is obtained by integrating over the entire surface of P' as shown in the following equation. Here, r is the distance between a point separated by a distance R from pattern P' and the center of the electron beam spot within pattern P'.

F(R)=∫ −M −Mf(r)dx dy ……(4) これにより得られる露光強度F(R)と電子ビ
ーム照射密度Q(C/cm2)との積は実際のレジス
ト膜中におけるパターン辺上での露光量Eを与え
るものであり、この関係は次式の様に表される。
F(R)=∫ M −MM −M f(r)dx dy ...(4) The product of the exposure intensity F(R) obtained from this and the electron beam irradiation density Q (C/cm 2 ) is This gives the exposure amount E on the pattern side in the actual resist film, and this relationship is expressed as in the following equation.

Q・F(R)=E ……(5) ここで再び第4図を参照して点M0及びM1に着
目すると、電子ビーム強度分布は描画パターン内
にピークを持ち外方へ向かつて次第に低下する形
をとり、電子ビーム照射密度Q0及びQ1のとき矩
形パターンP′中心から距離M及びLの点M0及び
L0におけるレジスト中での実際の露光量がレジ
ストが現像後に残るか否かの露光量の閾値E0
等しいことを意味しているのが曲線mである。
Q・F(R)=E ……(5) Now, referring to Fig. 4 again and focusing on points M 0 and M 1 , we can see that the electron beam intensity distribution has a peak within the drawing pattern and is directed outward. When the electron beam irradiation density is Q 0 and Q 1 , the points M 0 and M at distances M and L from the center of the rectangular pattern P′ gradually decrease.
The curve m means that the actual exposure amount in the resist at L 0 is equal to the exposure amount threshold E 0 that determines whether the resist remains after development.

従つてこの関係を式で表すと次のとおりであ
る。
Therefore, this relationship can be expressed as follows.

Q0・F(M)=Q1・F(L)=E0 ……(6) Q1/Q0=F(M)/F(L) ……(6)′ (3)式と(6)′式より次式が導かれる。 Q 0・F(M)=Q 1・F(L)=E 0 ……(6) Q 1 /Q 0 =F(M)/F(L) ……(6)′ Equation (3) and ( 6) From the equation, the following equation is derived.

F(M)=D・F(L) ……(7) ここでLは既知の値であり、(4)式に基づき(7)式
中はの右辺は定数となるので(7)式を成立させるM
は積分方程式の解として一義的に決定されること
になる。この計算自体は電子計算機を用いれば高
速になしうるので、種々の寸法Lに対する解Mを
迅速に得ることができる。
F(M)=D・F(L)...(7) Here, L is a known value, and based on equation (4), the right side of in equation (7) is a constant, so equation (7) can be written as Establish M
is uniquely determined as the solution to the integral equation. Since this calculation itself can be performed at high speed using an electronic computer, solutions M for various dimensions L can be obtained quickly.

かくして得られた寸法値Mが寸法補正(寸法補
正量S=L−M)されたパターン幅2Mを示して
おり、この幅2Mのパターンを電子ビーム照射密
度Q1をもつて電子ビーム描画すれば、現像後に
は所要残膜厚のネガ型レジスト層パターン(幅2
L)を得ることができるのである。尚、前記露光
量E0は現像条件等を定めれば一定で実験的に容
易に定められるので、照射量Q1については前記
(6)式から決定しうることはいうまでもない。
The dimension value M thus obtained indicates a pattern width of 2M after dimension correction (dimensional correction amount S = L - M), and if a pattern with a width of 2M is written with an electron beam at an electron beam irradiation density Q1 , After development, a negative resist layer pattern (width 2
L) can be obtained. Note that the exposure amount E 0 is constant and can be easily determined experimentally by determining the development conditions, etc., so the exposure amount Q 1 is determined as described above.
It goes without saying that it can be determined from equation (6).

以上の説明では簡潔化の為第3図の如き正方形
パターンの補正量を求める場合について述べた
が、長方形パターンの場合でも直交する2辺につ
いて各々上記手順で補正量を求め得ることは明ら
かであろう。
In the above explanation, for the sake of brevity, we have described the case where the correction amount is determined for a square pattern as shown in Figure 3, but it is clear that even in the case of a rectangular pattern, the correction amount can be determined for each of the two orthogonal sides using the above procedure. Dew.

また、膨大なパターンデータを電子計算機に与
え、計算機制御によつて電子ビーム描画を行う実
際的な電子ビーム露光装置に適用する場合、上記
の如くして算出する補正量はパターンデータ作成
時に決定してしまい、そのデータは第5図の如き
装置なら電子計算機6に格納され電子計算機6に
よつてX、Y偏向器4を駆動しビームスポツトを
歩進させ所定のパターンを塗り潰すように照射し
て描画を行う。第5図は典型的な電子ビーム露光
装置の基本構成の概念図である。電子ビーム露光
装置本体1は電子銃2、収束電子レンズ系3、
XY偏向器4を有し、細く絞られた電子ビームを
レジストが塗布された基板、試料5に照射するも
ので、その試料5上の電子ビームスポツトの位置
は電子計算器6からのパターンデータでDA変換
器7、増幅器8を介してXY偏向器4を駆動する
ことによつて制御される。電子ビームは計算機6
からの信号に応じて、ブランキング装置によつて
試料5上へ照射制御されるものである。
In addition, when applying a huge amount of pattern data to an electronic computer and applying it to a practical electron beam exposure apparatus that performs electron beam writing under computer control, the correction amount calculated as described above is determined at the time of creating the pattern data. If the device is as shown in Fig. 5, the data is stored in the electronic computer 6, and the computer 6 drives the X and Y deflectors 4 to advance the beam spot and irradiate it so as to fill in a predetermined pattern. and draw. FIG. 5 is a conceptual diagram of the basic configuration of a typical electron beam exposure apparatus. The electron beam exposure apparatus main body 1 includes an electron gun 2, a convergent electron lens system 3,
It has an XY deflector 4 and irradiates a thinly focused electron beam onto a substrate coated with resist and a sample 5. The position of the electron beam spot on the sample 5 is determined by pattern data from an electronic calculator 6. It is controlled by driving the XY deflector 4 via the DA converter 7 and amplifier 8. The electron beam is computer 6
Irradiation onto the sample 5 is controlled by a blanking device in accordance with signals from the blanking device.

〔発明の効果〕〔Effect of the invention〕

以上の様に、本発明によればネガ型レジストを
用い電子ビーム露光によりパターン形成を行うに
あたり、所要の残膜厚を確保して所要のネガ型レ
ジスト残膜パターンを作成するための描画パター
ン寸法補正及び照射量補正を比較的簡単な操作に
よつて達成することができ、高精度の微細パター
ン形成をより少ない工数で実現できるので、その
実用効果は大きい。
As described above, according to the present invention, when forming a pattern by electron beam exposure using a negative resist, drawing pattern dimensions are required to ensure a required residual film thickness and create a required negative resist residual film pattern. Correction and dose correction can be achieved by relatively simple operations, and highly accurate fine pattern formation can be achieved with fewer man-hours, so the practical effect is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電子ビームによる描画矩形の面積とパ
ターン内近接効果によるパターンの拡がり分との
関係を示すグラフ、第2図は電子ビーム照射密度
とパターン幅との関係を示すグラフ、第3図は寸
法補正すべき矩形パターンを示す図、第4図は電
子ビーム照射密度とパターン幅の関係を示すグラ
フ、第5図は電子ビーム露光システムの基本的構
成例を示す図である。
Figure 1 is a graph showing the relationship between the area of the rectangle drawn by the electron beam and the pattern spread due to intra-pattern proximity effect, Figure 2 is a graph showing the relationship between electron beam irradiation density and pattern width, and Figure 3 is the graph showing the relationship between the electron beam irradiation density and pattern width. FIG. 4 is a graph showing the relationship between electron beam irradiation density and pattern width. FIG. 5 is a diagram showing a basic configuration example of an electron beam exposure system.

Claims (1)

【特許請求の範囲】[Claims] 1 電子ビームをネガ型レジスト層が塗布形成さ
れた基板上に照射して所定パターンを描画し、現
像工程後には所要のネガ型レジスト層パターンが
残置されるような露光パターンを前記ネガ型レジ
スト層に形成する方法であつて、任意の1つの描
画パターンに対し、該描画パターンと同一寸法の
レジスト層パターンが現像後に残置されるような
電子ビーム照射密度と所要のレジスト残膜厚が得
られるような電子ビーム照射密度との比率を予め
求めておき、所要の残置すべきレジスト層パター
ンに対する描画パターン及びその電子ビーム照射
密度を決定するに当つて、該残置すべきパターン
寸法と前記比率とに基づいて前記所要レジスト残
膜厚が得られる電子ビーム照射密度と描画パター
ン寸法とを求め、かくして決定した電子ビーム照
射密度と描画パターン寸法でもつて電子ビーム描
画することを特徴とする電子ビーム露光方法。
1. A predetermined pattern is drawn by irradiating an electron beam onto a substrate on which a negative resist layer is coated, and an exposure pattern is applied to the negative resist layer so that the desired negative resist layer pattern remains after the development process. It is a method of forming a resist layer in such a way that, for any one drawing pattern, the electron beam irradiation density and the required resist residual film thickness are obtained such that a resist layer pattern having the same dimensions as the drawing pattern remains after development. The ratio to the electron beam irradiation density is determined in advance, and when determining the drawing pattern and the electron beam irradiation density for the required resist layer pattern to be left, based on the dimensions of the pattern to be left and the ratio. An electron beam exposure method characterized in that the electron beam irradiation density and the drawing pattern dimensions that provide the required resist residual film thickness are determined, and electron beam writing is performed using the electron beam irradiation density and the drawing pattern dimensions thus determined.
JP16249481A 1981-10-12 1981-10-12 Electronic beam exposing process Granted JPS5863135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16249481A JPS5863135A (en) 1981-10-12 1981-10-12 Electronic beam exposing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16249481A JPS5863135A (en) 1981-10-12 1981-10-12 Electronic beam exposing process

Publications (2)

Publication Number Publication Date
JPS5863135A JPS5863135A (en) 1983-04-14
JPS6246058B2 true JPS6246058B2 (en) 1987-09-30

Family

ID=15755682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16249481A Granted JPS5863135A (en) 1981-10-12 1981-10-12 Electronic beam exposing process

Country Status (1)

Country Link
JP (1) JPS5863135A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3177599B2 (en) 1998-06-12 2001-06-18 松下電子工業株式会社 Pattern formation method

Also Published As

Publication number Publication date
JPS5863135A (en) 1983-04-14

Similar Documents

Publication Publication Date Title
KR100807957B1 (en) Beam dose computing method and writing method and record carrier body and writing apparatus
JP3466900B2 (en) Electron beam writing apparatus and electron beam writing method
JPS6112068A (en) Method of correcting proximity effect in electronic beam lithographic device
JPS6234136B2 (en)
JPS6246059B2 (en)
US10950413B2 (en) Electron beam irradiation method, electron beam irradiation apparatus, and computer readable non-transitory storage medium
JPH07321011A (en) Method of electron beam exposure
JPS6246058B2 (en)
KR102366045B1 (en) Charged particle beam writing method and charged particle beam writing apparatus
KR100264191B1 (en) Charged particle beam writing method and apparatus therefor
JPH0336293B2 (en)
JPH06267833A (en) Electron beam lithography
JPH05136033A (en) Pattern forming method and device thereof
JPH0336292B2 (en)
JPH0727856B2 (en) Electronic beam drawing method
JPS6314866B2 (en)
JPS6262047B2 (en)
JPH0336294B2 (en)
JPS6041223A (en) Electron beam exposure
US20230290608A1 (en) Charged particle beam writing method, charged particle beam writing apparatus, and computer-readable recording medium
JPS6041222A (en) Electron beam exposure
JPH0336295B2 (en)
TW202326619A (en) Drawing method, master plate manufacturing method, and drawing apparatus
JPS6041224A (en) Electron beam exposure
JPS61191027A (en) Electron beam exposure method