JPH0547969B2 - - Google Patents

Info

Publication number
JPH0547969B2
JPH0547969B2 JP5298282A JP5298282A JPH0547969B2 JP H0547969 B2 JPH0547969 B2 JP H0547969B2 JP 5298282 A JP5298282 A JP 5298282A JP 5298282 A JP5298282 A JP 5298282A JP H0547969 B2 JPH0547969 B2 JP H0547969B2
Authority
JP
Japan
Prior art keywords
pattern
electron beam
amount
residual film
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5298282A
Other languages
Japanese (ja)
Other versions
JPS58170015A (en
Inventor
Yasuhide Machida
Shigeru Furuya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5298282A priority Critical patent/JPS58170015A/en
Publication of JPS58170015A publication Critical patent/JPS58170015A/en
Publication of JPH0547969B2 publication Critical patent/JPH0547969B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electron Beam Exposure (AREA)

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は電子ビーム露光方法に関し、特に所
謂、近接効果を補正して高精度の電子ビーム露光
パターンを形成する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to an electron beam exposure method, and more particularly to a method of forming a highly accurate electron beam exposure pattern by correcting the so-called proximity effect.

(b) 技術の背景 電子ビーム露光によるパターン形成技術におい
ては、パターン精度の向上のためには、所謂近接
効果の補正が不可欠である。良く知られているよ
うに近接効果は被露光物に塗布形成されたレジス
ト層中での電子ビーム散乱(前方散乱)及び、被
露光物である基板からの電子ビーム散乱(後方散
乱)によつて、描画後のレジストパターンが電子
ビーム照射パターンより大きく拡がるという現象
であり、特にパターン間の間隔が2μm以下になる
と、結果的にパターン形状の著しい歪をもたら
し、精度を低下させる悪影響が顕著になる。
(b) Background of the technology In pattern forming technology using electron beam exposure, correction of the so-called proximity effect is essential to improve pattern accuracy. As is well known, the proximity effect is caused by electron beam scattering (forward scattering) in the resist layer coated on the exposed object and electron beam scattering (backward scattering) from the substrate, which is the exposed object. This is a phenomenon in which the resist pattern after drawing expands to a greater extent than the electron beam irradiation pattern, and especially when the spacing between patterns becomes less than 2 μm, this results in significant distortion of the pattern shape and has a significant negative effect of reducing accuracy. .

この散乱によるレジスト中での電子ビーム露光
強度分布は、外部から照射するビーム中心からの
距離rの関数として、次式 f(r)=e−(r/A)2+B・e−(r/C)2
…(1) で表わされ、第1項目は前方散乱、第2項目は後
方散乱によつて与えられるものであることが知ら
れている。なお、(1)式中A,B,Cはそれぞれレ
ジストの厚みや、基板材料等の条件によつて定ま
る定数である。
The electron beam exposure intensity distribution in the resist due to this scattering is determined by the following equation f(r)=e-(r/A) 2 +B・e-(r/ C) 2 ...
It is known that the first term is given by forward scattering and the second term is given by backward scattering. Note that in formula (1), A, B, and C are constants determined by conditions such as the thickness of the resist and the material of the substrate.

近接効果によるパターンの拡がりには、他のパ
ターンの影響によつて生じる拡がり(パターン間
近接効果)自分自身のパターン描画から生じる拡
がり(パターン内近接効果)がある。近接効果を
補正するための最も一般的な方法は、各パターン
毎に電子ビーム露光強度分布とその形状及び隣接
パターンからの距離を考慮して、最適な照射量を
あらかじめ各パターン毎に設定したり、あるい
は、描画パターンを変形しておいたりする方法で
ある。いずれもあらかじめ、パターンデータ作成
の時点で補正量を決定しなければならない。電子
ビームをウエハーに直接描画して、パターンを形
成する(直接露光)場合、加工プロセス上残膜厚
を厚く保つ必要がある。
Pattern spreading due to proximity effects includes spreading caused by the influence of other patterns (inter-pattern proximity effect) and spreading caused by drawing one's own pattern (intra-pattern proximity effect). The most common method for correcting the proximity effect is to set the optimal irradiation dose for each pattern in advance by considering the electron beam exposure intensity distribution, its shape, and the distance from adjacent patterns for each pattern. Alternatively, the drawing pattern may be modified. In either case, the amount of correction must be determined in advance at the time of creating pattern data. When forming a pattern by directly drawing an electron beam on a wafer (direct exposure), it is necessary to maintain a large residual film thickness during the processing process.

しかしながら、ネガレジストの場合、目標のパ
ターン間隔を満足させるため、照射量を少なくす
ると残膜厚が薄くなるので、照射量補正による近
接効果補正だけでは、パターン形状、間隔に応じ
て残膜厚に差がでてくる。
However, in the case of negative resist, if the irradiation dose is reduced in order to satisfy the target pattern spacing, the remaining film thickness will become thinner. There will be a difference.

したがつて、直接露光の場合、ネガレジストの
残膜厚を厚く保つと共に、目標のパターン寸法、
間隔を満足するためには描画パターンの寸法を縮
少し、さらに照射量を増して補正する方法、即
ち、図形の寸法を縮少すると同時に照射量を図形
ごとに変える近接効果補正が必要であり、その様
な補正方法を行なうためには目標の残膜厚とパタ
ーン寸法を得るのに必要な寸法補正量と照射量が
必要となる。
Therefore, in the case of direct exposure, the remaining film thickness of the negative resist is kept thick, and the target pattern dimensions,
In order to satisfy the spacing, it is necessary to reduce the dimensions of the drawing pattern and further increase the irradiance for correction. In other words, it is necessary to reduce the dimensions of the figure and at the same time change the irradiation dose for each figure using proximity effect correction. In order to carry out such a correction method, the amount of dimension correction and the amount of irradiation necessary to obtain the target residual film thickness and pattern dimensions are required.

(c) 従来技術と問題点 従来、自分自身のパターン描画から生じる拡が
り(パターン内近接効果)を補正する寸法補正量
はパターンの大きさに関係なく一定であつた。
(c) Prior Art and Problems Conventionally, the amount of dimensional correction for correcting the spread caused by drawing one's own pattern (intra-pattern proximity effect) has been constant regardless of the size of the pattern.

しかしながら、ネガレジストにおいて、初期膜
厚が厚くなつた場合、第1図に示す様に矩型の大
きさが大きい場合、自分自身の拡がりが顕著にな
り、膜厚が厚いほどより顕著になる。したがつ
て、直接露光の場合、レジスト膜厚を厚く保つた
めには、従来の様な一定のパターン内寸法補正量
では、高精度のパターンは得られない。
However, in the case of a negative resist, when the initial film thickness is increased, and when the rectangular size is large as shown in FIG. 1, the self-spreading becomes noticeable, and becomes more noticeable as the film thickness increases. Therefore, in the case of direct exposure, in order to maintain a large resist film thickness, a highly accurate pattern cannot be obtained with a fixed in-pattern dimension correction amount as in the conventional method.

又、任意の大きさのパターンに対して目標の残
膜厚になる様な照射量補正を行なうためには、第
2図に示す様な目標の残膜厚になるパターンの大
きさと照射量との関係が必要となる。
In addition, in order to correct the irradiation amount to achieve the target residual film thickness for a pattern of any size, the size and irradiation amount of the pattern that will result in the target residual film thickness as shown in Figure 2 must be adjusted. relationship is required.

従来、第2図の関係は各種の大きさの矩型を露
光し、膜厚が一定になる点をプロツトとして実験
より得ていた。
Conventionally, the relationship shown in FIG. 2 has been obtained through experiments by exposing rectangles of various sizes and plotting the point at which the film thickness becomes constant.

しかしながら、実験により第2図の関係を求め
る方法では、多数の測定点についてレジスト残膜
厚を測定するために断面形状を電子顕微鏡で観測
する必要があり、時間を要すため露光条件が変化
した場合、迅速に第2図の関係を求めることがで
きない。
However, in the method of determining the relationship shown in Figure 2 through experiments, it is necessary to observe the cross-sectional shape with an electron microscope in order to measure the remaining resist film thickness at a large number of measurement points, which takes time and changes the exposure conditions. In this case, the relationship shown in FIG. 2 cannot be quickly obtained.

(d) 発明の目的 本発明の目的は、従来のこのような問題点に鑑
み、所望の残膜率で所望の寸法のパターンに感光
材料をパターニングすることにある。
(d) Object of the Invention In view of these conventional problems, the object of the present invention is to pattern a photosensitive material into a pattern with a desired size and a desired residual film rate.

(e) 発明の構成 上記目的を達成するための本発明の特徴は、ネ
ガレジストの基本特性である感度曲線(残膜率と
照射量の関係)と任意の大きさのパターンの露光
強度分布(照射量とパターン幅の関係)を用いて
計算により、目標の残膜厚とパターン寸法を得る
のに必要な寸法補正量と照射量を得て、該補正パ
ターン寸法と照射量に基づいて、電子ビーム描画
を行なうことにある。
(e) Structure of the Invention The features of the present invention for achieving the above object are that the sensitivity curve (relationship between residual film rate and irradiation amount), which is the basic characteristic of negative resist, and the exposure intensity distribution of a pattern of arbitrary size ( (relationship between irradiation amount and pattern width) to obtain the dimensional correction amount and irradiation amount necessary to obtain the target residual film thickness and pattern dimensions, and then calculate the electronic The purpose is to perform beam writing.

(f) 発明の実施例 ネガ型レジストは電子線照射によつて架橋し、
その結果もとの溶媒に不溶な成分(ゲル)を生ず
る高分子材料である。
(f) Embodiments of the invention A negative resist is crosslinked by electron beam irradiation,
As a result, it is a polymeric material that produces a component (gel) that is insoluble in the original solvent.

不溶化膜の厚さdは、一般に照射量Q、入射電
子のエネルギー(加速電圧)E0および照射前の
膜厚d0の関数となり、第3図の様になる。
The thickness d of the insolubilized film is generally a function of the irradiation dose Q, the energy of incident electrons (acceleration voltage) E 0 and the film thickness d 0 before irradiation, as shown in FIG.

加速電圧E0が一定ならば、ネガレジストの特
性は d/d0=h(Q) ……(2) とQのみの関数で表わされる。
If the accelerating voltage E 0 is constant, the characteristics of the negative resist are expressed as d/d 0 =h(Q) (2) and a function of only Q.

このことは架橋、即ち、電子線からのエネルギ
ー吸収が厚さ方向にわたつて、一様に起つている
ことを意味する。
This means that crosslinking, ie, absorption of energy from the electron beam, occurs uniformly throughout the thickness.

本発明者の実験によれば、レジストにパターン
が出現する時の照射量と所定の残膜率を得るため
の照射量との比はパターン幅に依存せずほぼ一定
であることが分かつた。即ち第3図において5ミ
クロン角のパターンが出現する時の照射量をQ0
とし、目的の残膜率t1となる時の照射量をQ1と
すると、照射量の増加率ΔQはQ1/Q0で表され
るが、1ミクロン角のパターンが出現する照射量
をQ0′とすると残膜率がt1となる照射量はΔQ・
Q0′で求まる。
According to experiments conducted by the present inventors, it has been found that the ratio between the irradiation amount when a pattern appears on the resist and the irradiation amount to obtain a predetermined film remaining rate is almost constant regardless of the pattern width. In other words, the irradiation amount when a 5 micron square pattern appears in Figure 3 is Q0.
If the irradiation dose at which the desired residual film rate t1 is achieved is Q1, then the rate of increase in irradiation dose ΔQ is expressed as Q1/Q0, but if the irradiation dose at which a 1 micron square pattern appears is Q0', then The irradiation dose at which the residual film rate becomes t1 is ΔQ・
It is determined by Q0′.

従つて、任意の大きさのパターンにおいて目的
の残膜率を得るための照射量は、パターンが出現
する時の照射量が分かればこれにΔQを掛けるこ
とによつて求めることができる。
Therefore, if the irradiation amount when the pattern appears is known, the irradiation amount to obtain the desired residual film rate for a pattern of any size can be determined by multiplying this by ΔQ.

又、第4図に示す様に描画後、目標の残膜厚と
パターン寸法2lμmを満足する様、寸法補正を
Sμm行なつた2Mμm角のパターンを考える。
Also, as shown in Figure 4, after drawing, the dimensions were corrected to satisfy the target residual film thickness and pattern dimension of 2lμm.
Consider a 2Mμm square pattern made by Sμm.

2Mμm角のパターンの露光強度分布は、第5図
の様に表わされる。照射量Q、露光強度分布F
(R)、現像エネルギー量EとするQF(R)=Eの
関係があり、Q=E/F(R)となるから、強度
分布F(R)の逆数であるQにより間接的に露光
強度分布を示している。第5図において、縦軸は
照射量、横軸はパターンの中心からエツジまでの
距離を示している。
The exposure intensity distribution of a 2Mμm square pattern is shown in FIG. Irradiation amount Q, exposure intensity distribution F
(R), the amount of development energy E is the relationship QF(R)=E, and Q=E/F(R), so the exposure intensity can be indirectly determined by Q, which is the reciprocal of the intensity distribution F(R). It shows the distribution. In FIG. 5, the vertical axis represents the irradiation amount, and the horizontal axis represents the distance from the center of the pattern to the edge.

目標の残膜率t1になる照射量をQ1、パターンが
出現する照射量をQ0とすると第5図において、
照射量Q0,Q1は以下の式で求められる。
Let Q 1 be the irradiation amount that gives the target residual film rate t 1 , and let Q 0 be the irradiation amount that causes the pattern to appear, as shown in Fig. 5.
The irradiation doses Q 0 and Q 1 are calculated using the following formulas.

Q0F(o)=E ……(3) Q1F(l)=E ……(4) ここで、F(R)は露光強度分布(1)式を矩形内
で積分して得られ、(5)式で表わされる。
Q 0 F(o)=E ……(3) Q 1 F(l)=E ……(4) Here, F(R) is obtained by integrating the exposure intensity distribution equation (1) within a rectangle. , expressed by equation (5).

F(R)=∫M -MM -Mf(r)dxdy ……(5) 又、R,r,x,yの位置関係は、第6図で表
わされ、以下の(6)式の様になる。
F(R)=∫ M -MM -M f(r)dxdy ...(5) Also, the positional relationship of R, r, x, and y is shown in Figure 6, and the following (6) It will look like the ceremony.

r2=(Rcosθ−x)2+(Rsinθ−y)2 ……(6) 又、Eは現像エネルギー量である。 r2 =(Rcosθ-x) 2+ (Rsinθ-y) 2 ...(6) Also, E is the amount of development energy.

(3),(4)より Q1/Q0=F(o)/F(l) ……(7) となり、Q1/Q0は第3図において照射量の増加
率ΔQに等しい。
From (3) and (4), Q 1 /Q 0 =F(o)/F(l) (7), and Q 1 /Q 0 is equal to the rate of increase in irradiation dose ΔQ in FIG.

以上の事から、積分方程式(7)を解くことによつ
て未知数Mが得られる。第4図より2M=2l−2S
の関係があるから、S=l−Mより寸法補正量S
を求めることができる。
From the above, the unknown M can be obtained by solving the integral equation (7). From Figure 4, 2M=2l−2S
Because of the relationship, the dimensional correction amount S from S=l−M
can be found.

又、その時の照射量Q1は、(4)式より得られる。 Further, the irradiation amount Q 1 at that time can be obtained from equation (4).

なお、現像エネルギー量Eは、第3図のパター
ンが現われる照射量Q0と(3)式より求める。
Incidentally, the amount of development energy E is determined from the irradiation amount Q 0 at which the pattern shown in FIG. 3 appears and equation (3).

以上の様に、2lμm角のパターンに対して寸法
補正量Sを見い出し、パターン寸法を補正(縮
少)して、2Mμm角のパターンを照射量Q1で露
光することにより、目標の残膜率t1とパターン寸
法2lμmが得られる。次にパターン間の近接効果
の影響のある第7図の場合は、以下の様にして求
める。
As described above, by finding the dimension correction amount S for the 2 lμm square pattern, correcting (reducing) the pattern dimension, and exposing the 2Mμm square pattern with the irradiation amount Q 1 , the target residual film rate can be achieved. t 1 and pattern dimension 2lμm are obtained. Next, in the case of FIG. 7 where there is an influence of the proximity effect between patterns, it is determined as follows.

第7図において、パターン自身のパターン描画
によるパターンの拡がり(パターン内近接効果)
を補正し、目標の残膜率になる様、先に述べた方
法により寸法補正量S1と照射量Q2を求め、破線
の様に寸法を縮少する。
In Figure 7, the pattern spreads due to the drawing of the pattern itself (intra-pattern proximity effect).
The size correction amount S 1 and the irradiation amount Q 2 are determined by the method described above, and the size is reduced as shown by the broken line so that the target residual film rate is achieved.

さらに、照射量Q2で描画後、設計寸法になる
様に周囲のパターンの影響(パターン間近接効
果)を考慮して、一点破線の様に寸法をS2縮少
する。
Furthermore, after drawing with a dose of Q 2 , the dimensions are reduced by S2 as indicated by the dotted line, taking into consideration the influence of surrounding patterns (proximity effect between patterns), so as to achieve the design dimensions.

S2は、以下の様にして求める。第7図におい
て、設計パターン寸法、間隔をW,Lとし、寸法
補正前のパターン(図の実線)のエツジa点、c
点の露光強度をG(a),G(c)とすると、パタ
ーン間近接効果の影響のある場合はG(a)<G
(c)であり、影響がなくなつた時G(a)=G
(c)となる。以上の事から、パターンの内側の
露光強度G(c)と外側のエツジの強度G(a)が
現像エネルギー量Eに等しくするには、どれ程寸
法をシフトする必要があるかで、寸法補正量S2
が求められる。
S2 is calculated as follows. In Fig. 7, the design pattern dimensions and spacing are W and L, and the edge points a and c of the pattern before dimension correction (solid line in the figure)
Let G(a) and G(c) be the exposure intensities at the points, and if there is an effect of proximity effect between patterns, G(a)<G
(c), and when the influence disappears, G(a) = G
(c). From the above, in order to make the exposure intensity G(c) on the inside of the pattern and the intensity G(a) on the outside edge equal to the development energy amount E, the dimension correction is performed based on how much the dimension needs to be shifted. Quantity S2
is required.

ここで、G(a),G(c)は以下の(8),(9)式で
ある。
Here, G(a) and G(c) are the following equations (8) and (9).

G(a)=Q2×{F(W−S2/2)+F(3W/2+S2
/2+ L)} ……(8) G(c)=Q2×{F(W/2+S2/2)+F(W/2
+S2/2+ L)} ……(9) なお、F(R)は、(5)式で与えられる。
G(a)=Q 2 × {F(W-S2/2)+F(3W/2+S2
/2+L)} ...(8) G(c)=Q 2 × {F(W/2+S2/2)+F(W/2
+S2/2+L)} ...(9) Note that F(R) is given by equation (5).

従つて、第7図に示すパターンの場合、パター
ン内寸法補正をS1、パターン間寸法補正をS2行
ない、照射量Q2で露光することにより、目標の
残膜率t1、パターン寸法W、パターン間隔Lが得
られる。
Therefore, in the case of the pattern shown in FIG. 7, by performing the intra-pattern dimension correction in S1, the inter-pattern dimension correction in S2, and exposing with the irradiation dose Q2 , the target residual film rate t1 , pattern dimension W, and pattern can be determined. An interval L is obtained.

(g) 発明の効果 以上の様に本発明によれば、目標の残膜厚とパ
ターン精度を得るのに必要な寸法補正量と照射量
を容易に得ることができ、該補正パターン寸法と
照射量に基づいて電子ビーム描画を行なうことに
より、高精度で、しかも残膜厚を保証するパター
ンを得ることができる。
(g) Effects of the Invention As described above, according to the present invention, it is possible to easily obtain the dimension correction amount and irradiation amount necessary to obtain the target residual film thickness and pattern accuracy, and the correction pattern dimension and irradiation amount can be easily obtained. By performing electron beam writing based on the amount, it is possible to obtain a pattern with high precision and which guarantees the remaining film thickness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、矩形の大きさとパターンの拡がりの
関係を示す図、第2図は、残膜厚を一定とした場
合の矩形の大きさと当該電子ビームの照射量の関
係を示す図、第3図は、電子ビームの照射量と感
光材料の残膜率の関係を示す図、第4図は所望パ
ターンと電子ビームを照射するパターンの関係を
示す図、第5図は露光強度分布を示す図、第6図
は式を説明するための図、第7図は補正パターン
を説明する図である。 Q0,Q1……電子ビームの照射量、d,d0……
感光性材料の膜厚、D……パターンの中心からエ
ツジまでの距離。
Fig. 1 is a diagram showing the relationship between the size of the rectangle and the spread of the pattern, Fig. 2 is a diagram showing the relationship between the size of the rectangle and the irradiation amount of the electron beam when the residual film thickness is constant, and Fig. The figure shows the relationship between the electron beam irradiation amount and the residual film rate of the photosensitive material, Figure 4 shows the relationship between the desired pattern and the electron beam irradiation pattern, and Figure 5 shows the exposure intensity distribution. , FIG. 6 is a diagram for explaining the formula, and FIG. 7 is a diagram for explaining the correction pattern. Q 0 , Q 1 ... electron beam irradiation amount, d, d 0 ...
Film thickness of photosensitive material, D...Distance from the center of the pattern to the edge.

Claims (1)

【特許請求の範囲】[Claims] 1 ネガ型レジストにパターンが出現する時の電
子ビームの照射量と、該レジストの所望の残膜率
を得るための電子ビームの照射量とが一定の比例
関係にあることを利用して所望の残膜率における
電子ビームの照射量を求め、所定寸法のパターン
に関する電子ビームの照射量とパターン寸法との
関係から該レジストの所望の残膜厚とパターン寸
法を得るのに必要な縮小パターン寸法を求め、該
縮小パターン寸法と電子ビーム照射量を用いて該
レジストに電子ビームを照射することを特徴とす
る電子ビーム露光方法。
1 Taking advantage of the fact that there is a certain proportional relationship between the amount of electron beam irradiation when a pattern appears on a negative resist and the amount of electron beam irradiation required to obtain the desired residual film rate of the resist, Determine the electron beam irradiation amount at the residual film rate, and calculate the reduced pattern size necessary to obtain the desired residual film thickness and pattern size of the resist from the relationship between the electron beam irradiation amount and pattern dimensions for a pattern with a predetermined size. An electron beam exposure method characterized in that the resist is irradiated with an electron beam using the reduced pattern size and the electron beam irradiation amount.
JP5298282A 1982-03-31 1982-03-31 Electron-beam exposure method Granted JPS58170015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5298282A JPS58170015A (en) 1982-03-31 1982-03-31 Electron-beam exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5298282A JPS58170015A (en) 1982-03-31 1982-03-31 Electron-beam exposure method

Publications (2)

Publication Number Publication Date
JPS58170015A JPS58170015A (en) 1983-10-06
JPH0547969B2 true JPH0547969B2 (en) 1993-07-20

Family

ID=12930106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5298282A Granted JPS58170015A (en) 1982-03-31 1982-03-31 Electron-beam exposure method

Country Status (1)

Country Link
JP (1) JPS58170015A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748472B2 (en) * 1989-01-13 1995-05-24 株式会社東芝 Pattern formation method by electron beam drawing
JP2013207045A (en) * 2012-03-28 2013-10-07 Toppan Printing Co Ltd Pattern drawing method and pattern drawing apparatus using the same

Also Published As

Publication number Publication date
JPS58170015A (en) 1983-10-06

Similar Documents

Publication Publication Date Title
US4298803A (en) Process and apparatus for making fine-scale patterns
US6627366B2 (en) Electron beam exposure method having good linearity with respect to producing fine patterns
JPS59921A (en) Method for correction of proximity effect in electron beam lithography
JPS599922A (en) Exposure device
US4717644A (en) Hybrid electron beam and optical lithography method
US2748288A (en) Electron photography plate construction
US4746587A (en) Electron emissive mask for an electron beam image projector, its manufacture, and the manufacture of a solid state device using such a mask
KR19980080950A (en) Pattern exposure method using electron beam
JPH0547969B2 (en)
JPS6399526A (en) Method for compensating proximity effect of electron beam
JPH0653106A (en) Formation of fine resist pattern
JPS5819127B2 (en) Fine pattern formation method
JP3393412B2 (en) Exposure method and exposure apparatus
JPH02218115A (en) Method of forming pattern
JPS6157697B2 (en)
JPS5580318A (en) Electron-beam exposure
JPH02264261A (en) Resist pattern forming method
JP2835109B2 (en) Charged beam drawing method
JPH0147009B2 (en)
JPH0297950A (en) Resist pattern forming method
JPS63155724A (en) Charged particle beam lithography method
JPH06120102A (en) Exposure method and aligner
JPS6041223A (en) Electron beam exposure
JPH03127818A (en) Manufacture of reticle
JPS6252850B2 (en)