JPS63155724A - Charged particle beam lithography method - Google Patents

Charged particle beam lithography method

Info

Publication number
JPS63155724A
JPS63155724A JP30137886A JP30137886A JPS63155724A JP S63155724 A JPS63155724 A JP S63155724A JP 30137886 A JP30137886 A JP 30137886A JP 30137886 A JP30137886 A JP 30137886A JP S63155724 A JPS63155724 A JP S63155724A
Authority
JP
Japan
Prior art keywords
irradiation amount
pattern
charged particle
particle beam
shot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30137886A
Other languages
Japanese (ja)
Inventor
Takayuki Abe
隆幸 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP30137886A priority Critical patent/JPS63155724A/en
Publication of JPS63155724A publication Critical patent/JPS63155724A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To accurately form a resist pattern with good reproducibility by using total of first irradiation amount which is constant in a pattern region and zero in a nonpattern region and specific second irradiation amount as an irradiation amount. CONSTITUTION:A pattern region is divided to rectangular small regions (shots) subjected to a lithography by one forming beam, 1.0 is set as first irradiation amount to each shot, and registered with lithography data. Then, data of nonpattern region in which the white and the black of the pattern are inverted is obtained, divided to shots, 0.0 is set to each shot as first irradiation amount, and additionally registered to the lithography data. Second irradiation amount determined by the pattern shape calculated by using the shot of the nonpattern region existed within 20mum of radius from the center of one shot and a coefficient representing the scatter of electrons is added to the first irradiation amount of the shot(j)as an irradiation amount set value. An accurate resist pattern is obtained by using the data with good reproducibility.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は荷電粒子線を用いて、半導体集積回路等の微細
パターンを描画する方法に関し、特に荷電粒子の試料か
らの後方散乱により生じるパターンの寸法精度劣下を補
正する方法に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention relates to a method for drawing fine patterns of semiconductor integrated circuits, etc. using a charged particle beam, and in particular to a method for drawing fine patterns of semiconductor integrated circuits, etc. using a charged particle beam. The present invention relates to a method for correcting a decrease in dimensional accuracy of a pattern caused by scattering.

(従来の技術) 近年、半導体ウェハ等の試料上に微細パターンを描画す
る装置として、各種の荷電粒子線描画装置が用いられて
いる。電子線露光装置によりパタ−ン形成を行なう場合
、電子は試料中で散乱をうけ、散乱後の電子は試料上に
塗付されたレジストの入射点以外の部分をも感光させる
。この影響で現像後のレジストパターンは所望の形状や
寸法とは異なったものになる。これは近接効果と呼ばれ
る現象である。
(Prior Art) In recent years, various charged particle beam drawing devices have been used to draw fine patterns on samples such as semiconductor wafers. When forming a pattern using an electron beam exposure device, electrons are scattered within the sample, and the scattered electrons also expose parts of the resist coated on the sample other than the incident point. Due to this influence, the resist pattern after development differs from the desired shape and dimensions. This is a phenomenon called the proximity effect.

Ghost法がこの近接効果を補正する方法のひとつと
して提案されている。
The Ghost method has been proposed as one method for correcting this proximity effect.

これは、まずレジスト上に所望のパターンを照射量を一
定として電子線の焦点を試料面上からはずすことなく描
画する第1の描画の後、焦点を試料面上からはずした電
子線を用いて、前記パターンの白黒を反転させたパター
ンを所定の照射量によって第2回目の描画を行なう方法
である。この補正方法の有効性は、0.25gnのレジ
ストパターンの形成の実現によって確認されているが、
次のような問題点があった。
This is done by first drawing a desired pattern on the resist at a constant irradiation dose without taking the focus of the electron beam off the sample surface, then by using an electron beam with the focus off the sample surface. , a method in which a pattern in which the black and white of the above pattern is reversed is drawn for a second time using a predetermined irradiation amount. The effectiveness of this correction method has been confirmed by the formation of a 0.25gn resist pattern.
There were the following problems.

上記第2の描画の際には、焦点を試料面からはずし寸法
を広げた電子ビームにより描画の位置あわせを行なう必
要がある。ところがこの時のビーム寸法は、例えば加速
電圧が50kVの際には、12μmに及ぶため、パター
ン幅1卯程度の位置合わせ用マークからの反射信号を検
出するには大きな誤差をともない、現像後のレジストパ
ターン寸法の制御性、再現性が著しく劣下することにな
る。
During the second drawing, it is necessary to align the drawing using an electron beam whose focus is removed from the sample surface and whose dimensions are widened. However, the beam size at this time is, for example, 12 μm when the accelerating voltage is 50 kV, so there is a large error in detecting the reflected signal from the alignment mark with a pattern width of about 1 m. Controllability and reproducibility of resist pattern dimensions will be significantly degraded.

(発明が解決しようとする問題点) 以上にみたように、Ghost法は、電子ビームの寸法
を広げることに起因するレジスト寸法の制御性及び再現
性の低さ、という実用レベルでの大きな問題があった。
(Problems to be Solved by the Invention) As seen above, the Ghost method has a major problem at a practical level: low controllability and reproducibility of resist dimensions due to widening the electron beam dimensions. there were.

本発明の目的はこのような従来技術の問題点を解決し、
レジストパターンを精度よくかつ再現性よく形成する方
法を提供することである。
The purpose of the present invention is to solve the problems of the prior art,
An object of the present invention is to provide a method for forming a resist pattern with high precision and high reproducibility.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は、荷電粒子線によりパターンを描画するに際し
、まず通常の描画を行なう場合に荷電粒子が照射される
パターン領域と通常の描画を行なう場合に荷電粒子線が
照射されない非パターン領域とを各々小領域に分割し、
次に該小領域のすベてについて、パターン領域内部で一
定値であり非パターン領域内部でゼロである第1の照射
量とパターンの形状と電子の散乱状況を表わす係数によ
って定まる第2の照射量との合計を、該小領域の照射量
として設定し、その後各小領域に設定された照射量に従
って、パターン領域と非パターン領域内部のすべての小
領域に対し荷電粒子を照射して行なうパターン形成方法
である。
(Means for Solving the Problems) When drawing a pattern using a charged particle beam, the present invention first provides a pattern area that is irradiated with charged particles when performing normal drawing, and a pattern area where charged particles are irradiated when performing normal drawing. Divide each non-pattern area into small areas where the line is not irradiated,
Next, for all of the small areas, the first irradiation amount is a constant value inside the pattern area and zero inside the non-pattern area, and the second irradiation amount is determined by a coefficient representing the shape of the pattern and the scattering state of electrons. A pattern in which charged particles are irradiated to all small areas inside the pattern area and non-pattern area according to the irradiation amount set for each small area. This is the formation method.

(作 用) 第2図は従来方法により近接効果が補正されることを示
す模式図である。(a)及び(b)はそれぞれ従来方法
での1回目及び2回目の照射時の照射量分布である。ま
た(d)及び(e)は、それら分布の電子線照射によっ
て生じるレジストの感光量である。
(Operation) FIG. 2 is a schematic diagram showing that the proximity effect is corrected by the conventional method. (a) and (b) are the irradiation dose distributions during the first and second irradiation using the conventional method, respectively. Moreover, (d) and (e) are the photosensitivity of the resist produced by electron beam irradiation of these distributions.

(c)及び(f)は第1.第2の照射量の和及び感光量
の和である。図に見るように、1回目の照射だけの場合
、小さなパターンでは電子の基盤からの後方散乱の影響
が少ないために感光量が不足となるが、2回目の照射が
そのような不足分を補なっており、 これによって(f
)のような均一な感光量分布が得られ、近接効果が補正
されることになる。
(c) and (f) are the first. This is the sum of the second irradiation amount and the sum of the exposure amount. As shown in the figure, when only the first irradiation is used, the amount of exposure is insufficient for small patterns because the backscattering effect from the electron base is small, but the second irradiation makes up for this shortfall. and by this, (f
), and the proximity effect is corrected.

本発明方法は、パターンの描画に先だって、この従来方
法での1回目の描画時の照射量と2回目のそれとを加算
した値を各照射位置での照射量として設定しておき、次
にこの設定値に従って電子線の焦点を試料面上からはず
すことなくパターンの描画を行なうものである。
In the method of the present invention, prior to drawing a pattern, the value obtained by adding the irradiation amount for the first drawing using this conventional method and that for the second drawing is set as the irradiation amount at each irradiation position. The pattern is drawn according to the set value without shifting the focus of the electron beam from the sample surface.

本発明方法により設定された照射量は、従来方法を実行
した場合の実効照射量と同じになり、従来方法で得られ
るのと同等の近接効果補正精度を得ることができる。さ
らに電子線の焦点を試料面上からはずして描画する従来
方式の2度目の描画が不要になるため、従来方式で存在
した非パターン領域描画時のレジストレーションにとも
なう制御性、再現性の劣化が排除される。
The dose set by the method of the present invention is the same as the effective dose when the conventional method is executed, and it is possible to obtain the same proximity effect correction accuracy as that obtained by the conventional method. Furthermore, since there is no need for the second drawing of the conventional method in which the focus of the electron beam is removed from the sample surface, the controllability and reproducibility deteriorated due to registration when drawing non-pattern areas, which existed in the conventional method. be excluded.

(実施例) 第1図は本発明の一実施例方法を適用した電子ビーム描
画装置を示す概略構成図である。図中IIは電子銃、1
2.〜,16は各種レンズ系、17.〜。
(Embodiment) FIG. 1 is a schematic configuration diagram showing an electron beam lithography apparatus to which an embodiment method of the present invention is applied. II in the figure is an electron gun, 1
2. ~, 16 are various lens systems, 17. ~.

19は各種偏向系、2oはブランキング板、21.22
はビーム成形用アパーチャマスク、23は反射電子検出
器、24はターゲットを示している。電子銃11から放
出された電子ビームはブランキング用偏向器17により
ON −OFFされる。本装置はこの際の照射時間を調
整することにより、照射位置に応じて照射量を変化させ
ることを可能としている。ブランキング板20を通過し
たビームはビーム成形用偏向器18及びビーム成形用ア
パーチャマスク21.22により矩形ビームに成形され
、またその矩形の寸法が可変される。そして、この成形
されたビームは走査用偏向器19によりターゲット24
上で偏向走査され、このビーム走査によりターゲット2
4が所望パターンに描画されるものとなっている。なお
本装置での電子線の加速電圧は50kVであり、また発
生しうる可変成形ビームの最大のサイズは高さ2μm9
幅2μmの矩形である。
19 is various deflection systems, 2o is a blanking plate, 21.22
2 is a beam shaping aperture mask, 23 is a backscattered electron detector, and 24 is a target. The electron beam emitted from the electron gun 11 is turned on and off by a blanking deflector 17. By adjusting the irradiation time at this time, this device makes it possible to change the irradiation amount depending on the irradiation position. The beam passing through the blanking plate 20 is shaped into a rectangular beam by the beam shaping deflector 18 and beam shaping aperture masks 21, 22, and the dimensions of the rectangle are varied. This shaped beam is then directed to a target 24 by a scanning deflector 19.
The target 2 is deflected and scanned by this beam scanning.
4 is drawn in a desired pattern. The acceleration voltage of the electron beam in this device is 50 kV, and the maximum size of the variable shaped beam that can be generated is 2 μm in height9.
It is a rectangle with a width of 2 μm.

照射量の設定手順を以下に述べる。第4図は設定手順の
流れ図である。まず初めに、パターン領域を、ひとつの
成形ビームによって描画できる矩形状小領域(以下ショ
ットと略す)に分割し、各ショットに第1の照射量とし
て1.0を設定し、描画用データD1に登録する。次に
パターンの白黒を反転させた非パターン領域のデータを
得、これをショットに分割し、その各ショットに第1−
の照射量として0.0を設定し、 描画用データD1に
追加登録する。第3図中(a)及び(b)の斜線領域は
パターン領域及び非パターン領域の例を記しており、(
C)及び(d)はそれらのショット分割例である。
The procedure for setting the irradiation amount is described below. FIG. 4 is a flowchart of the setting procedure. First, the pattern area is divided into rectangular small areas (hereinafter referred to as shots) that can be drawn with one shaped beam, the first dose is set to 1.0 for each shot, and the drawing data D1 is set to 1.0. register. Next, obtain the data of the non-pattern area by inverting the black and white of the pattern, divide it into shots, and add the first -
0.0 is set as the irradiation amount and additionally registered in the drawing data D1. The shaded areas in (a) and (b) in FIG. 3 indicate examples of pattern areas and non-pattern areas;
C) and (d) are examples of these shot divisions.

このようなショット分割の後、ひとつのショットjに対
し、該ショットの中心から半径20卯以内に存在する非
パターン領域のショットを抽出する。
After such shot division, shots in a non-pattern area existing within a radius of 20 square meters from the center of one shot j are extracted.

以下ではこの描出されたショットを参照ショットと略す
In the following, this drawn shot will be abbreviated as a reference shot.

ショットjがパターン領域に属する場合、及び非パター
ン領域に属する場合について、参照ショットの抽出例を
第3図(e)及び(f)にそれぞれ記す。
Examples of extraction of reference shots are shown in FIGS. 3(e) and 3(f), respectively, when shot j belongs to a pattern area and when shot j belongs to a non-pattern area.

このように抽出した参照ショットを用いてただし ω=
σb/(1+η)1ハ。
Using the reference shot extracted in this way, however, ω=
σb/(1+η)1ha.

によって定まる第2の照射量Daddを算出し、これを
ショットjの第1の照射量に加算した値をシヨしたすべ
ての参照ショットについて加算することを意味し、rJ
及びrkはショットj及び参照ショットにの座標値を表
わし、Skは参照ショットにの面積を表わす。またσb
は、電子線をシリコン基盤上のレジストに1点入射させ
た際に生じる電子線の後方散乱の広がりであり、ηはこ
の時の電子の前方散乱によるレジストの全感光量と後方
散乱による全感光量との比である。本実施例で用いた電
子線描画装置の電子の加速電圧は50kVであり。
This means calculating the second dose Dadd determined by and adding this value to the first dose of shot j for all reference shots, rJ
and rk represent the coordinate values of shot j and the reference shot, and Sk represents the area of the reference shot. Also σb
is the spread of backscattering of the electron beam that occurs when the electron beam is incident on a resist on a silicon substrate at a single point, and η is the total photosensitivity of the resist due to forward scattering of electrons and the total photosensitivity due to backscattering. It is the ratio to the amount. The electron acceleration voltage of the electron beam drawing apparatus used in this example was 50 kV.

σb及びηはそれぞれ6tun、1.0を用いた。6tun and 1.0 were used for σb and η, respectively.

ここで、上記第1式はghost法の2回目の描画の際
に位置rjに追加照射される照射量り近似したものであ
り、この近似の誤差はたかだか±[1−exp(−(シ
ョットサイズ)2/(2ω)2)]となり、上記描画装
置の場合には±4%程度の小さなの全領域にわたる面積
分を意味する。
Here, the first equation above is an approximation of the amount of additional irradiation to position rj during the second drawing using the ghost method, and the error in this approximation is at most ±[1-exp(-(shot size) 2/(2ω)2)], and in the case of the above-mentioned drawing apparatus, it means an area integral over the entire area as small as about ±4%.

このようにして作成した描画用データD1を用いて、レ
ジストパターン形成の実験をくりかえし行なった。その
結果、高い寸法精度と垂直な形状をもったレジストパタ
ーンが再現性よく得られた。
Using the drawing data D1 created in this manner, resist pattern formation experiments were repeated. As a result, a resist pattern with high dimensional accuracy and vertical shape was obtained with good reproducibility.

さらに、上記描画用データDl内の照射量の最小値m及
び最大値Mを求め、すべてのショットの照 −m 対量から一定値(m + −画一)をひきさった値を新
たな照射量設定値として描画用データD2を作成 −m した。ただしこの場合照射量が(−一や−)から<M 
 m>までの範囲内にあるショットは描画用データから
削除した。このように作成した描画用データを用いて、
パターン形成実験を行なったところ、上述の例と同様の
高い寸法精度をもったレジストパターンを再現性よく形
成できた。
Furthermore, the minimum value m and maximum value M of the irradiance in the above-mentioned drawing data Dl are determined, and the value obtained by subtracting a constant value (m + -uniformity) from the irradiation amount of all shots is used as the new irradiation amount. Drawing data D2 was created as the setting value -m. However, in this case, the irradiation amount is from (-1 or -) to <M
Shots within the range up to m> were deleted from the drawing data. Using the drawing data created in this way,
When a pattern formation experiment was conducted, a resist pattern with high dimensional accuracy similar to the above example could be formed with good reproducibility.

また、照射量を減少させることができたため、照射時間
が短縮され描画時のスループットは従来方法よりも向上
した。
Furthermore, since the irradiation amount could be reduced, the irradiation time was shortened and the throughput during drawing was improved compared to conventional methods.

本発明は以上の実施例に限られるものではない。The present invention is not limited to the above embodiments.

前記実施例では、各ショットの照射量を電子ビーム露光
用データ内に設定したが、描画装置内部で描画と並行処
理により行なってもよい。すなわちあるショットの照射
中に他のショットの照射量を専用回路により計算しても
よい。またパターンのある領域を露光中に、それと並行
処理にて描画用データを転送するとともに各ショットの
照射量を専用回路により計算してもよい。
In the embodiment described above, the irradiation amount for each shot is set in the electron beam exposure data, but it may be performed in parallel with the writing inside the writing apparatus. That is, during the irradiation of a certain shot, the irradiation amount for another shot may be calculated by a dedicated circuit. Further, while a patterned area is being exposed, drawing data may be transferred in parallel processing and the irradiation amount for each shot may be calculated by a dedicated circuit.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来技術における再現性劣下の最大要
因であった、サイズを位置あわせ用マークの幅よりも大
きくした電子線によって位置あわせを行なう、という操
作が不要になるため、従来技術で得られる最大の近接効
果の補正効果を常に再現性よく実現することができる。
According to the present invention, it is no longer necessary to perform alignment using an electron beam whose size is larger than the width of the alignment mark, which was the biggest cause of poor reproducibility in the conventional technology. The maximum proximity effect correction effect obtained can always be achieved with good reproducibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を適用した電子線描画装置の
概略図、第2図は近接効果の補正原理を示す模式図、第
3図は参照ショット抽出例を記すための模式図、第4図
は照射量の設定手順を示す流れ図である。 11・・・電子銃、      12.〜,16・・・
レンズ系、17、〜,19・・・偏向系、 21、22・・・ビーム成形用アパーチャマスク、23
・・・反射電子検出器、 24・・・ターゲット31、
32・・・ビーム成形用アパーチャ。 代理人 弁理士  則 近 憲 佑 同     竹 花 喜久男 (C) 第  2 (f) 図 (a−) (C) (e) 第  3 Cb) <d> (、f) 図
FIG. 1 is a schematic diagram of an electron beam lithography system to which an embodiment of the present invention is applied, FIG. 2 is a schematic diagram showing the principle of correction of the proximity effect, and FIG. 3 is a schematic diagram for describing an example of reference shot extraction. FIG. 4 is a flowchart showing the procedure for setting the irradiation amount. 11...electron gun, 12. ~, 16...
Lens system, 17, ~, 19... Deflection system, 21, 22... Aperture mask for beam shaping, 23
... Backscattered electron detector, 24... Target 31,
32... Aperture for beam shaping. Agent Patent Attorney Nori Ken Yudo Chika Kikuo Takehana (C) 2nd (f) Figures (a-) (C) (e) 3rd Cb) <d> (, f) Figures

Claims (3)

【特許請求の範囲】[Claims] (1)荷電粒子線によりパターンを描画するに際し、通
常の描画を行なう場合に荷電粒子線が照射されるパター
ン領域と通常の描画を行なう場合に荷電粒子線が照射さ
れない非パターン領域とを各々小領域に分割し、該小領
域のすべてについて、パターン領域内部でほぼ一定値で
あり非パターン領域内部でほぼゼロである第1の照射量
とパターンの形状と電子の散乱を表わす係数によって定
まる第2の照射量との合計を該小領域の照射量として設
定し、その後各小領域に設定された照射量に従って、パ
ターン領域と非パターン領域内部のすべての小領域に対
し荷電粒子線を照射することによってパターンを描画す
ることを特徴とする荷電粒子線描画方法。
(1) When drawing a pattern with a charged particle beam, the pattern area that is irradiated with the charged particle beam when performing normal drawing and the non-pattern area that is not irradiated with the charged particle beam when performing normal drawing are each small. The first radiation dose is approximately constant within the pattern area and approximately zero within the non-pattern area, and the second radiation dose is determined by a coefficient representing the shape of the pattern and scattering of electrons for all of the small areas. The sum of the irradiation amount and the irradiation amount of the small area is set as the irradiation amount of the small area, and then the charged particle beam is irradiated to all the small areas inside the pattern area and non-pattern area according to the irradiation amount set for each small area. A charged particle beam drawing method characterized by drawing a pattern.
(2)上記請求範囲第1項記載の荷電粒子線描画方法に
おいて、各小領域の照射量を設定した後、すべての小領
域の照射量から一定の値をひきさり、それによって得ら
れた値を各小領域の新たな照射量設定値とすることを特
徴とする荷電粒子線描画方法。
(2) In the charged particle beam lithography method according to claim 1 above, after setting the irradiation amount for each small area, a certain value is subtracted from the irradiation amount for all the small areas, and the value obtained thereby. A charged particle beam lithography method characterized in that: is set as a new irradiation dose setting value for each small area.
(3)上記請求範囲第1項もしくは第2項記載の荷電粒
子線描画方法において、照射量設定値があらかじめ決め
られた値より小さな小領域については荷電粒子を照射し
ないことを特徴とする荷電粒子線描画方法。
(3) In the charged particle beam lithography method as set forth in claim 1 or 2 above, a charged particle beam lithography method is characterized in that the charged particle is not irradiated to a small area where the irradiation amount setting value is smaller than a predetermined value. Line drawing method.
JP30137886A 1986-12-19 1986-12-19 Charged particle beam lithography method Pending JPS63155724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30137886A JPS63155724A (en) 1986-12-19 1986-12-19 Charged particle beam lithography method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30137886A JPS63155724A (en) 1986-12-19 1986-12-19 Charged particle beam lithography method

Publications (1)

Publication Number Publication Date
JPS63155724A true JPS63155724A (en) 1988-06-28

Family

ID=17896153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30137886A Pending JPS63155724A (en) 1986-12-19 1986-12-19 Charged particle beam lithography method

Country Status (1)

Country Link
JP (1) JPS63155724A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6597001B1 (en) 1999-11-17 2003-07-22 Nec Electronics Corporation Method of electron-beam exposure and mask and electron-beam exposure system used therein

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6597001B1 (en) 1999-11-17 2003-07-22 Nec Electronics Corporation Method of electron-beam exposure and mask and electron-beam exposure system used therein

Similar Documents

Publication Publication Date Title
US8816276B2 (en) Electron beam writing apparatus and electron beam writing method
JP3454983B2 (en) Charged beam drawing method
US8610096B2 (en) Charged particle beam writing apparatus and method
JPH06124883A (en) Method for correcting charged beam and method for mark detection
US6194732B1 (en) Charged-particle-beam exposure methods with beam parallelism detection and correction
US20230102923A1 (en) Charged particle beam writing method and charged particle beam writing apparatus
US11961708B2 (en) Charged particle beam writing apparatus, charged particle beam writing method, and a non-transitory computer-readable storage medium
US6281513B1 (en) Pattern forming method
JP2004140311A (en) Exposure method and aligner
JPS594017A (en) Electron-beam exposure method
JPS63155724A (en) Charged particle beam lithography method
CN110517954A (en) Electron beam illuminating method, electron beam illuminating device and the computer-readable non-volatile memory medium having program recorded thereon
US6473162B1 (en) Method of computing defocus amount in lithography and lithographic process using the method
CA1166766A (en) Method and apparatus for forming a variable size electron beam
CN111913361B (en) Charged particle beam writing method and charged particle beam writing device
US7087910B2 (en) Method for detecting and compensating for positional displacements in photolithographic mask units and apparatus for carrying out the method
US6337164B1 (en) Charged-particle-beam microlithography methods exhibiting improved pattern-feature accuracy, and device manufacturing methods comprising same
JPS61284921A (en) Electron beam lithography
JP3282324B2 (en) Charged particle beam exposure method
JP3330306B2 (en) Charged beam drawing method
JP2005019780A (en) Method for estimating pattern shape in charged-particle ray exposure transfer, method for determining reticle pattern used for charged-particle ray exposure transfer and method for estimating parameter of proximity effect
WO2021220697A1 (en) Charged particle beam drawing method and charged particle beam drawing device
JPH01270317A (en) Charged particle beam lithography
JP2004111798A (en) Charged particle beam exposure method
JP3334341B2 (en) Electron beam exposure method