JP3334341B2 - Electron beam exposure method - Google Patents

Electron beam exposure method

Info

Publication number
JP3334341B2
JP3334341B2 JP15187094A JP15187094A JP3334341B2 JP 3334341 B2 JP3334341 B2 JP 3334341B2 JP 15187094 A JP15187094 A JP 15187094A JP 15187094 A JP15187094 A JP 15187094A JP 3334341 B2 JP3334341 B2 JP 3334341B2
Authority
JP
Japan
Prior art keywords
mark
scan
scanning
electron beam
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15187094A
Other languages
Japanese (ja)
Other versions
JPH0817696A (en
Inventor
淳子 佐藤
靖 ▲高▼橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP15187094A priority Critical patent/JP3334341B2/en
Publication of JPH0817696A publication Critical patent/JPH0817696A/en
Application granted granted Critical
Publication of JP3334341B2 publication Critical patent/JP3334341B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は電子ビーム露光方法に係
り,特に,位置決め用のマーク検出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron beam exposure method, and more particularly to a method for detecting a mark for positioning.

【0002】近年,半導体装置は集積度と機能が向上し
て,情報,通信等の分野に広く用いられ,そのプロセス
技術としては,微細加工による高集積化が重要である。
光リソグラフィ技術ではパターン幅の限界が0.3 μm程
度であるが,電子ビーム露光では0.1 μm以下の微細加
工が0.05μm以下の位置合わせ精度で実現できる。
In recent years, the degree of integration and functions of semiconductor devices have been improved, and they are widely used in fields such as information and communications. As a process technology, high integration by fine processing is important.
Although the limit of the pattern width is about 0.3 μm in the photolithography technology, fine processing of 0.1 μm or less can be realized with an alignment accuracy of 0.05 μm or less in electron beam exposure.

【0003】従って, 1cm2 を1秒程度で露光できる電
子ビーム露光装置ができれば, 集積度, 位置合わせ精
度, 処理時間, 信頼性等で他のリソグラフィ技術の追随
を許さないで,1ギガビットまたは4ギガビットメモリ
や1メガゲートのLSI の製造が可能になる。
[0003] Therefore, if an electron beam exposure apparatus capable of exposing 1 cm 2 in about 1 second can be provided, it is possible to use 1 gigabit or 4 gigabits without allowing other lithography techniques to follow in terms of integration degree, alignment accuracy, processing time, reliability, etc. This makes it possible to manufacture gigabit memories and 1-megagate LSIs.

【0004】[0004]

【従来の技術】図3は電子ビーム露光装置の一例を示す
構成図である。図において,ランタンヘキサボライト(L
aB6)カソード, ウェーネルト, アノードは電子銃を構成
し,加速電圧10〜50 KV で電子を加速し放出する。放出
された電子ビームをアライメントコイルAL1により光軸
を合わせ, 矩形の第1成形アパーチャ(第1スリット)
を通過させ,第1レンズで収束させ, スリットデフレク
タ及びスリット振り戻しデフレクタで偏向させ,第2成
形アパーチャ(第2スリット)に第1成形アパーチャの
像を結像させる。この第2成形アパーチャを通過した部
分が矩形の電子ビームとなる。
2. Description of the Related Art FIG. 3 is a block diagram showing an example of an electron beam exposure apparatus. In the figure, lanthanum hexabolite (L
aB 6 ) The cathode, Wehnelt, and anode constitute an electron gun, which accelerates and emits electrons at an acceleration voltage of 10 to 50 KV. The emitted electron beam is aligned with the optical axis by an alignment coil AL1, and a rectangular first shaping aperture (first slit) is formed.
, And converged by the first lens, deflected by the slit deflector and the slit return deflector to form an image of the first shaping aperture on the second shaping aperture (second slit). The portion passing through the second shaping aperture becomes a rectangular electron beam.

【0005】スリットデフレクタにかかる電圧を変える
ことにより第1成形アパーチャの像の位置を移動させ,
第2成形アパーチャを通過するビームの形状を任意の矩
形に成形できる。
[0005] By changing the voltage applied to the slit deflector, the position of the image of the first shaping aperture is moved,
The shape of the beam passing through the second shaping aperture can be shaped into an arbitrary rectangle.

【0006】さらに,第2成形アパーチャを通過した矩
形電子ビームは照射レンズ(第2レンズ)により照射さ
れ,2段の縮小レンズ(第3レンズ,第4レンズ)によ
り1/100 に縮小される。その途中にラウンドアパーチャ
で軸上より大きくずれた電子を除去する。
Further, the rectangular electron beam having passed through the second shaping aperture is irradiated by an irradiation lens (second lens), and is reduced to 1/100 by a two-stage reduction lens (third lens, fourth lens). On the way, electrons which are largely shifted from the axis are removed by a round aperture.

【0007】最後に, 投影レンズ(第5レンズ)により
半導体基板上に矩形電子ビームを投影する。図4は位置
決め用マーク検出の信号処理回路の一例を示す構成図で
ある。
[0007] Finally, a rectangular electron beam is projected onto the semiconductor substrate by the projection lens (fifth lens). FIG. 4 is a configuration diagram showing an example of a signal processing circuit for detecting a positioning mark.

【0008】図において, 1は位置合わせ用マーク, 2
は検出器, 3は増幅器, 4は A/Dコンバータ, 5は加算
器, 6は原波形メモリ, 7はディジタル演算回路(a) ,
8はピーク検出回路及び0レベル検出回路, 9は微分波
形メモリ,10はディジタル演算回路(b) , 11はスムージ
ングされた原波形メモリである。
In the drawing, 1 is a positioning mark, 2
Is a detector, 3 is an amplifier, 4 is an A / D converter, 5 is an adder, 6 is an original waveform memory, 7 is a digital arithmetic circuit (a),
8 is a peak detection circuit and a 0 level detection circuit, 9 is a differential waveform memory, 10 is a digital operation circuit (b), and 11 is a smoothed original waveform memory.

【0009】露光装置のパターン発生器より電子ビーム
偏向データを発生して位置決め用マーク 1を電子ビーム
で走査すると,マークの段差に応じた反射電子信号が発
生する。この信号を光検出器(PIN ダイオード) 2 で検
出し,増幅する。
When electron beam deflection data is generated from the pattern generator of the exposure apparatus and the positioning mark 1 is scanned with an electron beam, a reflected electron signal corresponding to the step of the mark is generated. This signal is detected by a photodetector (PIN diode) 2 and amplified.

【0010】次に, この信号をディジタルメモリユニッ
トに送り, ここで信号をアナログからディジタルに変換
し,波形メモリに格納する。この波形メモリでは,電子
ビームの走査回数に応じて加算平均を行ってS/N の良い
信号を得る。
Next, this signal is sent to a digital memory unit, where the signal is converted from analog to digital and stored in a waveform memory. This waveform memory performs averaging in accordance with the number of electron beam scans to obtain a signal with a good S / N ratio.

【0011】さらに格納したデータのディジタル微分を
行い, 微分データのピーク位置を求める。ビームをマー
ク上に往復させるため,ピークは4点得られる。このピ
ーク位置をマークのエッジ位置として,ビームの偏向中
心とマーク溝とのずれを位置ずれ量として算出する(微
分ピーク法,図5参照)。
Further, the stored data is digitally differentiated to determine the peak position of the differentiated data. Since the beam is reciprocated on the mark, four peaks are obtained. The peak position is used as the edge position of the mark, and the deviation between the beam deflection center and the mark groove is calculated as the positional deviation amount (differential peak method, see FIG. 5).

【0012】一方,原波形において,微分ピークを与え
る点に相当する点で原波形に引いた接線と,微分波形が
0になる点に相当する原波形の点を通る水平線A,Bの
中央位置の水平線Cとの交点をマークのエッジ位置とし
て,ビームの偏向中心とマーク溝とのずれを位置ずれ量
として算出する(スライスレベル法,図6参照)。ここ
で,A,Bと原波形との交点はゼロクロス点と呼ばれ
る。
On the other hand, in the original waveform, the center position of a tangent drawn on the original waveform at a point corresponding to a point where a differential peak is given, and the horizontal lines A and B passing through the point of the original waveform corresponding to a point where the differential waveform becomes zero And the deviation between the beam deflection center and the mark groove is calculated as a positional deviation amount (slice level method, see FIG. 6). Here, the intersection between A and B and the original waveform is called a zero-cross point.

【0013】マーク位置検出のためのビーム偏向の方法
は,例えば以下の2種類がある。第1の方法は,図7
(A) のようにマークの溝の両方のエッジにわたって電子
ビームを走査する方法である。この方法によって,得ら
れる原波形および微分波形は図7(B) のようになる。こ
の方法をここではラフスキャンと呼ぶことにする。
There are, for example, the following two types of beam deflection methods for detecting the mark position. The first method is shown in FIG.
This is a method in which an electron beam is scanned over both edges of a mark groove as shown in FIG. The original waveform and the differentiated waveform obtained by this method are as shown in FIG. This method is referred to herein as rough scanning.

【0014】第2の方法は,図8(A) のようにマークの
溝の片方のエッジのみを短く走査した後,あらかじめ与
えられたマーク幅だけビームの偏向中心を移動させ,他
方のエッジを短く走査する方法である。この方法によっ
て,得られる原波形および微分波形は図8(B) のように
なる。この方法をここではファインスキャンと呼ぶこと
にする。
In the second method, as shown in FIG. 8A, only one edge of the groove of the mark is scanned for a short time, then the deflection center of the beam is moved by a predetermined mark width, and the other edge is moved. This is a short scanning method. The original waveform and differential waveform obtained by this method are as shown in FIG. This method will be referred to herein as fine scan.

【0015】[0015]

【発明が解決しようとする課題】ラフスキャンでマーク
検出を行うと,ビーム走査距離が長いので,精度向上の
ため走査ピッチを細かくすると走査点数が多くなり,走
査時間が長くなる。また,時間が長くなると,マーク周
辺が感光してしまうという欠点がある。
When the mark is detected by the rough scan, the beam scanning distance is long. Therefore, if the scanning pitch is made small for improving the accuracy, the number of scanning points increases and the scanning time becomes long. Further, when the time is long, there is a disadvantage that the periphery of the mark is exposed.

【0016】一方,ファインスキャンでマーク検出を行
うと,ビーム走査距離が短いため走査時間は短くてす
み,またマーク周辺のパターンへの影響も小さい。しか
しながら,ビーム偏向中心とマーク中心の位置が大きく
ずれている場合や,プロセスを経てマークの形状が設計
寸法と異なってしまっている場合には,ビームがマーク
エッジに当たらない可能性が高いという欠点がある。
On the other hand, when the mark is detected by the fine scan, the scanning time is short because the beam scanning distance is short, and the influence on the pattern around the mark is small. However, when the position of the center of the beam deflection and the center of the mark are largely displaced, or when the shape of the mark is different from the design size through the process, there is a high possibility that the beam will not hit the mark edge. There is.

【0017】本発明は,位置合わせ用のマーク位置検出
を精度よく,且つ高速に行うことを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to accurately and quickly detect the position of a mark for alignment.

【0018】[0018]

【課題を解決するための手段】上記課題の解決は, 1)位置合わせ用のマーク位置検出のためのビーム走査
を2段階に行い,第1走査ではマーク幅より大きな走査
幅で行ってマーク中心位置とビーム偏向中心位置の位置
ずれ量を算出し,第2走査ではビーム偏向中心位置を該
第1走査で求めた位置ずれ量だけずらしてマーク中心位
置にくるようにしてマークのエッジ部分のみの走査を行
い,該第1走査で求めた位置ずれ量と該第2走査で求め
た位置ずれ量の和をマーク位置とビーム偏向中心位置の
ずれ量とする電子ビーム露光方法,あるいは 2)前記第2走査は,前記第1走査より走査幅が短く,
走査ピッチが細かく,走査回数が多い前記1記載の電子
ビーム露光方法,あるいは 3)前記第1走査で得たマークエッジの位置からマーク
中心位置とマーク幅を算出し,前記第2走査でマークの
両方のエッジを走査する際の走査間隔とする前記1記載
の電子ビーム露光方法,あるいは 4)前記第2走査の走査幅を,前記第1走査で得られた
微分波形の微分ピークの最も近くで微分値が0を過る2
つの点を少なくとも含む前記1記載の電子ビーム露光方
法により達成される。
Means for solving the above problems are as follows: 1) Beam scanning for detecting the position of a mark for alignment is performed in two stages, and the first scanning is performed with a scanning width larger than the mark width to make the center of the mark. In the second scan, the position deviation between the beam deflection center position and the beam deflection center position is calculated, and the beam deflection center position is shifted by the position deviation amount obtained in the first scan so as to come to the mark center position. An electron beam exposure method in which scanning is performed, and the sum of the positional deviation amount obtained in the first scanning and the positional deviation amount obtained in the second scanning is used as the deviation amount between the mark position and the beam deflection center position; The two scans have a shorter scan width than the first scan,
(3) The electron beam exposure method according to (1), wherein the scanning pitch is fine and the number of scans is large; or 3) The mark center position and mark width are calculated from the mark edge positions obtained in the first scan, and the mark The electron beam exposure method according to the above 1, wherein the scanning interval is used when scanning both edges, or 4) the scanning width of the second scanning is set to be closest to the differential peak of the differential waveform obtained in the first scanning. Derivative value exceeds 0 2
It is achieved by the electron beam exposure method according to the above item 1, which includes at least one of the following points.

【0019】[0019]

【作用】本発明では,マーク位置検出のためのビーム走
査を2段階に行い,第1走査ではマーク幅より大きな走
査幅で行い,この走査でマーク位置とビーム偏向位置
(照射位置)の差分を算出し,この差分だけ試料上のビ
ーム偏向位置をずらして第2走査をマークのエッジ部分
のみについて行うようにしている。ここで,第1走査で
求めた差分と第2走査で求めた位置ずれ量の和を,その
マークとビーム照射位置のずれ量としている。
According to the present invention, the beam scanning for detecting the mark position is performed in two stages, the first scanning is performed with a scanning width larger than the mark width, and the difference between the mark position and the beam deflection position (irradiation position) is determined by this scanning. The second scan is performed only on the edge portion of the mark by calculating and shifting the beam deflection position on the sample by this difference. Here, the sum of the difference obtained in the first scan and the positional shift amount obtained in the second scan is defined as the shift amount between the mark and the beam irradiation position.

【0020】すなわち,本発明は,第1走査(ラフスキ
ャン)で得られた情報を基に第2走査(ファインスキャ
ン)を行い,両者の長所, すなわち第1走査の高速性お
よび第2走査の高精度を取り入れて,マーク位置検出を
精度よく且つ高速に行うようにしたものである。
That is, according to the present invention, the second scan (fine scan) is performed based on the information obtained in the first scan (rough scan), and the advantages of both are provided, namely, the high speed of the first scan and the speed of the second scan. Incorporating high precision, mark position detection is performed accurately and at high speed.

【0021】[0021]

【実施例】図1(A) 〜(C) 及び図2(A) 〜(C) は本発明
の実施例の説明図である。 第1走査(ラフスキャン):図1(A) は第1走査(ラフ
スキャン)の説明図, 図1(B) は原波形, 図1(C)は微
分波形を示す。
1 (A) to 1 (C) and 2 (A) to 2 (C) are explanatory views of an embodiment of the present invention. First scan (rough scan): FIG. 1A is an explanatory diagram of the first scan (rough scan), FIG. 1B is an original waveform, and FIG. 1C is a differential waveform.

【0022】第1走査(ラフスキャン)で,マークの両
エッジに渡って走査し,微分ピーク法により,ビームの
偏向中心位置とマーク中心位置との差分δ, 及び微分ピ
ークの間隔よりマークサイズ (マークの幅) がわかる。
In the first scan (rough scan), the mark is scanned over both edges of the mark, and the differential peak method is used to calculate the difference δ between the beam deflection center position and the mark center position, and the mark size ( Mark width).

【0023】いま, 座標上 0〜100 をビームの走査幅と
し,A, Bを微分ピーク値とすると, ビーム位置=(0+100)/2= 50 マーク位置=(A+B)/2 δ=50−(A+B)/2 マークサイズ= B−A となる。なお,図中, a, b, c, d はゼロクロス点であ
る。
Now, assuming that the scanning width of the beam is 0 to 100 on the coordinates and the differential peak values are A and B, the beam position = (0 + 100) / 2 = 50 the mark position = (A + B) / 2 δ = 50− ( A + B) / 2 mark size = B−A. In the figure, a, b, c, and d are zero-cross points.

【0024】第2走査(ファインスキャン):図2(A)
は第1走査(ラフスキャン)の説明図, 図2(B) は原波
形, 図2(C)は微分波形を示す。
Second scan (fine scan): FIG. 2 (A)
FIG. 2B is an explanatory diagram of the first scan (rough scan), FIG. 2B shows an original waveform, and FIG. 2C shows a differential waveform.

【0025】次に, 第1走査で算出した差分δだけ偏向
中心位置を補正し,第1走査で算出したマークサイズを
第2走査の走査間隔としてを与える。第2走査の必要偏
向幅は b−a, d−cのいずれか大きい値にマージンαを
加えた値とする。
Next, the deflection center position is corrected by the difference δ calculated in the first scan, and the mark size calculated in the first scan is given as the scanning interval of the second scan. The required deflection width for the second scan is a value obtained by adding a margin α to a larger value of b−a or d−c.

【0026】図中, a′, b′, c′, d′ はゼロク
ロス点でマーク位置の検出にはこの情報が必要である。
次に,上記2段階走査についての特徴を説明をする。
In the figure, a ', b', c ', d' are zero-cross points, and this information is necessary for detecting the mark position.
Next, features of the two-stage scanning will be described.

【0027】第1走査では,マークの両端にわたってビ
ームを走査するので, 第2走査の時にマークエッジにビ
ームが当たるだける精度があればよいので,この走査の
ピッチは比較的粗くてよく,走査距離が大きいわりには
マーク検出に要する時間は少なくてすむ。
In the first scan, since the beam is scanned over both ends of the mark, it is sufficient that the beam hits the mark edge at the time of the second scan. Therefore, the pitch of this scan may be relatively coarse. Although the distance is large, the time required for mark detection is short.

【0028】第2走査は,第1走査で得られたエッジ位
置に従ってマークエッジのみを走査する。すなわち,第
1走査でマーク中心とビーム偏向中心との差分δが得ら
れるので,そのずれ量を偏向器の偏向量に加算して,ビ
ーム偏向中心とマーク中心がほぼ同じ位置にくるように
補正する。
In the second scan, only the mark edges are scanned in accordance with the edge positions obtained in the first scan. That is, since the difference δ between the mark center and the beam deflection center is obtained in the first scan, the shift amount is added to the deflection amount of the deflector, and the beam deflection center and the mark center are corrected to be substantially at the same position. I do.

【0029】この第2走査は,片方のマークエッジを走
査した後,第1走査で求めたマークサイズ(マークの
幅)だけずらした位置を他方のマーク位置とし,そのエ
ッジ部のみを走査する。このマークサイズは実際の走査
により測定しているので,プロセスによるマーク形状の
変化の影響を受けることはなく,正確なマーク幅を示し
ている。
In the second scan, after scanning one mark edge, a position shifted by the mark size (mark width) obtained in the first scan is set as the other mark position, and only the edge portion is scanned. Since this mark size is measured by actual scanning, it is not affected by a change in the mark shape due to the process, and shows an accurate mark width.

【0030】第2走査では,正確な位置測定の必要があ
るので,走査のピッチを細かくして,例えば前記のスラ
イスレベル法を適用して,マークの位置検出を行う。第
2走査で走査ピッチを細かくしても,走査距離が短いの
で,同様の細かいピッチでラフスキャンを行った場合よ
りも走査に要する時間は短くてすむ。
In the second scan, since accurate position measurement is required, the position of the mark is detected by reducing the scan pitch and applying, for example, the above-described slice level method. Even if the scanning pitch is made fine in the second scanning, the scanning distance is short, so that the time required for the scanning is shorter than when rough scanning is performed at the same fine pitch.

【0031】さらに,第2走査でマークエッジを走査す
る場合に,前記のスライスレベル法を利用すると,ゼロ
クロス点と微分波形のピーク位置を利用してマーク位置
の検出を行うので,これらの点を含むように第1走査で
走査幅を決定する。
Further, when the mark edge is scanned in the second scan, if the slice level method is used, the mark position is detected by using the zero cross point and the peak position of the differential waveform. The scan width is determined in the first scan so as to include the scan width.

【0032】[0032]

【発明の効果】本発明によれば,電子ビーム露光におけ
る位置合わせ用マーク位置検出を精度よく,且つ高速に
行うことができる。
According to the present invention, the position of a mark for positioning in electron beam exposure can be detected accurately and at high speed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例の説明図(1)FIG. 1 is an explanatory view of an embodiment of the present invention (1).

【図2】 本発明の実施例の説明図(2)FIG. 2 is an explanatory view of an embodiment of the present invention (2).

【図3】 電子ビーム露光装置の構成図FIG. 3 is a configuration diagram of an electron beam exposure apparatus.

【図4】 マーク位置検出信号処理回路の構成図FIG. 4 is a configuration diagram of a mark position detection signal processing circuit.

【図5】 微分ピーク法の説明図FIG. 5 is an explanatory diagram of a differential peak method.

【図6】 スライスレベル法の説明図FIG. 6 is an explanatory diagram of a slice level method.

【図7】 ラフスキャンの説明図FIG. 7 is an explanatory diagram of a rough scan.

【図8】 ファインスキャンの説明図FIG. 8 is an explanatory diagram of a fine scan.

【符号の説明】[Explanation of symbols]

1 位置合わせ用マーク 2 検出器 3 増幅器 4 A/D コンバータ 5 加算器 6 原波形メモリ 7 ディジタル演算回路(a) 8 ピーク検出回路及び0レベル検出回路 9 微分波形メモリ 10 ディジタル演算回路(b) 11 スムージングされた原波形メモリ 1 Positioning mark 2 Detector 3 Amplifier 4 A / D converter 5 Adder 6 Original waveform memory 7 Digital operation circuit (a) 8 Peak detection circuit and 0 level detection circuit 9 Differential waveform memory 10 Digital operation circuit (b) 11 Smoothed original waveform memory

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−69924(JP,A) 特開 昭56−33830(JP,A) 特開 平3−104109(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/027 G03F 9/00 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-59-69924 (JP, A) JP-A-56-33830 (JP, A) JP-A-3-104109 (JP, A) (58) Field (Int.Cl. 7 , DB name) H01L 21/027 G03F 9/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 位置合わせ用のマーク位置検出のための
ビーム走査を2段階に行い,第1走査ではマーク幅より
大きな走査幅で行ってマーク中心位置とビーム偏向中心
位置の位置ずれ量を算出し,第2走査ではビーム偏向中
心位置を該第1走査で求めた位置ずれ量だけずらしてマ
ーク中心位置にくるようにしてマークのエッジ部分のみ
の走査を行い,該第1走査で求めた位置ずれ量と該第2
走査で求めた位置ずれ量の和をマーク位置とビーム偏向
中心位置のずれ量とすることを特徴とする電子ビーム露
光方法。
1. A beam scanning for detecting a position of a mark for alignment is performed in two stages, and a first scanning is performed with a scanning width larger than a mark width to calculate a positional deviation amount between a mark center position and a beam deflection center position. In the second scan, only the edge portion of the mark is scanned such that the center position of the beam deflection is shifted to the center position of the mark by the positional shift amount obtained in the first scan, and the position obtained in the first scan is changed. The shift amount and the second
An electron beam exposure method, wherein a sum of positional deviation amounts obtained by scanning is used as a deviation amount between a mark position and a beam deflection center position.
【請求項2】 前記第2走査は,前記第1走査より走査
幅が短く,走査ピッチが細かく,走査回数が多いことを
特徴とする請求項1記載の電子ビーム露光方法。
2. The electron beam exposure method according to claim 1, wherein the second scan has a shorter scanning width, a smaller scanning pitch, and a larger number of scans than the first scanning.
【請求項3】 前記第1走査で得たマークエッジの位置
からマーク中心位置とマーク幅を算出し,前記第2走査
でマークの両方のエッジを走査する際の走査間隔とする
ことを特徴とする請求項1記載の電子ビーム露光方法。
3. A mark center position and a mark width are calculated from a position of a mark edge obtained in the first scan, and the scan interval is used when scanning both edges of the mark in the second scan. The electron beam exposure method according to claim 1.
【請求項4】 前記第2走査の走査幅を,前記第1走査
で得られた微分波形の微分ピークの最も近くで微分値が
0を過る2つの点を少なくとも含むことを特徴とする請
求項1記載の電子ビーム露光方法。
4. The scanning width of the second scan includes at least two points where the differential value exceeds 0, which is closest to the differential peak of the differential waveform obtained in the first scan. Item 7. An electron beam exposure method according to Item 1.
JP15187094A 1994-07-04 1994-07-04 Electron beam exposure method Expired - Fee Related JP3334341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15187094A JP3334341B2 (en) 1994-07-04 1994-07-04 Electron beam exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15187094A JP3334341B2 (en) 1994-07-04 1994-07-04 Electron beam exposure method

Publications (2)

Publication Number Publication Date
JPH0817696A JPH0817696A (en) 1996-01-19
JP3334341B2 true JP3334341B2 (en) 2002-10-15

Family

ID=15528023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15187094A Expired - Fee Related JP3334341B2 (en) 1994-07-04 1994-07-04 Electron beam exposure method

Country Status (1)

Country Link
JP (1) JP3334341B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4777731B2 (en) 2005-03-31 2011-09-21 富士通セミコンダクター株式会社 Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JPH0817696A (en) 1996-01-19

Similar Documents

Publication Publication Date Title
US4528452A (en) Alignment and detection system for electron image projectors
JP3288794B2 (en) Charge beam correction method and mark detection method
JP2835097B2 (en) Correction method for charged beam astigmatism
US5935744A (en) Method of drawing patterns through electron beam exposure utilizing target subpatterns and varied exposure quantity
JPH11191529A (en) Charge beam exposure
JPH088176A (en) Reference mark for calibration of electron beam exposure system and calibration method
US5608226A (en) Electron-beam exposure method and system
US5712488A (en) Electron beam performance measurement system and method thereof
JP3334341B2 (en) Electron beam exposure method
JP3522045B2 (en) Charged particle beam exposure apparatus and method
JP2786660B2 (en) Charged beam drawing method
JP3101100B2 (en) Electron beam exposure system
JP2927201B2 (en) Charged particle beam exposure method, apparatus for performing the method, and position detection mark forming body used in the method
JPH1131655A (en) Mark substrate, manufacture of mark substrate, electron-beam drawing apparatus and adjusting method for optical system of electron-beam drawing apparatus
JP2786662B2 (en) Charged beam drawing method
JPH11224642A (en) Electron beam exposure device and electron beam exposure method
JP3340595B2 (en) Charged particle beam drawing method
JP3002246B2 (en) Charged beam correction method
JP3450437B2 (en) Electron beam exposure method, developing method and apparatus
JPH11186130A (en) Charged particle beam exposure device, exposure method, stencil mask and methods for measuring beam edge defocusing quantity and determining required refocus
JP3083428B2 (en) Charged particle beam drawing method
JP2988884B2 (en) Beam adjustment method in charged beam writing apparatus
JP3405671B2 (en) Electron beam writing apparatus and mark position detection method
JP2618919B2 (en) Electron beam drawing method and electron beam drawing apparatus
JPS6232613B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100802

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110802

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110802

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110802

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110802

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120802

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees