JPS6365663A - Multilayer-structured capacitor - Google Patents

Multilayer-structured capacitor

Info

Publication number
JPS6365663A
JPS6365663A JP21035986A JP21035986A JPS6365663A JP S6365663 A JPS6365663 A JP S6365663A JP 21035986 A JP21035986 A JP 21035986A JP 21035986 A JP21035986 A JP 21035986A JP S6365663 A JPS6365663 A JP S6365663A
Authority
JP
Japan
Prior art keywords
capacitor
layer capacitor
layer
insulating film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21035986A
Other languages
Japanese (ja)
Inventor
Makoto Kurotobi
黒飛 誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP21035986A priority Critical patent/JPS6365663A/en
Publication of JPS6365663A publication Critical patent/JPS6365663A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To realize a capacitor large in capacity and small in parasitic capacity per unit area by a method wherein a multiplicity of capacitors is built into a multilayer structure. CONSTITUTION:Unnecessary portions are removed from an SiN film by etching in an RIE unit with a photoresist serving as a mask. Next, the upper electrode 4 and lower electrode 2 of a first-layer capacitor are built by lift-off following a process of formation of a Ti/Au film by electron beam evaporation. An SiN film is deposited to serve as an insulating film 5 for a second-layer capacitor, and then etching is accomplished for patterning. Next, by a method similar to the one used for the formation of the lower electrode 2 for the first-layer capacitor, a Ti/Au film is formed by electron beam evaporation and then subjected to lift-off for the construction of the upper-layer electrode 6 of the second-layer capacitor. An SiN film is formed by deposition to serve as an insulating film 7 for a third-layer capacitor and then patterned by etching. In the last process for the completion of this three-layer structure, the upper electrode 8 of a third-layer capacitor is built in a process of forming a Ti/Au film by electron beam evaporation which is followed by lift-off.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、半導体集積回路上に作り込まれるキヤパスタ
のうち、金属/絶縁膜/金属(以後、M I Mと記す
。)構造キャパシタの構造の改良に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to the structure of a metal/insulating film/metal (hereinafter referred to as MIM) structure capacitor among capacitors built on a semiconductor integrated circuit. This is related to the improvement of

〈従来の技術及びその問題点〉 従来より集積回路に於いては、その集積度の向上に伴っ
て、キャパシタの面積の縮小が図られてきたが、回路動
作上の条件から静電容量はある程度より小さくすること
はできない。
<Conventional technology and its problems> Conventionally, in integrated circuits, as the degree of integration has improved, the area of the capacitor has been reduced, but due to circuit operation conditions, the capacitance is limited to a certain extent. It cannot be made smaller.

第3図(a)は従来のMIM構造キャパシタの構造例を
模式的に示す図であり、11け半導体基板、12は下部
電極用金属層、13は絶縁膜、14は上部電極用金属層
である。従来から、このMIM構造キャパシタ用絶縁膜
13としては、SiN若しくは5i02膜が用いられて
いるが、一定の容量を確保する為には、絶縁膜を薄くし
なければならず、充分な歩留まりを確保することが離し
くなシつつある。
FIG. 3(a) is a diagram schematically showing an example of the structure of a conventional MIM structure capacitor, in which 11 is a semiconductor substrate, 12 is a metal layer for a lower electrode, 13 is an insulating film, and 14 is a metal layer for an upper electrode. be. Conventionally, a SiN or 5i02 film has been used as the insulating film 13 for this MIM structure capacitor, but in order to secure a certain capacity, the insulating film must be made thinner to ensure a sufficient yield. I'm starting to feel like I can't take it anymore.

また、上記した第3図(a)に示した従来のM I M
構造キャパシタに対して、ウェハの占有表面積を小さく
できる第4図(a)に示す溝型若しくは井戸型構造キャ
パシタ(図に示したM I M構造の他にM I S構
造もある。)が、最近では、実用化に向けて研究開発を
行なわれている。
Furthermore, the conventional M I M shown in FIG. 3(a) above
Compared to structural capacitors, the trench type or well type structure capacitor shown in FIG. 4(a), which can reduce the surface area occupied by the wafer (in addition to the M I M structure shown in the figure, there is also an M I S structure), Recently, research and development has been carried out toward practical application.

しかし、キャパシタの特性で問題となっているのは、単
に単位面積当シの容量の向上だけではない。半導体基板
上に形成したキャパシタには、基板とキャパシタ電極と
の間に寄生容量が存在する。
However, the problem with capacitor characteristics is not simply improving capacitance per unit area. A capacitor formed on a semiconductor substrate has parasitic capacitance between the substrate and the capacitor electrode.

この寄生容量は、高速動作を行なう集積回路にとっては
、動作速度の低下や雑音指数の増加や位相の回転等のい
ろいろな問題の原因となる。
This parasitic capacitance causes various problems for integrated circuits operating at high speed, such as a reduction in operating speed, an increase in noise figure, and phase rotation.

11g3図(a)に示した従来のMIMキャパシタの簡
単な等価回路を第3図(b)に示す。ここで下部電極の
面積をSs、比例係数をkとすると、寄生容量C5は次
式で表わされる。
11g3 A simple equivalent circuit of the conventional MIM capacitor shown in FIG. 3(a) is shown in FIG. 3(b). Here, when the area of the lower electrode is Ss and the proportionality coefficient is k, the parasitic capacitance C5 is expressed by the following equation.

同様に第4図(a)に示した井戸型構造キャパシタの簡
単な等価回路を第4図(b)に示す。ここで下部電極の
底部と側面の面積全それぞれS8Iと882とし、底部
と側面それぞれの寄生容量ヲC5□、C5□とすると、
全寄生容量C8′は次式で表わされる。
Similarly, FIG. 4(b) shows a simple equivalent circuit of the well-structured capacitor shown in FIG. 4(a). Here, if the total areas of the bottom and side surfaces of the lower electrode are S8I and 882, respectively, and the parasitic capacitances of the bottom and side surfaces are C5□ and C5□, respectively,
The total parasitic capacitance C8' is expressed by the following equation.

08′中C,十C8□ 一方、上記第3図(a)及び第4図(a)における絶縁
膜の材質と膜厚が同じ場合、 S8中Ss、 + S3□−−−−(3)となるため、
上記(1)、(2)及び(3)式よシ、Cs′?Cs′
       ・・・・(4)となる。従って、第4図
(a)に示す井戸型構造キャパシタにおいても、依然と
して寄生容量の問題については解決されていない。
On the other hand, if the material and film thickness of the insulating film are the same in Fig. 3(a) and Fig. 4(a) above, Ss in S8, + S3□---(3) Therefore,
From the above equations (1), (2) and (3), Cs'? Cs′
...(4). Therefore, even in the well-structured capacitor shown in FIG. 4(a), the problem of parasitic capacitance remains unsolved.

本発明は上記の点に鑑みて創案されたものであシ、単位
面積当シの容量が大きく、且つ寄生容量の小さなキャパ
シタを提供することを目的としている。
The present invention was devised in view of the above points, and an object of the present invention is to provide a capacitor having a large capacitance per unit area and a small parasitic capacitance.

〈問題点を解決するための手段及び作用〉上記の目的を
達成するため、本発明の多層構造キャパシタは、基板と
、この基板上に形成した第上に形成した第2の電極金属
層と、この第2の電極金属層上に所定の膜厚に堆積した
第2の絶縁膜と、この第2の絶縁膜上に形成した第3の
電極金属層とを少なくとも備え、複数のキャパシタを多
層構造化するように構成している。
<Means and operations for solving the problems> In order to achieve the above object, the multilayer structure capacitor of the present invention includes a substrate, a second electrode metal layer formed on the substrate, A plurality of capacitors are arranged in a multilayer structure, including at least a second insulating film deposited to a predetermined thickness on the second electrode metal layer, and a third electrode metal layer formed on the second insulating film. It is configured to be

第1図(a)は本発明によシ得られる多層構造キャパシ
タを三層構造化した例を模式的に示す図であシ、同図に
おいて、lけ半導体基板、2は第1層キャパシタの下部
電極としての第1の電極金属層、3は第1層キャパシタ
の絶縁膜としての所定の膜厚に堆積した第1の絶縁膜、
4は第1層キャパシタの上部電極兼第2層キャパシタの
下部電極としての第2の電極金属層、5は第2層キャパ
シタの絶縁膜としての所定の膜厚に堆積した第2の絶縁
膜、6は第2層キャパシタの上部電極兼第3層キャパシ
タの下部電極としての第3の電極金属層、7は第3層キ
ャパシタの絶縁膜としての所定の膜厚に堆積した第3の
絶縁膜、8は第3層キャパシタの上部電極としての第4
の電極金属層である。
FIG. 1(a) is a diagram schematically showing an example of a three-layered multilayer capacitor obtained according to the present invention. In the figure, 1 is a semiconductor substrate, 2 is a first layer capacitor a first electrode metal layer as a lower electrode; 3 a first insulating film deposited to a predetermined thickness as an insulating film of a first layer capacitor;
4 is a second electrode metal layer serving as the upper electrode of the first layer capacitor and the lower electrode of the second layer capacitor; 5 is a second insulating film deposited to a predetermined thickness as an insulating film of the second layer capacitor; 6 is a third electrode metal layer serving as the upper electrode of the second layer capacitor and the lower electrode of the third layer capacitor; 7 is a third insulating film deposited to a predetermined thickness as an insulating film of the third layer capacitor; 8 is the fourth layer as the upper electrode of the third layer capacitor.
This is the electrode metal layer.

この第1図(a)からも明らかなように、本発明は下層
のキャパシタの上部電極が、上層のキャパシタの下部電
極を兼ねていることに特徴を有する。
As is clear from FIG. 1(a), the present invention is characterized in that the upper electrode of the lower layer capacitor also serves as the lower electrode of the upper layer capacitor.

第1図(b)は第1図(a)に示した多層構造キャパシ
タの簡単な等価回路を示す図である。全多層構造キャパ
シタの第1層、第2層、第3層キャパシタの容f!kを
それぞれC1l t CI2 + Clsとし、寄生容
量″f:C53とすると、全容量C,//  は次式で
表わされる。
FIG. 1(b) is a diagram showing a simple equivalent circuit of the multilayer structure capacitor shown in FIG. 1(a). The capacitance f of the first layer, second layer, and third layer capacitor of the entire multilayer structure capacitor is f! When k is respectively C1lt CI2 + Cls and the parasitic capacitance "f: C53", the total capacitance C, // is expressed by the following equation.

Cr’ =C++ +CI2 + Cl3   ・ ・
・ ・(5)更に、第1層、第2層、第3層キャパシタ
の電極面積が等しくSllであるならば、 CI’=3・CI+        ・・・・(6)と
なる。ここで第3図(a)に示すキャパシタと第1図(
a)に示すキャパシタの全容量が等しい場合を考えると
、上記(6)式より、 C】=3・CI+        ・・・・(7)とな
る。従って、絶縁膜の材質と膜厚が等しい時、両者のキ
ャパシタの電極面積の間には、次の関係が成υ立つ。
Cr' = C++ + CI2 + Cl3 ・ ・
(5) Furthermore, if the electrode areas of the first, second, and third layer capacitors are equal and Sll, CI'=3.CI+ (6). Here, the capacitor shown in FIG. 3(a) and the capacitor shown in FIG.
Considering the case where the total capacitance of the capacitors shown in a) is equal, from the above equation (6), C]=3.CI+ (7). Therefore, when the material and thickness of the insulating film are the same, the following relationship holds true between the electrode areas of both capacitors.

58=3・Sl       ・・・・(8)この結果
、上記(8)式の関係から、 が、導かれる。更に、(9)式を一般的に表わす。第1
図(a)に代表されるようなn個の層からなる多層構造
キャパシタの寄生容量C1nは、同じ容量を有する男3
図(a)VC代表されるような一般的なキャパシタの寄
生容量C3と、次式に示す様な関係で一般的に表わさn
る。
58=3.Sl (8) As a result, from the relationship in equation (8) above, the following is derived. Furthermore, equation (9) is expressed generally. 1st
The parasitic capacitance C1n of a multilayer structure capacitor consisting of n layers as typified by figure (a) is expressed by three
Figure (a) The parasitic capacitance C3 of a general capacitor represented by VC and the relationship shown in the following equation, n
Ru.

Cln=正上       00.。。Cln=straight above 00. . .

以上の結果、本発明の多層構造キャパシタの場合、多層
化に比例して単位面積当シの容量が増加すると共に、基
板との間に生ずる寄生容量につめても、00式で表わさ
れるように減少することになる。
As a result of the above, in the case of the multilayer structure capacitor of the present invention, the capacitance per unit area increases in proportion to the increase in the number of layers, and even when considering the parasitic capacitance generated between the substrate and the substrate, as expressed by the equation 00, will decrease.

〈実施例〉 以下、図面を参照して、本発明の一実施例をその製造工
程と共に詳細に説明する。
<Example> Hereinafter, an example of the present invention will be described in detail together with its manufacturing process with reference to the drawings.

第2図(a)乃至セ)はそれぞれ本発明の一実施例とし
ての3層構造キャパシタの製造工程を模式的に示す図で
ある。
FIGS. 2(a) to 2(c) are diagrams each schematically showing the manufacturing process of a three-layer structure capacitor as an embodiment of the present invention.

本発明を実施するに際し、基板1として、半絶縁性Ga
Asを用い、第1層キャパシタの下部電極2として、第
2図(a)に示すようにT i / A uを電子ビー
ム蒸着(0,1μm/ 0.3 ttm ’) L、こ
れをリフトオフして形成する。次に、第1層キャパシタ
の絶縁膜3として、S iH4NH3系ガヌによるプラ
ズマCVD法を用いてSiN膜を全面に0.2μm堆積
し、第2図(b)に示すように不要な部分のSiN膜を
、フォトレジストをマスクにRIE装置を用いて、エツ
チングする。次に第1層キャパシタの上部電極4を、第
2図(c)に示すように同下部電極2と同様にしてT 
i / A uを電子ビーム蒸着し、これヲリフトオフ
して形成する。この第1層キャパシタの上部電極4を、
第2層キャパシタの下部電極と共用する為、次にすぐ、
第2層キャパシタの絶縁膜5として、第2図(d)に示
すようにプラズマCVD法を用いて、SiN膜を0.2
μm堆積し、エツチングしパターニングする。次に第1
層キャパシタの下部電極2の形成と同様にして、第2図
(e)に示すように第2層キャパシタの上部電極6を、
Ti/Aufe電子ビーム蒸着し、これをリフトオフし
て形成する。この第2層キャパシタの上部電極6は、第
3層キャパシタの下部電極と共用する為、次に、第3層
キャパシタの絶縁膜7として、第2図(f)に示すよう
にプラズマCVD法を用いて、SiN膜を0.2μm堆
積し、エツチングしパターニングを行なう。本実施例で
は、3層構造としたので、最後に、第2図Q)に示すよ
うに第3層キャパシタの上部電極8を、Ti/Auを電
子ビーム蒸着し、これをリフトオフして形成する。以上
の工程を経て、本発明の一実施例としての3層構造キャ
パシタが得られる。
When carrying out the present invention, semi-insulating Ga is used as the substrate 1.
Using As, as the lower electrode 2 of the first layer capacitor, Ti/Au was electron beam evaporated (0.1 μm/0.3 ttm') L as shown in Fig. 2(a), and this was lifted off. form. Next, as the insulating film 3 of the first layer capacitor, a SiN film with a thickness of 0.2 μm was deposited on the entire surface using the SiH4NH3 based Ganu plasma CVD method, and as shown in FIG. 2(b), unnecessary parts were removed. The SiN film is etched using an RIE apparatus using a photoresist as a mask. Next, as shown in FIG. 2(c), the upper electrode 4 of the first layer capacitor is formed in the same manner as the lower electrode 2.
i/Au is formed by electron beam evaporation and lift-off. The upper electrode 4 of this first layer capacitor is
Since it is shared with the lower electrode of the second layer capacitor, immediately next,
As the insulating film 5 of the second layer capacitor, a SiN film of 0.2
Deposit, etch and pattern. Next, the first
Similarly to the formation of the lower electrode 2 of the layer capacitor, the upper electrode 6 of the second layer capacitor is formed as shown in FIG. 2(e).
Ti/Aufe is formed by electron beam evaporation and lift-off. Since the upper electrode 6 of the second layer capacitor is shared with the lower electrode of the third layer capacitor, the insulating film 7 of the third layer capacitor is then formed by plasma CVD as shown in FIG. 2(f). Using this method, a SiN film is deposited to a thickness of 0.2 μm, and patterned by etching. In this example, since a three-layer structure is used, the upper electrode 8 of the third layer capacitor is finally formed by electron beam evaporation of Ti/Au and lift-off as shown in FIG. 2 Q). . Through the above steps, a three-layer structure capacitor as an embodiment of the present invention is obtained.

〈発明の効果〉 以上のように、本発明によれば、キャパシタの多層構造
化を行なうことによって、単位面積当りの容量を向上さ
せることが出来ると同時に、キャパシタと基板の間て生
ずる寄生容量を低減することが出来るため、高速動作を
目的とした集積回路の特性を向上させる効果がある。
<Effects of the Invention> As described above, according to the present invention, by forming a capacitor into a multilayer structure, the capacitance per unit area can be improved, and at the same time, the parasitic capacitance generated between the capacitor and the substrate can be reduced. This has the effect of improving the characteristics of integrated circuits aimed at high-speed operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の多層構造キャパシタの一実施例
の断面構造を模式的に示す図、第1図(b)は第1図(
a)に示すキャパシタの等何回路を示す図、第2図(a
)乃至(g)はそれぞれ本発明の多層構造キャパシタを
作製するための製造工程の一例を示す図、第3図(a)
は従来のMIM構造キャパシタの断面構造の一例を示す
模式図、第3図(b)は、この等何回路を示す図、第4
図(a)は、井戸型構造キャパシタの断面構造の一例を
示す模式図、第4図(b)は、この等1価回路を示す図
である。 1・・・半導体基板、 2・・・第1層キャパシタの下
部電極、 3・・・第1層キャパシタの絶縁膜、 4・
・・第1層キャパシタの上部電極兼第2層キャパシタの
下部電極、  5・・・第2層キャパシタの絶縁膜、6
・・・第2層キャパシタの上部電極兼第3層キャパシタ
の下部電極、  7・・・第3層キャパシタの絶縁膜、
  8・・・第3層キャパシタの上部電極。 代理人 弁理士  杉 山 毅 至(池1名)(a) (b) (a) (b) (C) 遍2図 (?L) (a) Ci’ (b)
FIG. 1(a) is a diagram schematically showing the cross-sectional structure of one embodiment of the multilayer structure capacitor of the present invention, and FIG.
A diagram showing the equivalent circuit of the capacitor shown in a), Fig. 2(a)
) to (g) are diagrams each showing an example of the manufacturing process for producing the multilayer structure capacitor of the present invention, and FIG. 3(a)
is a schematic diagram showing an example of the cross-sectional structure of a conventional MIM structure capacitor, FIG. 3(b) is a diagram showing this circuit, and FIG.
FIG. 4(a) is a schematic diagram showing an example of the cross-sectional structure of a well-structured capacitor, and FIG. 4(b) is a diagram showing this equivalent monovalent circuit. DESCRIPTION OF SYMBOLS 1... Semiconductor substrate, 2... Lower electrode of first layer capacitor, 3... Insulating film of first layer capacitor, 4.
... Upper electrode of the first layer capacitor and lower electrode of the second layer capacitor, 5... Insulating film of the second layer capacitor, 6
... Upper electrode of the second layer capacitor and lower electrode of the third layer capacitor, 7... Insulating film of the third layer capacitor,
8... Upper electrode of third layer capacitor. Agent Patent Attorney Takeshi Sugiyama (1 person) (a) (b) (a) (b) (C) Hen 2 Zu (?L) (a) Ci' (b)

Claims (1)

【特許請求の範囲】 1、基板と、 該基板上に形成した第1の電極金属層と、 該第1の電極金属層上に、所定の膜厚に堆積した第1の
絶縁膜と、 該第1の絶縁膜上に形成した第2の電極金属層と、該第
2の電極金属層上に所定の膜厚に堆積した第2の絶縁膜
と、 該第2の絶縁膜上に形成した第3の電極金属層と を少なくとも備えてなることを特徴とする多層構造キャ
パシタ。
[Claims] 1. A substrate; a first electrode metal layer formed on the substrate; a first insulating film deposited to a predetermined thickness on the first electrode metal layer; a second electrode metal layer formed on the first insulating film; a second insulating film deposited to a predetermined thickness on the second electrode metal layer; and a second electrode metal layer formed on the second insulating film. A multilayer structure capacitor comprising at least a third electrode metal layer.
JP21035986A 1986-09-05 1986-09-05 Multilayer-structured capacitor Pending JPS6365663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21035986A JPS6365663A (en) 1986-09-05 1986-09-05 Multilayer-structured capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21035986A JPS6365663A (en) 1986-09-05 1986-09-05 Multilayer-structured capacitor

Publications (1)

Publication Number Publication Date
JPS6365663A true JPS6365663A (en) 1988-03-24

Family

ID=16588067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21035986A Pending JPS6365663A (en) 1986-09-05 1986-09-05 Multilayer-structured capacitor

Country Status (1)

Country Link
JP (1) JPS6365663A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100353487C (en) * 2004-05-12 2007-12-05 联华电子股份有限公司 Method for preparing capacitance
JP2009111013A (en) * 2007-10-26 2009-05-21 Rohm Co Ltd Semiconductor apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100353487C (en) * 2004-05-12 2007-12-05 联华电子股份有限公司 Method for preparing capacitance
JP2009111013A (en) * 2007-10-26 2009-05-21 Rohm Co Ltd Semiconductor apparatus
US8395236B2 (en) 2007-10-26 2013-03-12 Rohm Co., Ltd. MIM capacitor structure having penetrating vias

Similar Documents

Publication Publication Date Title
US4337115A (en) Method of forming electrodes on the surface of a semiconductor substrate
JP4097694B2 (en) Electronic component comprising a thin film structure having passive elements
US5459633A (en) Interdigital capacitor and method for making the same
JPS6365663A (en) Multilayer-structured capacitor
US11574880B2 (en) Electronic device with an integral filtering component
JPH07106324A (en) Semiconductor device
JPH1065110A (en) Microwave semiconductor integrated circuit and manufacture thereof
JPH0969605A (en) Thin film capacitance element and its manufacturing method
JPH06120211A (en) Manufacture of semiconductor device
JPH03231453A (en) Semiconductor device provided with capacitor
JPH03241864A (en) Capacitor for microwave integrated circuit
JPH01184943A (en) Manufacture of laminated capacitor for integrated circuit
JPH11154730A (en) Semiconductor device and manufacture thereof
JPH10125860A (en) Plane spiral inductor and its manufacture
JPH01170031A (en) Semiconductor device and manufacture thereof
JPH0521426A (en) Semiconductor integrated circuit
JPS60105263A (en) Semiconductor device
JP2809274B2 (en) Method for manufacturing semiconductor device
JPH0113405Y2 (en)
JPH02113566A (en) Semiconductor integrated circuit
JPS63102383A (en) Josephson junction device
JPH0645332A (en) Semiconductor device and manufacture thereof
JPH0235730A (en) Forming method for wiring pattern
JPS61166083A (en) Manufacture of josephson integrated circuit
JPS63175443A (en) Manufacture of semiconductor device