JPS63102383A - Josephson junction device - Google Patents

Josephson junction device

Info

Publication number
JPS63102383A
JPS63102383A JP61248833A JP24883386A JPS63102383A JP S63102383 A JPS63102383 A JP S63102383A JP 61248833 A JP61248833 A JP 61248833A JP 24883386 A JP24883386 A JP 24883386A JP S63102383 A JPS63102383 A JP S63102383A
Authority
JP
Japan
Prior art keywords
barrier layer
josephson junction
superconducting
josephson
conductive regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61248833A
Other languages
Japanese (ja)
Inventor
Yasutaka Tamura
泰孝 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61248833A priority Critical patent/JPS63102383A/en
Publication of JPS63102383A publication Critical patent/JPS63102383A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices
    • H10N60/12Josephson-effect devices

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To obtain a Josephson junction device which has improved radio frequency characteristics with good reproducibility by a method wherein an insulating layer which is dotted with conductive regions is used as a barrier layer. CONSTITUTION:An insulating layer 14 which is dotted with conductive regions 15 is used as a barrier layer 13. Superconducting electrodes 11 and 12 are coupled with the barrier layer 13 between to create Josephson effect. If the superconducting electrodes 11 and 12 are electrically well coupled with each other through the conductive regions 15, even if the thickness of the barrier layer 13 is large, a sufficient Josephson current can flow between the superconducting electrodes 11 and 12 through the conductive regions 15. Therefore, the thickness of the barrier layer 13 of the present invention can be substantially larger than the thickness of a tunnel barrier layer. Therefore, the electrostatic capacity of the present invention can be made substantially smaller than the capacity of a conventional tunnel type Josephson junction device while the radio frequency characteristics can be significantly improved.

Description

【発明の詳細な説明】 〔概要〕 本発明は2つの超伝導電極間にバリア病が挾まれた構造
のジョはフソン接合素子において、バリア層として絶縁
膜中に導電性領域を点在した構造とすることにより、 高周波数特性の優れたジョセフソン接合素子を再現性良
く得ることができるようにしたものである。
[Detailed Description of the Invention] [Summary] The present invention provides a structure in which conductive regions are interspersed in an insulating film as a barrier layer in a Fuson junction element having a structure in which a barrier disease is sandwiched between two superconducting electrodes. By doing so, it is possible to obtain a Josephson junction element with excellent high frequency characteristics with good reproducibility.

〔産業上の利用分野〕[Industrial application field]

本発明はジョセフソン接合素子に係り、特にバリア層が
2つの超伝導電極間に挟まれた構造のジョセフソン接合
素子に関する。
The present invention relates to a Josephson junction device, and particularly to a Josephson junction device having a structure in which a barrier layer is sandwiched between two superconducting electrodes.

ジョセフソン接合素子(ジョセフソン素子)は、超高速
性のため、高速の論理回路や高速・高感度の検波素子な
どに用いられる。このジョセフソン接合素子を高い周波
数で動作させる場合、素子の静電容量が有害な鋤きをし
、本来の超高速性能を生かせない場合がある。このため
、再現性良く製作できる静電容量の小なるジョセフソン
接合素子が必要とされる。
Josephson junction devices (Josephson devices) are used in high-speed logic circuits and high-speed, high-sensitivity detection devices due to their ultra-high speed properties. When this Josephson junction device is operated at high frequencies, the capacitance of the device may create a harmful plow, making it impossible to take advantage of its original ultra-high-speed performance. Therefore, a Josephson junction element with low capacitance that can be manufactured with good reproducibility is required.

〔従来の技術〕[Conventional technology]

第3図は従来のジョセフソン接合素子の一例の斜視図を
示す。同図中、1は超伝導下部電極、2は超伝導上部電
極で、それらの電極間にトンネルバリア3が挾まれてい
る。トンネルバリア3は電子のトンネルが可能な極薄(
例えば数nl11)の絶縁膜である。
FIG. 3 shows a perspective view of an example of a conventional Josephson junction element. In the figure, 1 is a superconducting lower electrode, 2 is a superconducting upper electrode, and a tunnel barrier 3 is sandwiched between these electrodes. The tunnel barrier 3 is extremely thin (
For example, it is an insulating film of several nl11).

かかる構造のトンネルy!のジョセフソン接合素子は、
極at温に冷却すると共に電極1.2間に電流を流すと
、その電流がしきい直以下では電圧は発生せず超伝導状
態であり、しきい値以上になると電圧が発生して電圧状
態ヘスイッヂする性質をもつことは周知の通りである。
A tunnel with such a structure! The Josephson junction element of
When a current is passed between the electrodes 1 and 2 while cooling to an extreme AT temperature, when the current is just below the threshold, no voltage is generated and it is in a superconducting state, and when it exceeds the threshold, a voltage is generated and the voltage state is reached. It is well known that it has the property of switching.

このトンネル型のジョセフソン接合素子は広く用いられ
ている。
This tunnel type Josephson junction element is widely used.

この他のジョセフソン接合素子としては、従来より第4
図に示す如き弱結合型のジョセフソン接合素子や、第5
図に示す如きSNS (スーパー・ノーマル・スーパー
)接合型のジョセフソン接合素子が知られている。
Other Josephson junction elements include
A weakly coupled Josephson junction element as shown in the figure or a fifth
An SNS (super normal super) junction type Josephson junction element as shown in the figure is known.

第4図において、4は超伝導体の薄膜で、適当な幅に形
成されており、がっ、くびれ部分5を有する。このジョ
セフソン接合素子は、くびれ部分5により超伝導電極6
a及び6bが弱く結合されているため、ジョセフソン効
果を示す。
In FIG. 4, reference numeral 4 denotes a thin film of superconductor, which is formed to an appropriate width and has a constricted portion 5. This Josephson junction element has a superconducting electrode 6 formed by a constricted portion 5.
Since a and 6b are weakly coupled, the Josephson effect is exhibited.

また、第5図に示すジョセフソン接合素子は、超伝導下
部電極8と超伝導上部電極9との間に、常伝導の金属(
例えば銅、アルミニウム等)1゜が挾まれた構造とされ
ている。このように、金属10を超伏導電極8,9間に
挾んだSNS接合型によってもジョセフソン効果を得る
ことができることが知られている。
In addition, the Josephson junction element shown in FIG. 5 has a normal conductive metal (
For example, copper, aluminum, etc.) has a structure in which 1° is sandwiched. As described above, it is known that the Josephson effect can also be obtained by the SNS junction type in which the metal 10 is sandwiched between the superconducting electrodes 8 and 9.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかるに、第3図に示した従来のトンネル型のジョセフ
ソン接合素子はコンデンサの構造となっており、その静
電容Sが絶縁膜であるトンネルバリア3の膜厚によって
決まるが、トンネルバリア3は極めて薄いので静電容量
の値が例えば数μF/ ci &’ IJ!と大なる値
となり、その結果、高周波数特性が制限されてしまう。
However, the conventional tunnel-type Josephson junction element shown in FIG. 3 has a capacitor structure, and its capacitance S is determined by the thickness of the tunnel barrier 3, which is an insulating film. Since it is thin, the capacitance value is, for example, several μF/ci &' IJ! As a result, the high frequency characteristics are limited.

一方、素子の電流を一定とすると、電流密度は素子面積
に反比例して高くなる。そこで、素子の臨界電流密度を
高くして素子面積を小さくすることにより、上記静電容
ωを小さくすることが考えられる。しかし、トンネル型
のジョゼフソン接合素子の電流密度は通常102〜10
3A/Ciであり、高くても10’A/cj程度であり
、それ以上の電流密度では通常、良好な特性が得られな
い。
On the other hand, if the current in the device is constant, the current density increases in inverse proportion to the device area. Therefore, it is conceivable to reduce the capacitance ω by increasing the critical current density of the element and reducing the element area. However, the current density of tunnel-type Josephson junction devices is usually 102 to 10
The current density is 3A/Ci, and the highest current density is about 10'A/cj, and good characteristics cannot usually be obtained at a current density higher than that.

このため、上記静電容量を小さくするにも限界がある。Therefore, there is a limit to reducing the capacitance.

また、第4図に示した弱結合型のジョセフソン接合素子
でtまくひれ部分5を作るために、極めて微細な加工が
必要となる上、臨界電流の再現性が悪いため、集積回路
を作るのは極めて困難である。
Furthermore, in order to make the T-roll fin portion 5 using the weakly coupled Josephson junction element shown in Fig. 4, extremely fine processing is required and the reproducibility of the critical current is poor, making it difficult to fabricate an integrated circuit. is extremely difficult.

更に、第5図に示したSNS接合型のジョセフソン接合
素子では、電極8及び9間に流れる電流は常伝導の金属
10を通るから、金属1oをがなり厚くできるが、金属
10を使用しているので極めて小なる並列抵抗値をもっ
こととなり、高周波検波素子などに使用した場合、伯の
回路とのインピーダンスマツチングができず、実用的で
ない。
Furthermore, in the SNS junction type Josephson junction element shown in FIG. Because of this, an extremely small parallel resistance value is required, and when used in a high-frequency detection element, impedance matching with the circuit described above cannot be achieved, making it impractical.

本発明は上記の点に鑑みて創作されたもので、静電容量
が小で、かつ、実用的な抵抗値を有するジョセフソン接
合素子を提供することを目的とする。
The present invention was created in view of the above points, and an object of the present invention is to provide a Josephson junction element having a small capacitance and a practical resistance value.

(問題点を解決するための手段〕 第1A、18図は本発明のジョセフソン接合素子の構造
断面図及びB−B線に沿う横断面図を示ず。同図中、1
1は第1の超伝導電極、12は第2の超伝導電極、13
はバリア層である。バリア層13は絶縁層14の中に導
電性領域15が点在された構造とされている。
(Means for solving the problem) Figures 1A and 18 do not show a structural cross-sectional view of the Josephson junction element of the present invention and a cross-sectional view taken along the line B-B.
1 is a first superconducting electrode, 12 is a second superconducting electrode, 13
is a barrier layer. The barrier layer 13 has a structure in which conductive regions 15 are scattered within an insulating layer 14 .

超伝導電極11及び12は導電性領域15を介して導電
的に結合されることになる。
Superconducting electrodes 11 and 12 will be electrically coupled via conductive region 15 .

(作用) 超伝導電極11及び12はバリア層13を介して結合さ
れており、これによりジョセフソン効果を生ずる。
(Function) The superconducting electrodes 11 and 12 are coupled via the barrier layer 13, thereby producing the Josephson effect.

超伝導電極11及び12が′4電性領域15を介して良
好に34電的な結合が行なわれている場合、バリア層1
3の厚みが従来のトンネルバリア3のそれよりも厚くて
も、ジョセフソン電流は導電性領域15を通して超伝導
電極11.12間に十分な間流れることができる。従っ
て、このバリア層13の膜圧はトンネルバリア3の膜圧
(通常は30人〜50人)に比し、例えば1μmと極め
て厚くすることができる。
When the superconducting electrodes 11 and 12 are well coupled with each other via the 44-electric region 15, the barrier layer 1
Even if the thickness of the tunnel barrier 3 is thicker than that of the conventional tunnel barrier 3, the Josephson current can flow through the conductive region 15 between the superconducting electrodes 11, 12 for a sufficient period of time. Therefore, the film thickness of this barrier layer 13 can be extremely thick, for example, 1 μm, compared to the film thickness of the tunnel barrier 3 (usually 30 to 50 layers).

また、接合全面積に対する導電性領域15の割合を調整
することにより、臨界電流密度を制御することができる
Further, by adjusting the ratio of the conductive region 15 to the total area of the junction, the critical current density can be controlled.

〔実施例〕〔Example〕

第2図(A)〜(C)は夫々本発明になるジョセフソン
接合素子の一実施例を製造する各過程における構造断面
図を示す。まず、第2図(A)に示す如く、シリコン基
板17上にスパッタリングによりニオブ(Nb )から
なる超伝導電極20が形成される。シリコン基板17は
シリコンウェーハ18上に例えば1000人程度0厚さ
でSiO2の酸化膜19が形成された構造である。また
、超伏S電極20の膜厚は例えば3000八程度である
。次に、上記のNbのスパッタリング終了後、同じ装置
で金(Au )を極めて薄く(例えば質ω膜厚で10人
〜20人程度)蒸着する。これにより、ALIは第2図
(A)に21で示ザ如く、超伝導電極20上に島状に形
成される。
FIGS. 2(A) to 2(C) each show a structural cross-sectional view at each step of manufacturing an embodiment of the Josephson junction device according to the present invention. First, as shown in FIG. 2(A), a superconducting electrode 20 made of niobium (Nb) is formed on a silicon substrate 17 by sputtering. The silicon substrate 17 has a structure in which an oxide film 19 of SiO2 is formed on a silicon wafer 18 to a thickness of about 1,000, for example. Further, the film thickness of the super-depressed S electrode 20 is, for example, about 3,000. Next, after the above-mentioned Nb sputtering is completed, gold (Au) is deposited in an extremely thin layer (for example, by about 10 to 20 people in terms of ω film thickness) using the same apparatus. As a result, the ALI is formed in an island shape on the superconducting electrode 20, as shown at 21 in FIG. 2(A).

しかる後に、プラズマ酸化により超伝導゛電極20を酸
化すると、Nbの酸化膜(例えばNbzOs)22が、
第2図(8)に示ず如くAllの蒸着領域21以外の個
所に100八〜500人の厚さで成長される。A11l
よ酸化されないからである。
After that, when the superconducting electrode 20 is oxidized by plasma oxidation, the Nb oxide film (for example, NbzOs) 22 becomes
As shown in FIG. 2(8), the Al layer is grown to a thickness of 1008 to 500 layers in areas other than the Al vapor deposition region 21. A11l
This is because it is not easily oxidized.

次に、上記の蒸着領域21及び酸化膜22上からNbを
スパッタリングして第2図(C)に示す如<Nbからな
る超伝導電極23が准+1!1される。
Next, Nb is sputtered from above the vapor deposition region 21 and the oxide film 22 to form a superconducting electrode 23 made of Nb as shown in FIG. 2(C).

その後にバターニング等所定の1稈を経てジョセフソン
結合素子が製造される。第2図(C)中、超伝導電極2
0.23が前記超伝導電極11゜12に相当し、Auの
島状の蒸着領域21は前記導電性領域15に相当し、更
に酸化膜22は前記絶縁層14に相当する。
Thereafter, a Josephson coupling element is manufactured through a predetermined process such as buttering. In Figure 2 (C), superconducting electrode 2
0.23 corresponds to the superconducting electrodes 11.degree.

なお、A13の蒸着量を変えることにより、蒸着領域2
1の面積を変えることができるので、臨界電流密度の制
御が容易である。
In addition, by changing the amount of vapor deposition of A13, the vapor deposition area 2
Since the area of 1 can be changed, the critical current density can be easily controlled.

なお、八〇の代りにPtlを使用してもよい。Note that Ptl may be used instead of 80.

〔発明の効果〕〔Effect of the invention〕

上述の如く、本発明によれば、バリア層の厚さを、従来
のトンネル型のジョセフソン接合素子のトンネルバリア
の厚さに比べて極めて厚くできるので、単位面積当りの
静電容品を従来のトンネル型のジョセフソン接合素子に
比べて極めて小にすることができ、従って高周波数特性
を大幅に向上することかできる。また、臨界電流密度の
制御が容易にできるので、素子のインピーダンスを最適
な値に設定することが容易にでき、更に弱結合型のジョ
セフソン接合素子のような超精密加工を要することはな
く、実用的なジョセフソン接合素子を再現性良く得るこ
とができる等の特長を有するものである。
As described above, according to the present invention, the thickness of the barrier layer can be made extremely thicker than that of the tunnel barrier of a conventional tunnel-type Josephson junction element, so that the capacitance per unit area can be made much thicker than that of the conventional tunnel-type Josephson junction element. It can be made much smaller than a tunnel-type Josephson junction element, and therefore its high frequency characteristics can be greatly improved. In addition, since the critical current density can be easily controlled, the impedance of the element can be easily set to an optimal value, and ultra-precision processing unlike weakly coupled Josephson junction elements is not required. It has the advantage of being able to obtain a practical Josephson junction element with good reproducibility.

【図面の簡単な説明】 第1A、18図は本発明の構造断面図及び横断面図、 第2図(A)〜(C)は夫々本発明の一実施例の各製造
過程での構造断面図、 第3図乃至第5図は夫々従来のジョセフソン接合素子の
各個を示ず斜視図である。 図において、 11は第1の超伝導電極、 124ま第2の超伝導電極、 13はバリア層、 14は絶縁層、 15は導電性領域、 20.23は超伝導領域、 21は金の蒸着gA域、 22は酸化膜である。 代理人 弁理士 井 桁 貞 −。 ゛・、二?ン′
[Brief Description of the Drawings] Figures 1A and 18 are cross-sectional views of the structure of the present invention, and Figures 2 (A) to (C) are cross-sectional views of the structure of an embodiment of the present invention in each manufacturing process. 3 to 5 are perspective views of conventional Josephson junction elements without showing individual parts. In the figure, 11 is a first superconducting electrode, 124 is a second superconducting electrode, 13 is a barrier layer, 14 is an insulating layer, 15 is a conductive region, 20.23 is a superconducting region, and 21 is gold vapor deposition. In the gA region, 22 is an oxide film. Agent: Patent attorney Sada Igata −.゛・、Two? hmm'

Claims (1)

【特許請求の範囲】  第1の超伝導電極(11)と第2の超伝導電極(12
)との間にバリア層(13)が挾まれた構造のジョセフ
ソン接合素子であって、 該バリア層(13)を絶縁層(14)中に該第1及び第
2の超伝導電極(11,12)を導電的に結合する導電
性領域(15)を点在せしめた構造としたことを特徴と
するジョセフソン接合素子。
[Claims] First superconducting electrode (11) and second superconducting electrode (12)
), the barrier layer (13) is interposed between the first and second superconducting electrodes (11) in an insulating layer (14). , 12) interspersed with conductive regions (15).
JP61248833A 1986-10-20 1986-10-20 Josephson junction device Pending JPS63102383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61248833A JPS63102383A (en) 1986-10-20 1986-10-20 Josephson junction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61248833A JPS63102383A (en) 1986-10-20 1986-10-20 Josephson junction device

Publications (1)

Publication Number Publication Date
JPS63102383A true JPS63102383A (en) 1988-05-07

Family

ID=17184100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61248833A Pending JPS63102383A (en) 1986-10-20 1986-10-20 Josephson junction device

Country Status (1)

Country Link
JP (1) JPS63102383A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03174781A (en) * 1988-12-23 1991-07-29 Nippon Steel Corp Radiation detecting element and josephson element
WO1995026575A1 (en) * 1994-03-25 1995-10-05 The Secretary Of State For Defence Superconductive junction

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57104283A (en) * 1980-12-20 1982-06-29 Rikagaku Kenkyusho Josephson junction element and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57104283A (en) * 1980-12-20 1982-06-29 Rikagaku Kenkyusho Josephson junction element and manufacture thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03174781A (en) * 1988-12-23 1991-07-29 Nippon Steel Corp Radiation detecting element and josephson element
US5321276A (en) * 1988-12-23 1994-06-14 Nippon Steel Corporation Radiation sensing device and Josephson device
WO1995026575A1 (en) * 1994-03-25 1995-10-05 The Secretary Of State For Defence Superconductive junction
GB2301965A (en) * 1994-03-25 1996-12-18 Secr Defence Superconductive junction
GB2301965B (en) * 1994-03-25 1998-07-01 Secr Defence Superconductive junction
US5821556A (en) * 1994-03-25 1998-10-13 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Superconductive junction

Similar Documents

Publication Publication Date Title
US4554567A (en) Superconductive integrated circuit incorporating a magnetically controlled interferometer
WO1997034327A1 (en) Wide josephson junction with asymmetric control lines
US11195982B2 (en) Qubit frequency tuning structures and fabrication methods for flip chip quantum computing devices
JPS58200586A (en) Josephson tunnel junction device of niob-insultor-niob and method of producing same
US3737743A (en) High power microwave field effect transistor
US4366494A (en) Josephson junction and a method of making the same
JP2978471B2 (en) Low inductance superconducting integrated circuit and its manufacturing method
JPH098368A (en) High temperature superconducting jesephson element and fabrication thereof
CN105702849B (en) Stepped area is covered with superconducting circuit structure of superconduction coating and preparation method thereof
JP3568547B2 (en) Josephson junction structure
JP3538326B2 (en) Article including an inductive element having a magnetic thin film
US4494131A (en) Josephson junction element and method of making the same
JPS63102383A (en) Josephson junction device
US4430790A (en) Method of making a Josephson junction
JPS60140885A (en) Superconductive element ic
JP2730368B2 (en) Superconducting field effect element and method for producing the same
JPS61201467A (en) Superconducting transistor integrated circuit
JPS5846197B2 (en) Josephson junction device and its manufacturing method
JPH05251769A (en) Connection structure of superconducting current path
JP2680961B2 (en) Superconducting field effect device and method of manufacturing the same
JP4027504B2 (en) Single-electron tunnel device having a laminated structure and manufacturing method thereof
JP2680954B2 (en) Superconducting field effect element
JP2737499B2 (en) Superconducting field effect element and method for producing the same
JPS59125126A (en) Josephson logical circuit device
JPH05291637A (en) Superconductive field effect type element