JPS6362909B2 - - Google Patents

Info

Publication number
JPS6362909B2
JPS6362909B2 JP56150250A JP15025081A JPS6362909B2 JP S6362909 B2 JPS6362909 B2 JP S6362909B2 JP 56150250 A JP56150250 A JP 56150250A JP 15025081 A JP15025081 A JP 15025081A JP S6362909 B2 JPS6362909 B2 JP S6362909B2
Authority
JP
Japan
Prior art keywords
region
type emitter
type
impurity concentration
emitter region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56150250A
Other languages
Japanese (ja)
Other versions
JPS5850776A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP15025081A priority Critical patent/JPS5850776A/en
Publication of JPS5850776A publication Critical patent/JPS5850776A/en
Publication of JPS6362909B2 publication Critical patent/JPS6362909B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0839Cathode regions of thyristors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • H01L29/744Gate-turn-off devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thyristors (AREA)

Description

【発明の詳細な説明】 この発明は、ゲート・ターンオフサイリスタの
ターンオフ能力の改善に関するものである。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to improving the turn-off capability of gate turn-off thyristors.

ゲート・ターンオフサイリスタ(以下、
「GTO」と記す)は、ゲート信号によつて電流を
オン・オフすることが可能であるため、インバー
タやチヨツパ装置に用いる場合、強制転流回路を
必要とする通常のサイリスタに比べて、装置の小
形軽量化および高効率化が可能となるため、魅力
のある半導体装置と言える。しかし、GTOはタ
ーンオフ時に主電流の導通面積の縮小が生じるた
め、局部的な電流集中が起こりやすく、大電流を
ターンオフさせることが難かしい。
Gate turn-off thyristor (hereinafter referred to as
GTO) can turn the current on and off using a gate signal, so when used in inverters and chopper devices, it is easier to use than ordinary thyristors that require forced commutation circuits It can be said to be an attractive semiconductor device because it can be made smaller, lighter, and more efficient. However, when GTO is turned off, the main current conduction area is reduced, so local current concentration tends to occur, making it difficult to turn off large currents.

以下、従来のGTOの問題点を説明する。 The problems with conventional GTO are explained below.

第1図は従来の大電力GTOの素子の断面図で
ある。第1図において、1はn形で高比抵抗のシ
リコン基板の中間層からなるn形ベース領域、2
および3はそれぞれシリコン基板の両主面部にガ
リウム(Ga)などのp形不純物を拡散などの方
法で導入して形成したp形エミツタ領域およびp
形ベース領域である。シリコン基板のp形不純物
が拡散されなかつた領域がn形ベース領域1とな
る。4はn形エミツタ領域でp形ベース領域3上
に複数個の分離独立した島状に形成されている。
5,6および7はそれぞれp形エミツタ領域2、
n形エミツタ領域4およびp形ベース領域3にオ
ーミツク接触しているアノード電極、カソード電
極およびゲート電極である。
FIG. 1 is a cross-sectional view of a conventional high-power GTO element. In FIG. 1, 1 is an n-type base region made of an intermediate layer of an n-type, high-resistivity silicon substrate;
and 3 are p-type emitter regions and p-type emitter regions formed by introducing p-type impurities such as gallium (Ga) into both main surfaces of a silicon substrate by a method such as diffusion.
This is a shape-based area. The region of the silicon substrate into which the p-type impurity is not diffused becomes the n-type base region 1. Reference numeral 4 denotes an n-type emitter region formed on the p-type base region 3 in the form of a plurality of separate and independent islands.
5, 6 and 7 are p-type emitter regions 2,
An anode electrode, a cathode electrode and a gate electrode are in ohmic contact with the n-type emitter region 4 and the p-type base region 3.

ここで、GTOのターンオフ現象を考えると、
ターンオンしているGTOゲート電極7、カソー
ド電極6間にゲート電極7が負になるような電圧
を印加すると、p形エミツタ領域2からn形ベー
ス領域1を通つてp形ベース領域3に運ばれたホ
ールの一部がゲート電極7から引き抜かれ、npn
トランジスタ部およびpnpトランジスタ部の電流
増幅率をそれぞれα1およびα2とするとき、(α1
α2)の値が低下して1以下になると、GTOは導
通状態を維持できなくなりターンオフする。この
とき、n形エミツタ領域4のゲート電極7に近い
部分からターンオフが起こり始め、n形エミツタ
領域4の中心部へと広がつていく。このため、タ
ーンオフ期間中の一時期には阻止領域と導通領域
とが共存し、収縮した狭い導通領域への電流集中
が起こり素子が破壊するという現象が生じる。素
子を破壊に至らすことなくターンオフすることが
できる最大陽極電流が可制御陽極電流(ITGQ)で
ある。
Now, considering the GTO turn-off phenomenon,
When a voltage is applied between the turned-on GTO gate electrode 7 and the cathode electrode 6 so that the gate electrode 7 becomes negative, it is carried from the p-type emitter region 2 through the n-type base region 1 to the p-type base region 3. Some of the holes are pulled out from the gate electrode 7, and the npn
When the current amplification factors of the transistor section and the pnp transistor section are α 1 and α 2 , respectively, (α 1 +
When the value of α 2 ) decreases to less than 1, the GTO becomes unable to maintain conduction and turns off. At this time, turn-off begins to occur in a portion of the n-type emitter region 4 near the gate electrode 7 and spreads to the center of the n-type emitter region 4. For this reason, the blocking region and the conduction region coexist for a certain period during the turn-off period, causing a phenomenon in which current is concentrated in the contracted narrow conduction region and the device is destroyed. The maximum anode current that can be turned off without destroying the device is the controllable anode current (I TGQ ).

この発明は、n形エミツタ領域をその中央部に
位置する低不純物濃度領域とこの領域の両側にこ
れを挟んで位置する高不純物濃度領域とから構成
することによつて可制御陽極電流を増大させた
GTOを提供することを目的としたものである。
This invention increases the controllable anode current by configuring the n-type emitter region from a low impurity concentration region located in the center and high impurity concentration regions located on both sides of this region. Ta
It is intended to provide GTO.

以下、実施例に基づいてこの発明を説明する。 The present invention will be explained below based on examples.

第2図はこの発明によるGTOの一実施例の素
子の断面図である。第2図において、第1図と同
一符号は第1図にて示したものと同様にものを表
わしている。41はn形エミツタ領域4のゲート
電極7に近い周辺部を構成する高不純物濃度の第
1の領域、42はn形エミツタ領域4の中央部を
構成する低不純物濃度の第2の領域である。第1
の領域41は第2の領域42により分離されてい
る。なお、p形ベース領域3の表面不純物濃度に
対して第1の領域41および第2の領域42の表
面不純物濃度はそれぞれ100倍以上および1〜100
倍であることが望ましい。
FIG. 2 is a sectional view of an element of an embodiment of the GTO according to the present invention. In FIG. 2, the same reference numerals as in FIG. 1 represent the same things as shown in FIG. Reference numeral 41 denotes a first region with a high impurity concentration constituting the peripheral part of the n-type emitter region 4 near the gate electrode 7, and numeral 42 denotes a second region with a low impurity concentration constituting the central part of the n-type emitter region 4. . 1st
region 41 is separated by a second region 42 . Note that the surface impurity concentrations of the first region 41 and the second region 42 are 100 times or more and 1 to 100 times the surface impurity concentration of the p-type base region 3, respectively.
It is desirable to double the amount.

いま、n形エミツタ領域4の第2の領域42、
p形ベース領域3、n形ベース領域1およびp形
エミツタ領域2が構成するGTOをAGTO、n形
エミツタ領域4の第1の領域41、p形ベース領
域3、n形ベース領域1およびp形エミツタ領域
2が形成するGTOをBGTOとする。この場合、
AGTOの第2の領域42、p形ベース領域3お
よびn形ベース領域1が構成するトランジスタ部
の電流増幅率αA 1はBGTOの第1の領域41、p
形ベース領域3およびn形ベース領域1が構成す
るトランジスタ部の電流増幅率αB 1よりも小さいた
め、このGTOのターンオフ時に、AGTOが
BGTOより先にα1+α2<1の条件に達するため、
AGTOがまず阻止領域になる。このため、従来
のGTOがn形エミツタ領域4の中心領域に導通
領域が縮小されるのに対して、実施例のGTOで
は、AGTOとBGTOとの境界領域に導通領域が
縮小されるために、従来のGTOに比べて実施例
のGTOは縮小導通領域が広くなるので、電流の
集中が緩和され、可制御陽極電流を大きく取れる
ようになる。
Now, the second region 42 of the n-type emitter region 4,
GTO constituted by p-type base region 3, n-type base region 1 and p-type emitter region 2 is AGTO, first region 41 of n-type emitter region 4, p-type base region 3, n-type base region 1 and p-type Let the GTO formed by the emitter region 2 be BGTO. in this case,
The current amplification factor α A 1 of the transistor section constituted by the second region 42 of AGTO, the p-type base region 3 and the n-type base region 1 is the same as that of the first region 41 of BGTO, p
Since the current amplification factor α B of the transistor section constituted by the type base region 3 and the n-type base region 1 is smaller than the current amplification factor α B 1 , when this GTO is turned off, the AGTO
Since the condition of α 1 + α 2 <1 is reached before BGTO,
AGTO will be the first area of inhibition. For this reason, while the conventional GTO has a conductive region reduced to the central region of the n-type emitter region 4, in the GTO of the embodiment, the conductive region is reduced to the boundary region between AGTO and BGTO. Compared to the conventional GTO, the GTO of the embodiment has a wider reduced conduction region, so current concentration is relaxed and a large controllable anode current can be obtained.

第3図は上記の実施例の一つのn形エミツタ領
域を示す平面図である。第3図において、41は
n形エミツタ領域4の高不純物濃度の第1の領
域、明示のために交差斜線を施した42はn形エ
ミツタ領域4の低不純物濃度の第2の領域であ
る。ここでは、AGTOがBGTOを二つの部分に
分離している。
FIG. 3 is a plan view showing an n-type emitter region of one of the above embodiments. In FIG. 3, reference numeral 41 indicates a first region of high impurity concentration in the n-type emitter region 4, and reference numeral 42, indicated by cross hatching for clarity, indicates a second region of low impurity concentration in the n-type emitter region 4. Here, AGTO separates BGTO into two parts.

このように本実施例では、低濃度n形エミツタ
領域42の両側にこれを挟んで高濃度n形エミツ
タ領域41を配置したので、ターンオフ時の導通
領域への電流集中をなくして、つまりターンオフ
時の縮小導通領域を拡大して可制御陽極電流を増
大でき、しかもその製造工程が複雑になることも
ない。
In this way, in this embodiment, the high concentration n-type emitter regions 41 are arranged on both sides of the low concentration n-type emitter region 42, sandwiching the low concentration n-type emitter region 42, so that current concentration in the conduction region at the time of turn-off is eliminated. The controllable anode current can be increased by enlarging the reduced conduction area of the electrode, without complicating the manufacturing process.

以上詳述したように、この発明にかかるゲート
ターンオフサイリスタによれば、エミツタカソー
ド領域をその中央部に位置する低不純物濃度領域
とこの領域の両側にこれを挟んで位置する高不純
物濃度領域とから構成したので、ターンオフ時の
縮小導通領域が上記の高不純物濃度領域と低不純
物濃度領域との境界領域に形成されるため、縮小
導通領域が広くなり、可制御陽極電流が増大す
る。また高不純物濃度領域と低不純物濃度領域で
は不純物の濃度を変えているだけなので、製造工
程が複雑になることもない。
As detailed above, according to the gate turn-off thyristor according to the present invention, the emitter cathode region is divided into a low impurity concentration region located in the center and high impurity concentration regions located on both sides of this region. Since the reduced conduction region at turn-off is formed in the boundary region between the high impurity concentration region and the low impurity concentration region, the reduced conduction region becomes wider and the controllable anode current increases. Further, since the impurity concentration is simply changed between the high impurity concentration region and the low impurity concentration region, the manufacturing process does not become complicated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のGTOの素子の断面図、第2図
および第3図はこの発明によるGTOの一実施例
の素子の断面図および一つのn形エミツタ領域の
平面図である。 図において、1はn形ベース領域、2はp形エ
ミツタ領域、3はp形ベース領域、4はn形エミ
ツタ領域、41および42はそれぞれn形エミツ
タ領域4の第1の領域(高不純物濃度領域)およ
び第2の領域(低不純物濃度領域)、7はゲート
電極である。なお、図中同一符号はそれぞれ同一
または相当部分を示す。
FIG. 1 is a sectional view of a conventional GTO element, and FIGS. 2 and 3 are a sectional view of an embodiment of a GTO element according to the present invention and a plan view of one n-type emitter region. In the figure, 1 is an n-type base region, 2 is a p-type emitter region, 3 is a p-type base region, 4 is an n-type emitter region, 41 and 42 are the first regions of the n-type emitter region 4 (high impurity concentration region) and the second region (low impurity concentration region), 7 is a gate electrode. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 p形エミツタ領域上にn形ベース領域、p形
ベース領域およびn形エミツタ領域を順次形成
し、さらに該n形エミツタ領域を選択的に掘り込
み、上記p形ベース領域の露出表面にゲート電極
を形成してなるゲート・ターンオフサイリスタに
おいて 上記n形エミツタ領域を、その中央部に形成し
た低不純物濃度領域と、該領域の両側にこれと接
するよう形成した高不純物濃度領域とから構成し
たことを特徴とするゲート・ターンオフサイリス
タ。 2 上記n形エミツタ領域の高不純物濃度領域お
よび低不純物濃度領域の表面不純物濃度は、それ
ぞれ上記p形ベース領域の表面不純物濃度の100
倍以上、1〜100倍であることを特徴とする特許
請求の範囲第1項記載のゲート・ターンオフサイ
リスタ。
[Scope of Claims] 1. An n-type base region, a p-type base region, and an n-type emitter region are sequentially formed on the p-type emitter region, and the n-type emitter region is further selectively dug to form the p-type base region. In a gate turn-off thyristor in which a gate electrode is formed on the exposed surface of the n-type emitter region, a low impurity concentration region is formed in the center of the n-type emitter region, and a high impurity concentration region is formed on both sides of the region in contact with the n-type emitter region. A gate turn-off thyristor comprising: 2 The surface impurity concentrations of the high impurity concentration region and the low impurity concentration region of the n-type emitter region are 100% of the surface impurity concentration of the p-type base region, respectively.
2. The gate turn-off thyristor according to claim 1, wherein the gate turn-off thyristor is 1 to 100 times larger.
JP15025081A 1981-09-21 1981-09-21 Gate turn-off thyristor Granted JPS5850776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15025081A JPS5850776A (en) 1981-09-21 1981-09-21 Gate turn-off thyristor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15025081A JPS5850776A (en) 1981-09-21 1981-09-21 Gate turn-off thyristor

Publications (2)

Publication Number Publication Date
JPS5850776A JPS5850776A (en) 1983-03-25
JPS6362909B2 true JPS6362909B2 (en) 1988-12-05

Family

ID=15492832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15025081A Granted JPS5850776A (en) 1981-09-21 1981-09-21 Gate turn-off thyristor

Country Status (1)

Country Link
JP (1) JPS5850776A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4651189A (en) * 1983-12-19 1987-03-17 Hitachi, Ltd. Semiconductor device provided with electrically floating control electrode

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5386582A (en) * 1976-12-20 1978-07-31 Philips Nv Transistor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51112465U (en) * 1975-03-06 1976-09-11

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5386582A (en) * 1976-12-20 1978-07-31 Philips Nv Transistor

Also Published As

Publication number Publication date
JPS5850776A (en) 1983-03-25

Similar Documents

Publication Publication Date Title
US2964689A (en) Switching transistors
US4259683A (en) High switching speed P-N junction devices with recombination means centrally located in high resistivity layer
JPH0347593B2 (en)
US4617583A (en) Gate turn-off thyristor
US4611235A (en) Thyristor with turn-off FET
JP2950025B2 (en) Insulated gate bipolar transistor
JPH0624244B2 (en) Composite semiconductor device
JPH0465552B2 (en)
JPH049378B2 (en)
JPS6362909B2 (en)
JPS6153877B2 (en)
US4609933A (en) Gate turn-off thyristor having P+ gate and emitter
JP3144585B2 (en) Semiconductor device
JPS62177968A (en) Gate turn-off thyristor
JPS6258678A (en) Transistor
JPH0416443Y2 (en)
JP3244292B2 (en) Transistor
JPS6128224B2 (en)
JPS6252967A (en) Gto thyristor
JPS61150383A (en) Semiconductor device
JPS607393B2 (en) Gate turn-off thyristor
JPH07211895A (en) Conductivity modulation type field-effect transistor
JPS62141774A (en) Gate turn off (gto) thyristor
JPH10290006A (en) Semiconductor device
JPS621271A (en) Gate turn-off thyristor