JPS6361725B2 - - Google Patents

Info

Publication number
JPS6361725B2
JPS6361725B2 JP2328283A JP2328283A JPS6361725B2 JP S6361725 B2 JPS6361725 B2 JP S6361725B2 JP 2328283 A JP2328283 A JP 2328283A JP 2328283 A JP2328283 A JP 2328283A JP S6361725 B2 JPS6361725 B2 JP S6361725B2
Authority
JP
Japan
Prior art keywords
butyrolactone
gamma
conductive solid
solid composition
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2328283A
Other languages
Japanese (ja)
Other versions
JPS59149601A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP2328283A priority Critical patent/JPS59149601A/en
Publication of JPS59149601A publication Critical patent/JPS59149601A/en
Publication of JPS6361725B2 publication Critical patent/JPS6361725B2/ja
Granted legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Conductive Materials (AREA)
  • Primary Cells (AREA)

Description

【発明の詳細な説明】 本発明はイオン導電性固形体組成物に関する。
とくに、高分子が本来具有する優れた機械的性質
と、高いイオン導電性を併わせ有するイオン導電
性固形体組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to ionically conductive solid compositions.
In particular, it relates to an ionically conductive solid composition that has both the excellent mechanical properties inherently possessed by polymers and high ionic conductivity.

従来、イオン導電性材料としては(イ)電解質を水
または有機溶媒に溶解した電解質溶液や、(ロ)ベー
タ・アルミナβ−Al2O3、ヨウ化リチウム・アル
ミナLiI−Al2O3、ヨウ化銀ルビジウムRbAg4I5
化リチウムLi3Nなど無機物からなる固体電解質
材料などが知られている。
Conventionally, ion conductive materials include (a) an electrolyte solution in which an electrolyte is dissolved in water or an organic solvent, and (b) beta-alumina β-Al 2 O 3 , lithium iodide-alumina LiI-Al 2 O 3 , and iodine. Solid electrolyte materials made of inorganic substances such as silver rubidium RbAg 4 I 5 lithium nitride Li 3 N are known.

近年、電子部品は高性能・小型薄形化とともに
高信頼性が強く要求されており、これにともない
活発な材料開発が展開されている。これらの材料
には、高い性能ポテンシヤルはもちろんのこと、
優れた機械的な加工性、柔軟性および強度が要求
され、さらに、高信頼性の観点から固体もしくは
固形体の材料が強く要求されている。
In recent years, there has been a strong demand for electronic components to have high performance, small size, and thinness, as well as high reliability, and this has led to active material development. These materials not only have high performance potential, but also
Excellent mechanical workability, flexibility, and strength are required, and solid or solid materials are also strongly required from the viewpoint of high reliability.

前述した(イ)の電解質溶液は高いイオン導電性を
有するところから種々の電子部品に使用されてい
るが、材料に水または有機溶媒などの液体を用い
ているために、電子部品外部への漏液という問題
が常に存在し、この漏液により部品の性能劣化や
周辺部品の損傷を引き起す場合があり、部品とし
ての高い信頼性に欠けるものとなつている。また
流体のイオン導電性材料であるために機械的強度
がないため機械的加工性に劣り、部品も制限され
た形状となるなどの欠点を有する。
The electrolyte solution described in (a) above is used in various electronic components because it has high ionic conductivity, but because it uses liquids such as water or organic solvents, there is a risk of leakage to the outside of the electronic components. There is always the problem of liquid, and this liquid leakage may cause performance deterioration of the component or damage to surrounding components, making the component lacking in high reliability. Furthermore, since it is a fluid ion-conductive material, it lacks mechanical strength, resulting in poor mechanical workability, and the parts have drawbacks such as limited shapes.

一方、(ロ)の固体電解質材料は固体であるため高
信頼性の長寿命な電子部品に適合でき、かつ部品
の小型化および薄型化の要求に応じ、近年盛んに
開発されている。しかし、現状では室温における
イオン導電性が(イ)の電解質溶液のように高くない
ため、部品の使用条件が大きく制限される。その
ほか、固体電解質材料は高価格であつたり、任意
の形状に成形、成膜加工ができないという機械的
加工性が悪い欠点などを有していて、広く実用に
供されるまでに至つていない。
On the other hand, since the solid electrolyte material (b) is solid, it is suitable for highly reliable and long-life electronic components, and has been actively developed in recent years in response to demands for smaller and thinner components. However, at present, the ionic conductivity at room temperature is not as high as that of the electrolyte solution (a), which greatly limits the conditions under which the parts can be used. In addition, solid electrolyte materials have drawbacks such as high prices and poor mechanical workability, such as the inability to form into arbitrary shapes or form films, so they have not been put into widespread practical use. .

これらの従来のイオン導電性材料の欠点を改善
するために、(イ)と(ロ)の折裏の中間形態ともいえる
糊状あるいはゲル状にしたイオン導電性材料があ
る。しかし、糊状あるいはゲル状の材料ではあつ
ても、部品外部への漏液の危険性は完全に払拭で
きず、依然高信頼性という点に欠点が残る。また
機械的加工性に至つては、液体同様に機械的な強
度がないためにさほど改善されているとはいえな
い。
In order to improve the drawbacks of these conventional ion conductive materials, there are ion conductive materials in the form of paste or gel, which can be said to be an intermediate form between (a) and (b). However, even with paste-like or gel-like materials, the risk of liquid leakage to the outside of the component cannot be completely eliminated, and a drawback still remains in terms of high reliability. Furthermore, in terms of mechanical workability, it cannot be said that it has improved much because, like liquids, it lacks mechanical strength.

これに対して、発明者らは固形体材料、つまり
使用条件下では見掛け上固体状態を呈して液体の
ように流体の状態でない物体となるイオン導電性
固形体組成物を見出した。これは、有機高分子化
合物、有機溶媒、および電解質の3成分を主体と
するものである。しかも、固形体材料であるため
信頼性の面では糊状あるいはゲル状の材料よりも
十分に良好な材料といえる。
In contrast, the inventors have discovered a solid material, i.e., an ionically conductive solid composition that, under conditions of use, becomes an object that appears to be in a solid state but not in a fluid state like a liquid. This is mainly composed of three components: an organic polymer compound, an organic solvent, and an electrolyte. Moreover, since it is a solid material, it can be said that it is a material that is sufficiently better in terms of reliability than paste-like or gel-like materials.

しかし、その3成分の組み合せには非常に多数
の組み合せがあり、電子部品として実用に供しう
る条件を満たす組み合せには制約が生じる。例え
ば、イオン導電性固形体組成物で十分な機械的加
工性を有する場合には、そのイオン導電性が電解
質溶液よりかなり低く実用性にとぼしいという欠
点があり、また逆に十分なイオン導電性を有する
場合には、その機械的加工性が悪いという欠点を
有している。
However, there are a large number of combinations of these three components, and there are restrictions on the combinations that satisfy the conditions for practical use as electronic components. For example, if an ionic conductive solid composition has sufficient mechanical workability, it has the disadvantage that its ionic conductivity is considerably lower than that of an electrolyte solution, making it impractical; If it has, it has the disadvantage of poor mechanical workability.

本発明の目的はかかる従来欠点を除去し、より
高い機械的加工性とより高いイオン導電性を併有
するイオン導電性固形体組成物を提供することに
ある。
An object of the present invention is to eliminate such conventional drawbacks and to provide an ion conductive solid composition having both higher mechanical processability and higher ionic conductivity.

本発明によれば有機高分子化合物がポリ弗化ビ
ニリデン、有機溶媒がガンマーブチロラクトン、
電解質が過塩素酸リチウムからなることを特徴と
するイオン導電性固形体組成物が得られる。
According to the present invention, the organic polymer compound is polyvinylidene fluoride, the organic solvent is gamma-butyrolactone,
An ionically conductive solid composition characterized in that the electrolyte consists of lithium perchlorate is obtained.

一般的にイオン導電性固形体組成物のイオン導
電率と機械的加工性と強度は、含有する有機溶媒
と電解質の組成および濃度により左右される。以
上の観点から本発明に有効な上記組成物について
詳細な検討を行なつた結果、下記の組成および濃
度の範囲が特に良好な結果を示すことを見出し
た。
Generally, the ionic conductivity, mechanical workability, and strength of an ionically conductive solid composition are influenced by the composition and concentration of the organic solvent and electrolyte contained therein. As a result of detailed studies on the above compositions effective in the present invention from the above viewpoints, it has been found that the following composition and concentration ranges give particularly good results.

すなわち、ガンマーブチロラクトンの組成は10
〜50重量部であり、過塩素酸リチウムのガンマー
ブチロラクトンに対する濃度は1〜8mol/の
範囲であつた。
That is, the composition of gamma butyrolactone is 10
-50 parts by weight, and the concentration of lithium perchlorate relative to gamma-butyrolactone was in the range of 1 to 8 mol/.

以下、本発明を実施例にて説明する。 The present invention will be explained below with reference to Examples.

実施例 1 本実施例では、イオン導電性固形体組成物に含
まれるガンマーブチロラクトンの組成について記
述する。
Example 1 This example describes the composition of gamma-butyrolactone contained in an ionically conductive solid composition.

有機溶媒のガンマーブチロラクトン100mlに有
機高分子化合物のポリ弗化ビニリデン5grを加
え、温度120℃に加熱し、十分撹拌し溶解させた。
この溶液に10mlに得られたイオン導電性固形体組
成物のガンマーブチロラクトンに対する電解質濃
度が3mol/になるように、所定量の過塩素酸
リチウムを加え、温度100℃に加熱して撹拌、溶
解させて電解質溶液を調製した。この電解質溶液
を底面が水平な直径10cmのガラスシヤーレに流し
込んだのち、真空加熱乾燥機内に入れて温度140
℃、真空度300mmHgの減圧下で乾燥時間を適当に
制御してガンマーブチロラクトンを蒸発させ、所
定組成のイオン導電性固形体組成物を形成した。
以上の操作により残存したガンマーブチロラクト
ンに対する電解質濃度が3mol/、ガンマーブ
チロラクトンの組成が5〜60重量部、膜厚が0.1
〜0.2mmの均一な薄膜の試料が得られた。
5 grams of polyvinylidene fluoride, an organic polymer compound, was added to 100 ml of gamma-butyrolactone, an organic solvent, heated to a temperature of 120° C., and thoroughly stirred to dissolve.
To this solution, add a predetermined amount of lithium perchlorate so that the electrolyte concentration with respect to gamma butyrolactone in the obtained ionically conductive solid composition is 3 mol/10 ml, and stir and dissolve by heating to a temperature of 100°C. An electrolyte solution was prepared. After pouring this electrolyte solution into a glass shear dish with a horizontal bottom and a diameter of 10 cm, it was placed in a vacuum heating dryer and heated to a temperature of 140.
The gamma-butyrolactone was evaporated by controlling the drying time at a reduced pressure of 300 mmHg at a temperature of 300 mmHg to form an ion-conductive solid composition having a predetermined composition.
As a result of the above operations, the electrolyte concentration for the remaining gamma-butyrolactone is 3 mol/gamma-butyrolactone, the composition of gamma-butyrolactone is 5 to 60 parts by weight, and the film thickness is 0.1
A uniform thin film sample of ~0.2 mm was obtained.

次にこの試料を直径10mmの円板状に打ち抜き、
これを白金黒電極ではさみ、周波数1KHzの交流
で試料の電気抵抗値を測定し、この電気抵抗値と
試料の厚みとの面積より試料の導電率を算出し
た。これらの結果をまとめて第1図に本発明によ
るイオン導電性固形体組成物のガンマーブチロラ
クトンの組成比とイオン導電率の相関を示す。
Next, this sample was punched out into a disc shape with a diameter of 10 mm.
This was sandwiched between platinum black electrodes and the electrical resistance of the sample was measured using alternating current at a frequency of 1 KHz, and the electrical conductivity of the sample was calculated from the area between this electrical resistance and the thickness of the sample. These results are summarized in FIG. 1, which shows the correlation between the composition ratio of gamma-butyrolactone and the ionic conductivity of the ion-conductive solid composition according to the present invention.

第1図のようにイオン導電率はガンマーブチロ
ラクトンの組成比が増大するにつれて大きくな
る。しかし組成比が多くなるにつれて試料は機械
的強度を減少させ、固形体の状態から糊状に近い
ものとなり本発明の特徴を失なつてしまう。ま
た、組成比が低くなると高いイオン導電率が得ら
れず実用に供し得なくなる。したがつて、イオン
導電性固形体組成物のガンマーブチロラクトンの
組成比には実用的な範囲がある。本発明のイオン
導電性固形体組成物においてはガンマーブチロラ
クトンが10〜50重量部の範囲にあれば、機械的強
度および加工性に優れ、かつ高いイオン導電率を
併有する良好なイオン導電性材料が得られた。
As shown in FIG. 1, the ionic conductivity increases as the composition ratio of gamma-butyrolactone increases. However, as the composition ratio increases, the mechanical strength of the sample decreases, and the sample changes from a solid state to a paste-like state and loses the characteristics of the present invention. Moreover, if the composition ratio becomes low, high ionic conductivity cannot be obtained and it becomes impossible to put it into practical use. Therefore, the composition ratio of gamma-butyrolactone in the ionically conductive solid composition has a practical range. In the ion conductive solid composition of the present invention, if gamma butyrolactone is in the range of 10 to 50 parts by weight, a good ion conductive material having excellent mechanical strength and processability as well as high ionic conductivity can be obtained. Obtained.

実施例 2 本実施例では、イオン導電性固形体組成物中の
ガンマーブチロラクトンに対する過塩素酸リチウ
ムの濃度について記述する。ガンマーブチロラク
トン100mlにポリ弗化ビニリデン5grを加え、
温度120℃に加熱し、十分撹拌し溶解させた。こ
の溶液の10mlに対して、形成されたイオン導電性
固形体組成物の過塩素酸リチウムの濃度が0.5〜
10mol/になるように、所定量の過塩素酸リチ
ウムを加え入れたのち、温度100℃に加熱して撹
拌、溶解させて電解質溶液を得た。以下の作製方
法は実施例1に準じて行なう。以上の操作により
残存したガンマーブチロラクトンが約30重量部、
過塩素酸リチウムの濃度が0.5〜10mol/、膜
厚が約1.15mmの均一な薄膜の試料が得られた。
Example 2 This example describes the concentration of lithium perchlorate relative to gamma-butyrolactone in an ionically conductive solid composition. Add 5g of polyvinylidene fluoride to 100ml of gamma butyrolactone,
The mixture was heated to a temperature of 120°C and sufficiently stirred to dissolve. For 10ml of this solution, the concentration of lithium perchlorate in the formed ionically conductive solid composition is 0.5~
After adding a predetermined amount of lithium perchlorate to the solution to give a concentration of 10 mol/liter, the mixture was heated to 100° C., stirred, and dissolved to obtain an electrolyte solution. The following manufacturing method is performed according to Example 1. Approximately 30 parts by weight of gamma butyrolactone remained after the above operations.
A uniform thin film sample with a lithium perchlorate concentration of 0.5 to 10 mol/and a film thickness of about 1.15 mm was obtained.

この試料を用いて実施例1と同様に導電率を算
出し、第2図に本発明によるイオン導電性固形体
組成物中の過塩素酸リチウムの濃度とイオン導電
率の相関を示す。
Using this sample, the conductivity was calculated in the same manner as in Example 1, and FIG. 2 shows the correlation between the concentration of lithium perchlorate in the ion conductive solid composition according to the present invention and the ionic conductivity.

第2図のようにイオン導電率は過塩素酸リチウ
ムの濃度が増大するにつれて大きくなる。しか
し、濃度が大きくなるにつれて試料は機械的強度
と加工性が劣化し、さらに大きくなると過塩素酸
リチウムがガンマーブチロラクトンに対して過飽
和となつて析出しイオン導電率も低下してしま
う。また、濃度が低くなると高いイオン導電率が
得られず実用に供し得なくなる。したがつてガン
マーブチロラクトンの組成比と同様に過塩素酸リ
チウムの濃度にも実用的な範囲がある。本発明の
イオン導電性固形体組成物においては、過塩素酸
リチウムはガンマーブチロラクトンに対して1〜
8mol/の濃度範囲にあれば、本実施例のよう
な薄膜であつても十分な機械的強度および加工性
に優れ、かつ高いイオン導電率をも併有する良好
なイオン導電性固形体組成物が得られた。
As shown in FIG. 2, the ionic conductivity increases as the concentration of lithium perchlorate increases. However, as the concentration increases, the mechanical strength and workability of the sample deteriorate, and as the concentration increases further, lithium perchlorate becomes supersaturated with respect to gamma-butyrolactone and precipitates, resulting in a decrease in ionic conductivity. Further, if the concentration is low, high ionic conductivity cannot be obtained and it becomes impossible to put it into practical use. Therefore, there is a practical range for the concentration of lithium perchlorate as well as the composition ratio of gamma-butyrolactone. In the ion conductive solid composition of the present invention, lithium perchlorate is 1 to 1 to gamma butyrolactone.
If the concentration is in the 8 mol/concentration range, a good ionically conductive solid composition with sufficient mechanical strength and processability and high ionic conductivity can be obtained even in a thin film like the one in this example. Obtained.

なお、本実施例1、2においては、イオン導電
性固形体組成物の作製およびイオン導電率の測定
はアルゴン不活性ガス雰囲気中で行つた。
In Examples 1 and 2, the preparation of the ion conductive solid composition and the measurement of the ion conductivity were performed in an argon inert gas atmosphere.

本発明によるイオン導電性固形体組成物は、そ
の優れた機械的加工性により、プレスやロールな
どの膜形成の技術を用いて数ミクロンの非常に薄
い膜や大面積の膜を得ることができた。また、こ
れらの薄膜化や大面積化と高いイオン導電性によ
り、電池、電解コンデンサ、センサ、エレクトロ
クロミツク素子、さらに時限素子や積分記憶素子
などの種々の電子部品のイオン導電性材料として
実用に供し得るものである。
Due to its excellent mechanical processability, the ion conductive solid composition according to the present invention can be used to form very thin films of several microns or large area films using film forming techniques such as pressing or rolling. Ta. In addition, due to their thinner films, larger areas, and high ionic conductivity, they can be put to practical use as ion conductive materials for various electronic components such as batteries, electrolytic capacitors, sensors, electrochromic devices, and time-limiting devices and integral memory devices. It is something that can be provided.

以上、本発明によれば優れた機械的な加工性と
強度および高いイオン導電性を併有するイオン導
電性固形体組成物を得ることができる。
As described above, according to the present invention, it is possible to obtain an ion-conductive solid composition that has excellent mechanical workability, strength, and high ionic conductivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるイオン導電性固形体組成
物のイオン導電率σiと有機溶媒のガンマーブチロ
ラクトンの組成比(重量%)との相関図、第2図
はイオン導電率σiと電解質過塩素酸リチウムのガ
ンマーブチロラクトンに対する濃度(mol/)
との相関図である。
Figure 1 is a correlation diagram between the ionic conductivity σ i of the ion conductive solid composition according to the present invention and the composition ratio (wt%) of gamma-butyrolactone as an organic solvent, and Figure 2 is a correlation diagram between the ionic conductivity σ i and the electrolyte excess. Concentration of lithium chlorate to gamma-butyrolactone (mol/)
It is a correlation diagram with.

Claims (1)

【特許請求の範囲】 1 ポリ弗化ビニリデン、ガンマーブチロラクト
ン、および過塩素酸リチウムからなることを特徴
とするイオン導電性固形体組成物。 2 前記ガンマーブチロラクトンの組成が10〜50
重量部であることを特徴とする特許請求の範囲第
1項記載のイオン導電性固形体組成物。 3 前記ガンマーブチロラクトンに対する前記過
塩素酸リチウムの濃度が1〜8mol/であるこ
とを特徴とする特許請求の範囲第1項記載のイオ
ン導電性固形体組成物。
[Scope of Claims] 1. An ionically conductive solid composition comprising polyvinylidene fluoride, gamma butyrolactone, and lithium perchlorate. 2 The composition of the gamma butyrolactone is 10 to 50
The ion conductive solid composition according to claim 1, wherein the ion conductive solid composition is in parts by weight. 3. The ionically conductive solid composition according to claim 1, wherein the concentration of the lithium perchlorate relative to the gamma-butyrolactone is 1 to 8 mol/.
JP2328283A 1983-02-15 1983-02-15 Ion conductive solid composition Granted JPS59149601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2328283A JPS59149601A (en) 1983-02-15 1983-02-15 Ion conductive solid composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2328283A JPS59149601A (en) 1983-02-15 1983-02-15 Ion conductive solid composition

Publications (2)

Publication Number Publication Date
JPS59149601A JPS59149601A (en) 1984-08-27
JPS6361725B2 true JPS6361725B2 (en) 1988-11-30

Family

ID=12106241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2328283A Granted JPS59149601A (en) 1983-02-15 1983-02-15 Ion conductive solid composition

Country Status (1)

Country Link
JP (1) JPS59149601A (en)

Also Published As

Publication number Publication date
JPS59149601A (en) 1984-08-27

Similar Documents

Publication Publication Date Title
Feuillade et al. Ion-conductive macromolecular gels and membranes for solid lithium cells
US5589295A (en) Thin film polymeric gel electrolytes
US7790323B2 (en) Polymer electrolyte, half-cell for electrochemical measurements, as well as the use thereof
US4414607A (en) Solid state electric double layer capacitor
JPS59117070A (en) Nonaqueous battery using cathode with boron containing surface film
DK170410B1 (en) Fluoride ion-selective electrode, its preparation and membrane used with ternary superconductor
JPH0367304B2 (en)
JPS592856B2 (en) Electrode for measuring the potential difference of halide ions at extremely low concentrations and its manufacturing method
JP3098248B2 (en) Ion conductor or electrolyte for batteries
JPS60195877A (en) Positive electrode for cell
JPH1050141A (en) Highpolymer electrolyte and electrochemical device
US4239350A (en) Electrochromic display device
JP2725786B2 (en) Sheet-like electrode, method of manufacturing the same, and secondary battery using the same
FI96141C (en) Ion-selective electrode and method for manufacturing an ion-selective electrode
KR20030077453A (en) Gel electrolyte, process for producing the same, and use thereof
JPS6361725B2 (en)
JPH04238815A (en) Fluoride ion conductor and electrochemical element using the same
NL8004478A (en) ELECTROCHEMICAL CELL.
US20020038762A1 (en) Solid-state ion selective electrodes and methods of producing the same
JPS6123947B2 (en)
JPS6123944B2 (en)
JP4024097B2 (en) Reference electrode and electrolytic cell including the same
JPS58128677A (en) Chemical battery and method of producing same
JPS60201244A (en) Moisture sensor
GB2157066A (en) Solid state electrochemical devices