JPS59149601A - Ion conductive solid composition - Google Patents

Ion conductive solid composition

Info

Publication number
JPS59149601A
JPS59149601A JP2328283A JP2328283A JPS59149601A JP S59149601 A JPS59149601 A JP S59149601A JP 2328283 A JP2328283 A JP 2328283A JP 2328283 A JP2328283 A JP 2328283A JP S59149601 A JPS59149601 A JP S59149601A
Authority
JP
Japan
Prior art keywords
butyrolactone
gamma
composition
solid
ionic conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2328283A
Other languages
Japanese (ja)
Other versions
JPS6361725B2 (en
Inventor
大井 正史
勝大 溝口
英俊 土田
功 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP2328283A priority Critical patent/JPS59149601A/en
Publication of JPS59149601A publication Critical patent/JPS59149601A/en
Publication of JPS6361725B2 publication Critical patent/JPS6361725B2/ja
Granted legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Conductive Materials (AREA)
  • Primary Cells (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はイオン導ηr、 1sト固形体組成物に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ion conducting ηr, 1st solid composition.

とくに、高分子が本来具有する優れた機械的性質と、高
いイオン導電性を併わせ有するイオン導電。
In particular, ionic conductivity, which combines the excellent mechanical properties inherently possessed by polymers and high ionic conductivity.

性固形体組成物に関する。The present invention relates to a solid composition.

従来、イオン導電性材料としては(イ)電解質を水また
は吻機溶媒に溶解した電解質溶液や、仲)ベータ・アル
ミナβ−AI、0..ヨウ化リチウム・アルミナL i
 I −A40,1 、ヨウ化銀ルビジウムRbAP4
Ia窒化リチウムLi3Nなど態様物からなる固体電解
儀拐オ・Fなどが知られている。
Conventionally, ion conductive materials include (a) an electrolyte solution in which an electrolyte is dissolved in water or an atomizing solvent, and (b) beta/alumina β-AI, 0. .. Lithium iodide/alumina Li
I-A40,1, silver rubidium iodide RbAP4
Solid electrolyte materials such as Ia lithium nitride Li3N and the like are known.

近年、電子部品は高性能・小型薄形化とともに高信頼性
が強く要求されておシ、これにともない活発な材料開発
が展開されている。これらの材料には、高い性能ポテン
シャルはもちろんのこと、優れた機械的な加工性、柔軟
性および強度が要求され、さらに、高信頼性の観点から
固体もしくは固形体の材料が強く要求されている。
In recent years, there has been a strong demand for high reliability in electronic components as well as high performance, small size and thinness, and this has led to active material development. These materials require not only high performance potential but also excellent mechanical workability, flexibility, and strength, and solid or solid materials are strongly required from the viewpoint of high reliability. .

前ソ1さした(イ)の電解a溶液は高いイオン導電性を
有するところから種々の電子部品に使用されているが、
材料に水または有機溶媒などの液体を用いているために
、電子部品外部への漏液という問題が常に存在し、この
漏液により部品の性能劣化や周辺部品の損傷を引き起す
場合があり、部品としての高い信頼性に欠けるものとな
っている。また流体のイオン導電性材料であるために機
械的強度がないため枦械的加工性に劣り、部品も制限さ
れた形状となるなどの欠点を有する。
The electrolytic a solution shown in (a) in Figure 1 is used in various electronic components because of its high ionic conductivity.
Because liquids such as water or organic solvents are used as materials, there is always the problem of liquid leaking to the outside of electronic components, and this leakage may cause performance deterioration of the components or damage to surrounding components. It lacks high reliability as a component. Furthermore, since it is a fluid ion-conductive material, it lacks mechanical strength, resulting in poor mechanical workability, and the parts have drawbacks such as limited shapes.

一方、(ロ)の固体電解質材料は固体であるため高信頼
性の長寿命な電子部品に適合でき、かつ部品の小型化お
よび薄型化の要求に応じ、近年盛んに開発されている。
On the other hand, since the solid electrolyte material (b) is solid, it is suitable for highly reliable and long-life electronic components, and has been actively developed in recent years in response to demands for smaller and thinner components.

しかし、現状では宰温におけるイオン導電性が(イ)の
電解個溶液のように高くないため、部品の使用条件が大
きく制限される。そのほか、固体電解質材料は高価格で
あったシ、任意の形状に成形、成膜加]二ができかいと
いう機械的加工性が悪い欠点などを有していて、広く実
用に供されるまでに至っていない。
However, at present, the ionic conductivity at high temperature is not as high as that of the electrolytic solid solution (a), so the conditions under which the parts can be used are greatly restricted. In addition, solid electrolyte materials had disadvantages such as high cost and poor mechanical workability, such as being difficult to form into any shape or form a film. Not yet reached.

これらの従来のイオン導電性拐料の欠点を改善するため
に、(イ)と(ロ)の折ゑトの中間形態ともいえる糊状
あるいはゲル状にしたイオン導電性材料がある。しかし
、糊状あるいけゲル状の相料ではあっても、部品外部へ
の漏液の危険性は完全に払拭できず、依然高信頼性とい
う点に欠点が残る。また機械的加工性に至っては、液体
同様に機械的な強度がないためにさほど改善されている
とはいえない。
In order to improve the drawbacks of these conventional ion conductive materials, there are ion conductive materials in the form of paste or gel, which can be said to be an intermediate form between (a) and (b). However, even with a paste-like or gel-like phase material, the risk of liquid leakage to the outside of the component cannot be completely eliminated, and a drawback still remains in terms of high reliability. Furthermore, in terms of mechanical workability, it cannot be said that it has improved much because, like liquids, it lacks mechanical strength.

これに対して、発明者らは固形体拐料、つまシ使用条件
下では見掛は上面体状態を呈して液体のように流体の状
態でない物体となるイオン導電性固形状組成物を見出し
た。これは、有機高分子化合物、有機溶媒、および電解
質の3成分を主体とするものである。しかも、固形体拐
料であるため信頼性の面では糊状あるいはゲル状の拐料
よりも十分に良好な材料といえる。
In contrast, the inventors have discovered an ion-conductive solid composition that, under the conditions of use as a solid filler, appears to be in a top-hedral state and becomes an object that is not in a fluid state like a liquid. . This is mainly composed of three components: an organic polymer compound, an organic solvent, and an electrolyte. Moreover, since it is a solid material, it can be said that it is a material that is sufficiently better than paste-like or gel-like materials in terms of reliability.

しかし、その3成分の組み合せには非常に多数の組み合
せ示アリ、電子部品として実用に供しうる条件を満たす
縮み合せには制約が生じる。例えば、イオン導電性円形
体組成物で十分な機械的加工性を有する場合には、その
イオン導電性が電解質溶液よ−りかなシ低く実用性にと
tgしいという欠点がおplまた逆に十分なイオン導電
性を有する場合には、その機械的加工性が悪いという欠
点を有している。
However, there are a large number of possible combinations of these three components, and there are restrictions on the combinations that meet the conditions for practical use as electronic components. For example, if an ionically conductive circular body composition has sufficient mechanical workability, it may have the disadvantage that its ionic conductivity is much lower than that of an electrolyte solution, making it impractical for practical use. However, when it has high ionic conductivity, it has the disadvantage of poor mechanical workability.

本発明の目的はかかる従来欠点を除去し、より高い機械
的加工性とより高いイオン導電性を併有するイオン導電
性円形体組成物を提供することにある。
The object of the present invention is to eliminate such conventional drawbacks and to provide an ionically conductive circular body composition that has both higher mechanical workability and higher ionic conductivity.

本発明によれば有機高分子化合物がポリ弗化ビニリデン
、有機溶媒がガンマ−ブチロラクトン。
According to the present invention, the organic polymer compound is polyvinylidene fluoride, and the organic solvent is gamma-butyrolactone.

電力・r質が過塩素酸リチウムからなることを特徴とす
るイオン析箪性固形体組成物が得られる。
An ion-precipitable solid composition is obtained in which the power/resistance is comprised of lithium perchlorate.

一般的にイオン導電性円形体組成物のイオン導電率と4
火椋的加工性と強度は、自治する有機溶媒と111.解
質の組成および濃度によシ左右される。以上の観点から
本発明に不動な上目[2絹放物について詳細な検討を行
なった結果、下記の組成および濃IJ1の範囲が11肖
に良好な結果を示すことを見出した。
In general, the ionic conductivity of the ionic conductive circular body composition and 4
The processability and strength of the firewood are determined by the organic solvent and the 111. Depends on solute composition and concentration. From the above points of view, as a result of a detailed study of the silk paraboloids that are essential to the present invention, it has been found that the following composition and range of concentrated IJ1 give excellent results in 11 cases.

すなわち、ガンマ−ブチロラクトンの組成は1.0〜5
0重量部でおり、過塩素酸リチウムのガンマ−ブチロラ
クトンに対するm>度はJ〜8mol/lの範囲であっ
た。
That is, the composition of gamma-butyrolactone is 1.0 to 5.
The m> degree of lithium perchlorate relative to gamma-butyrolactone was in the range of J to 8 mol/l.

以下、本発明を実〃1q例にて説、明する。Hereinafter, the present invention will be explained and explained using 1q examples.

〔実施例1〕 本実施例では、イオン導電性固形体紹成物に含まれるガ
ンマ−ブチロラクトンの組成について記述する。
[Example 1] In this example, the composition of gamma-butyrolactone contained in the ionically conductive solid composition will be described.

有機溶媒のガンマ−ブチロラクトン100m1に有機高
分子化合物のポリ弗化ビニリデン55’r  を加え、
温度120°0に加熱し、十分捜拌し溶解させた。この
溶液の10m1K得られたイオン導電性円形体組成物の
ガンマ−ブチロラクトンに対する電解質濃度が3mo7
/n になるように、所定域の過塩素酸リチウムを加え
、温度100”Oに加熱して槽拌、溶解させて電解制溶
液を調製した。この電解力溶液を底面が水平な直径1o
鑞のガラスシャーレに流し込んだのち、真空加熱乾燥機
内に入れて温度140°0.真空度300mm)iyo
減J”k V’ テ乾燥時fglを適描に開側1してガ
ンマ−ブチロラクトンを蒸発させ、所定組成のイオン導
電性固形体絹成物を形成した。以上の操作により残存し
たガンマ−ブチロラクトンに対する電解質濃度が3mo
!3/11.ガンマ−ブチロラクトンの組成が5〜60
重゛M部、膜ノ9が0.1〜Q、”;l mmの均一な
薄膜の試料が得られた。
Add 55'r of polyvinylidene fluoride, an organic polymer compound, to 100 ml of gamma-butyrolactone, an organic solvent,
The mixture was heated to a temperature of 120°0 and sufficiently stirred to dissolve. The electrolyte concentration for gamma-butyrolactone in the obtained ionically conductive circular body composition was 3mo7 of this solution.
/n, a predetermined amount of lithium perchlorate was added, heated to a temperature of 100"O, stirred in the tank, and dissolved to prepare an electrolytic solution. This electrolytic solution was poured into a 1o diameter diameter plate with a horizontal bottom.
After pouring it into a tinted glass petri dish, it was placed in a vacuum heating dryer and heated to a temperature of 140°0. Vacuum degree 300mm)iyo
When drying, gamma-butyrolactone was evaporated by opening fgl to the desired side to form an ion-conductive solid silk composition with a predetermined composition.The above operations removed the remaining gamma-butyrolactone. The electrolyte concentration for
! 3/11. Gamma-butyrolactone composition is 5-60
A uniform thin film sample with a thickness of 0.1 to 1 mm was obtained in the M portion of the film.

次にこの試料を直径10mmの円板状に打ち抜き、これ
を白金黒電極ではさみ、周波数IKHzΩ交流で試料の
電気抵抗値を測定し、この電気抵抗値と試料の厚みとの
面積よQ試料の導電率を算出した。
Next, punch out this sample into a disk shape with a diameter of 10 mm, sandwich it between platinum black electrodes, measure the electrical resistance value of the sample at a frequency of IKHzΩ AC, and calculate the area between this electrical resistance value and the thickness of the sample as Q of the sample. The conductivity was calculated.

これらの結果を1とめて第1図に本発明によるイオン導
電性円形体組成物のガンマ−ブチロラクトンの組成比と
イオン導電率の相関を示す。
Based on these results, FIG. 1 shows the correlation between the composition ratio of gamma-butyrolactone and the ionic conductivity of the ionically conductive circular body composition according to the present invention.

釘′41図のようにイオン導電率はガンマ−ブチロラク
トンの組成比が増大するにつれて大きくなる。
As shown in Figure 41, the ionic conductivity increases as the composition ratio of gamma-butyrolactone increases.

しかし組成比が多くなるにつれて試料は機械的強度を減
少させ、固形体の状態から糊状に近いものとなり本発明
の特徴を失なってしまう。また、組成比が低くなると高
いイオン導電率が得られず実用に供し得なくなる。した
がって、イオン導電性円形体組成物のガンマ−ブチロラ
クトンの組成比には実用的な範囲がある。本発明のイオ
ン導電性固形体絹成物においてはガンマ−ブチロラクト
ンが10〜50重1部の範囲にあれば、機械的強度およ
び加工性に優れ、かつ高いイオン導電率を併有する良好
なイオン導電性材料が得られた。
However, as the composition ratio increases, the mechanical strength of the sample decreases, and the sample changes from a solid state to a paste-like state and loses the characteristics of the present invention. Moreover, if the composition ratio becomes low, high ionic conductivity cannot be obtained and it becomes impossible to put it into practical use. Therefore, the composition ratio of gamma-butyrolactone in the ionically conductive circular body composition has a practical range. In the ion conductive solid silk composition of the present invention, if gamma-butyrolactone is in the range of 10 to 50 parts by weight, it has excellent mechanical strength and processability, and has good ionic conductivity with high ionic conductivity. A sterile material was obtained.

〔実施例2〕 本実施例では、イオン導電性固形体絹成物中のガンマ−
ブチロラクトンに対する過塩素酸リチウムの濃度につい
て記述する。ガンマ−ブチロラクトン100r+Jにポ
リ弗化ビニリデン5Pr を加え、温度1.20°0で
加熱し、十分攪拌し溶解させた。この溶液の10m1に
対して、形成されたイオン導電性円形体組成物中の過塩
素酸リチウムの濃度が0.5〜10mol/lになるよ
うに、所定音の過塩素酸リチウムを加え入れたのち、温
度100°Cに加熱して攪拌、溶解させて電解質溶液を
得た。以下の作製方法は実施例1に準じて行なう。以上
の操作によ勺残存したガンマ−ブチロラクトンが約30
重量部、過塩素酸リチウムの濃度が0.5〜101TI
 Ol/11 +膜厚が約0.15mmの均一な薄膜の
試料が得られた。
[Example 2] In this example, gamma in an ionically conductive solid silk composition was
The concentration of lithium perchlorate relative to butyrolactone will be described. Polyvinylidene fluoride 5Pr was added to gamma-butyrolactone 100r+J, heated at a temperature of 1.20°0, and sufficiently stirred to dissolve. A predetermined amount of lithium perchlorate was added to 10 ml of this solution so that the concentration of lithium perchlorate in the formed ion conductive circular body composition was 0.5 to 10 mol/l. Thereafter, the mixture was heated to 100°C, stirred, and dissolved to obtain an electrolyte solution. The following manufacturing method is performed according to Example 1. Approximately 30 gamma-butyrolactone remained after the above operation.
Part by weight, concentration of lithium perchlorate is 0.5-101TI
A uniform thin film sample with a film thickness of about 0.15 mm was obtained.

この試料を用いて実施例1と同様に導電率を算出し、第
2図に本発明によるイオン導電性円形体組成物中の過塩
素酸リチウムの濃度とイオン導電率の相関を示す。
Using this sample, the conductivity was calculated in the same manner as in Example 1, and FIG. 2 shows the correlation between the concentration of lithium perchlorate in the ion conductive circular body composition according to the present invention and the ionic conductivity.

第2図のようにイオン導電率は過塩素酸リチウムの濃度
が増大するにつれて大きくなる。しかし、濃度が大きく
なるにつれて試料はぜ、(械的強度と加工性が劣化し、
さらに大きくなると過塩素酸リチウムがガンマ−ブチロ
ラクトンに対して1問飽和となって析出しイオン導電率
も低下してしまう。また、濃度が低くなると高いイオン
梼電率が得られず実用に供し得なくなる。したがってガ
ンマ−ブチロラクトンの組成比と同材に過塩素酸リチウ
ムの濃度にも実用的な範囲がある。本発明のイオン唇電
性固形体絹成物においては、過塩素酸リチウムはガンマ
−ブチロラクトンに対して1〜8 m o 13/eの
濃度範囲にあれば、本実施例のような薄膜であっても十
分な機砿的強度および加工性に優れ、かつ高いイオン導
電率をも併有する良好なイオン香車1性固形体組成鉋1
がイ<(られた。
As shown in FIG. 2, the ionic conductivity increases as the concentration of lithium perchlorate increases. However, as the concentration increases, the sample deteriorates (mechanical strength and workability deteriorate,
If it becomes even larger, lithium perchlorate becomes saturated with respect to gamma-butyrolactone and precipitates, resulting in a decrease in ionic conductivity. Moreover, if the concentration becomes low, a high ionic charging rate cannot be obtained and it becomes impossible to put it into practical use. Therefore, there is a practical range for the composition ratio of gamma-butyrolactone and the concentration of lithium perchlorate in the same material. In the ionic lip-electrostatic solid silk composition of the present invention, if the concentration of lithium perchlorate is in the range of 1 to 8 m o 13/e relative to gamma-butyrolactone, the thin film as in this example can be obtained. A plane with a good ion-scented solid body composition that has sufficient mechanical strength and workability, and also has high ionic conductivity.
Gai<(was.

なお、本実施5例1,2においては、イオン導電性円形
体組成物の作製およびイオン導電率の測定はアルゴン不
?IG性ガス雰囲気中で行った。
In Examples 1 and 2 of the present Example 5, the preparation of the ion conductive circular body composition and the measurement of the ion conductivity were carried out without argon. The test was carried out in an IG gas atmosphere.

本発明によるイオン導■L性固形体紹成物は、その優れ
た機械的加工性によシ、プレスやロールなどの膜形成の
技術を用いて数ミクロンの非常に薄い膜や大面積の膜を
得ることができた。また、これらの薄膜化や大面積化と
高いイオン導電性により、N&、 電解コンデンサ、セ
ンサ、エレクトロクロ・ミック素子、さらに時限素子や
積分記憶素子などの種々の電子部品のイオン導彫、性利
別として実用に供し得るものである。
Due to its excellent mechanical workability, the ion-conducting L solid material composition of the present invention can be used to form very thin films of several microns or large area films using film forming techniques such as presses and rolls. I was able to get In addition, these thinner films, larger areas, and high ion conductivity have made it possible to improve ion conductivity and performance in various electronic components such as N&, electrolytic capacitors, sensors, electrochromic devices, as well as timing devices and integral memory devices. Otherwise, it can be put to practical use.

以上、本発明によれば優れた機械的な加工性と強度およ
び窩いイオン導電性を併治するイオン導電性円形体組成
物を得ることができる。
As described above, according to the present invention, it is possible to obtain an ion conductive circular body composition that has excellent mechanical workability, strength, and hollow ion conductivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるイオン導電性円形体組成物のイオ
ン導電率ケ・ と有機溶媒のガンマ−ブチ■ ロラクトンの組成比(重量%)との相[す、1図、第2
図はイオン導電率f1  と電解質過塩素酸リチウムの
ガンマ−ブチロラクトンに対する濃度(m o l/l
)との相関シ1である。 代理人 弁理士  内 原   首、゛)第1閉 力゛ン7−グヲソしツクトン69系比八)L庫量式ム)
x=)2閉 0  246Bi。
Figure 1 shows the relationship between the ionic conductivity of the ionically conductive circular body composition according to the present invention and the composition ratio (wt%) of the organic solvent gamma-butyrolactone.
The figure shows the ionic conductivity f1 and the concentration of electrolyte lithium perchlorate relative to gamma-butyrolactone (mol/l
). Agent Patent Attorney Uchihara Kumi, ゛) 1st closing force 7-Guososhitsukton 69 series 8) L stock amount formula M)
x=)2closed0 246Bi.

Claims (3)

【特許請求の範囲】[Claims] (1)  ポリ弗化ビニリデン、ガンマ−ブチロラクト
ン、および過」篇素酢リチウムからなることを特徴とす
るイオン香箱、性固形体絹成物。
(1) An ionic barrel, solid silk composition comprising polyvinylidene fluoride, gamma-butyrolactone, and lithium peroxide.
(2)前記ガンマ−ブチロラクトンの組成が10〜50
重量部であることを特徴とする特¥f請求の範囲第1項
記載のイオン六電性固形体組成物。
(2) The composition of the gamma-butyrolactone is 10 to 50
The ionic hexaelectric solid composition according to claim 1, characterized in that the amount is parts by weight.
(3)前記ガンマ−ブチロラクトンに対する前記溝」幅
素酸リチウムの濃度が1〜8molJ/13であること
を特徴とする特h′1−請求の範囲81!1項記載のイ
オン導電性固形体絹成物。
(3) The ionic conductive solid silk according to claim 81!1, characterized in that the concentration of lithium oxide in the width of the groove for the gamma-butyrolactone is 1 to 8 molJ/13. A product.
JP2328283A 1983-02-15 1983-02-15 Ion conductive solid composition Granted JPS59149601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2328283A JPS59149601A (en) 1983-02-15 1983-02-15 Ion conductive solid composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2328283A JPS59149601A (en) 1983-02-15 1983-02-15 Ion conductive solid composition

Publications (2)

Publication Number Publication Date
JPS59149601A true JPS59149601A (en) 1984-08-27
JPS6361725B2 JPS6361725B2 (en) 1988-11-30

Family

ID=12106241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2328283A Granted JPS59149601A (en) 1983-02-15 1983-02-15 Ion conductive solid composition

Country Status (1)

Country Link
JP (1) JPS59149601A (en)

Also Published As

Publication number Publication date
JPS6361725B2 (en) 1988-11-30

Similar Documents

Publication Publication Date Title
US5691080A (en) Method of preparing thin film polymeric gel electrolytes
EP0044427B1 (en) Solid state electric double layer capacitor
US7790323B2 (en) Polymer electrolyte, half-cell for electrochemical measurements, as well as the use thereof
EP0708452B1 (en) Ion-conductive polymer electrolyte, method for producing the electrolyte and capacitors using the electrolyte
Mishra et al. Protic ionic liquid-based gel polymer electrolyte: structural and ion transport studies and its application in proton battery
TWI381406B (en) Electrolyte and electric double layer capacitors for electric double layer capacitors
JPS592856B2 (en) Electrode for measuring the potential difference of halide ions at extremely low concentrations and its manufacturing method
JP3098248B2 (en) Ion conductor or electrolyte for batteries
JPH1050141A (en) Highpolymer electrolyte and electrochemical device
JPS60195877A (en) Positive electrode for cell
US20070228507A1 (en) Electric double layer capacitor
JPS59149601A (en) Ion conductive solid composition
JP2760090B2 (en) Solid electrolyte
JPS60217263A (en) Ionic electrically conductive compound
US5526224A (en) Ion-conductive polymer electrolyte and electrolytic capacitor using the same
US20020038762A1 (en) Solid-state ion selective electrodes and methods of producing the same
Rehm et al. An all solid-state reference electrode based on a potassium chloride doped vinyl ester resin
JPS6123947B2 (en)
JPS6123944B2 (en)
JP2021111632A (en) Solid electrolyte and method for producing solid electrolyte
JP2004045279A (en) Reference electrode and electrolytic cell having the same
JPS59230058A (en) Ionic conductive solid composition
JPH01304719A (en) Electric double layer capacitor
JPS5897650A (en) Humidity sensor
JPS6123946B2 (en)