JPS6360573A - Manufacture of light-emitting device - Google Patents

Manufacture of light-emitting device

Info

Publication number
JPS6360573A
JPS6360573A JP61205687A JP20568786A JPS6360573A JP S6360573 A JPS6360573 A JP S6360573A JP 61205687 A JP61205687 A JP 61205687A JP 20568786 A JP20568786 A JP 20568786A JP S6360573 A JPS6360573 A JP S6360573A
Authority
JP
Japan
Prior art keywords
resistance
single crystal
film
type
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61205687A
Other languages
Japanese (ja)
Inventor
Naoyuki Ito
直行 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP61205687A priority Critical patent/JPS6360573A/en
Publication of JPS6360573A publication Critical patent/JPS6360573A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PURPOSE:To mass-produce light-emitting devices displaying pure band range emission by a method wherein a low-resistance n-type single crystal thin-film and a non-doped high-resistance single crystal thin-film are each grown onto a single crystal substrate in an epitaxial manner, and a p-type dopant is added to the high-resistance thin-film and annealed and activated. CONSTITUTION:A low-resistance n-type single crystal thin-film 2 is grown onto a single crystal substrate 1 in an epitaxial manner, and a non-doped high- resistance single crystal thin-film 3 is grown in the epitaxial manner. A p-type dopant is added to the high-resistance thin-film 3 by using an ion implantation method, and the added dopant is activated through annealing, thus forming an excellent p-n junction. Accordingly, ohmic contacts 6 and 7 are shaped, a lead is lead out, and voltage is applied in the forward direction, thus acquiring pure band range emission while largely improving mass productivity.

Description

【発明の詳細な説明】 〔産業上の利用分骨〕 本発明は、表示用′Jt、源、ディスプレイなどに応用
が可能なII−VIl族化合物半導体薄膜らなる短波長
発光素子の製造法に関する。さらに詳しくはII−VI
族化合物半導体薄膜からなるpn接合型発光ダイオード
の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application] The present invention relates to a method for manufacturing a short wavelength light emitting device made of a II-VII group compound semiconductor thin film, which can be applied to displays, sources, displays, etc. . For more details, see II-VI
The present invention relates to a method for manufacturing a pn junction type light emitting diode made of a group compound semiconductor thin film.

〔従来の技術〕[Conventional technology]

従来技術−1 高圧溶融法、パイパー・ポリッシュ法などテflE成し
たバルクの高抵抗Zn5s単結晶に亜鉛融液処理を施し
て比抵抗が10″″2Ω・m〜20Ω・crn  程度
の低抵抗外−型結晶とする。続いて、イオン注入法によ
りアクセプター性不純物であるリチウム(L i ) 
v窒素(N)、リン(P)を添加する。
Conventional technology-1 A bulk high-resistance Zn5s single crystal produced using techniques such as the high-pressure melting method and Piper polishing method is subjected to zinc melt treatment to achieve a low resistivity of about 10''2Ω・m to 20Ω・crn. − type crystal. Next, lithium (L i ), which is an acceptor impurity, is added by ion implantation.
v Add nitrogen (N) and phosphorus (P).

アニールを施して注入した不純物を活性化することによ
り、結晶表面企P−型導′心性とし、P  %接合型発
光ダイオードを得る。
By annealing and activating the implanted impurities, the crystal surface becomes P-type core conductive, and a P% junction type light emitting diode is obtained.

(例えば AppA、Phys、Lett、、18(1
971) 99゜J、AppA、Phys、 45 (
1974) 1444゜J、Appx、Phyg、、4
8 (1977) 196.など参照)従来技術−2 高圧溶融法、パイパー・ボリッシエ法などで作成したバ
ルクの高抵抗Zn5e単結晶に亜鉛融液処理を施して比
抵抗が10−2Ω・crn〜20Ω・cm?A度の低抵
抗ルー型結晶とする。続いて、熱拡散法によりアクセプ
ター性不純物であるタリウム(Tn)を結晶表面より拡
赦し、p−s接合型発光ダイオードを得る。(信学技報
 ID84−90〔発明が解決しようとする問題点〕 上述の従来技術は次の様な問題点を有する。
(e.g. AppA, Phys, Lett, 18(1)
971) 99°J, AppA, Phys, 45 (
1974) 1444°J, Appx, Phyg,, 4
8 (1977) 196. (See, etc.) Prior art-2 A bulk high-resistance Zn5e single crystal produced by high-pressure melting method, Piper-Borissier method, etc. is treated with zinc melt to achieve a specific resistance of 10-2Ω・crn to 20Ω・cm? It is made of A-degree low-resistance lou-type crystal. Subsequently, thallium (Tn), which is an acceptor impurity, is released from the crystal surface by a thermal diffusion method to obtain a p-s junction type light emitting diode. (IEICE Technical Report ID84-90 [Problems to be Solved by the Invention]) The above-mentioned prior art has the following problems.

1.5−型導電性を示すバルク結晶の表面からアクセプ
ター性不純物をイオン注入又は拡散により添か口してP
−型導電性領域を形成するため、接合部に高抵抗層がで
き、p −i −g構造となる。この高抵抗層は素子の
直列抵抗を高くシ、発熱による素子の劣化や発光効率の
低下をもたらす。
An acceptor impurity is added to the surface of a bulk crystal exhibiting 1.5-type conductivity by ion implantation or diffusion to form P.
In order to form a - type conductive region, a high resistance layer is formed at the junction, resulting in a p-i-g structure. This high resistance layer increases the series resistance of the element, resulting in deterioration of the element due to heat generation and a reduction in luminous efficiency.

2出発原料であるバルクのZn5e結晶の育成温度が1
000℃以上もの高温であるため、Zn空孔が多数形成
されたり、CUなどの不純物の取シ込みがおこる。Zn
空孔や(’uは深い準位を形成するため、発光素子を作
製した時、500〜700%mにブロードな発光ピーク
が出現し、純粋なバンド端発光が得られない。
2. The growth temperature of the bulk Zn5e crystal, which is the starting material, is 1.
Since the temperature is as high as 000° C. or higher, many Zn vacancies are formed and impurities such as CU are incorporated. Zn
Since vacancies and ('u) form deep levels, when a light emitting device is fabricated, a broad emission peak appears at 500 to 700% m, making it impossible to obtain pure band edge emission.

五バルクのZn5e結晶を使用するためMM性に乏しい
Since five bulk Zn5e crystals are used, MM properties are poor.

そこで本発明は上述の問題を解決するもので、その目的
とするところは、純粋なバンド端発光を呈する発光素子
を、優れた蓋産性をもって作製する製造法を提供すると
ころにある。
SUMMARY OF THE INVENTION The present invention is intended to solve the above-mentioned problems, and its purpose is to provide a manufacturing method for manufacturing a light emitting element exhibiting pure band edge emission with excellent lid productivity.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の発光素子の製造法は、且−■族化合物半導体薄
膜を種層してなる発光素子の製造法において、単結晶基
板に低抵抗九−型単結晶簿膜をエピタキシャル成長する
工程、ノンドープυつ高抵抗単結晶薄膜をエピタキシャ
ル成長する工程、前記高抵抗薄膜にイオン注入法を用い
てp−型ドーパントを添tJ口する工程、及びアニール
により添加したドーパントを活性化する工程を含むこと
を特徴とする。
The method for manufacturing a light emitting device of the present invention includes a step of epitaxially growing a low-resistance 9-type single crystal film on a single crystal substrate, and a process for epitaxially growing a low resistance 9-type single crystal film on a single crystal substrate. The method comprises the steps of epitaxially growing a high-resistance single crystal thin film, adding a p-type dopant to the high-resistance thin film using ion implantation, and activating the added dopant by annealing. do.

〔実施例〕〔Example〕

第1図には本発明に係る製造法の一実施例として、Zn
5eからなる発光素子の製造工程を示すα)低抵抗九−
型Zn5eの形成 化学エツチングを施した5−型G a A s O) 
(100)面又は、(110)面方向に2度又は5度の
オフアングルを有する5−型GaAs(300)面を有
する基板■上にジメチル亜鉛(DuZn)*ジエチル亜
鉛(pKZn)などを亜鉛ソースとし、ジメチルセレン
(DMSe)、ジエチルセレン(DKSe)@フェニル
セレノール(Ph−3eH)などをセレンソースとする
有機金属気相熱分解法(以下MOOVD法と略す)によ
り厚さ2〜3μmσ)低抵抗5−型znseエピタキシ
ャル膜■を成長させる。成長温度は500〜520℃と
した。鴨−型ドーパントとしては、トリエチルアルミニ
ウム、トリエチルガリウム、1.4−ジクロルブタン。
FIG. 1 shows Zn as an example of the manufacturing method according to the present invention.
α) Low resistance 9- showing the manufacturing process of a light emitting device consisting of 5e
Formation of type Zn5e (5-type Ga As O) subjected to chemical etching
Dimethylzinc (DuZn)*diethylzinc (pKZn), etc. are deposited on a substrate (100) or a 5-type GaAs (300) face with an off angle of 2 degrees or 5 degrees in the (110) direction. Thickness of 2 to 3 μm σ) was obtained using metal organic vapor phase pyrolysis method (hereinafter abbreviated as MOOVD method) using dimethyl selenium (DMSe), diethyl selenium (DKSe) @ phenylselenol (Ph-3eH), etc. as a selenium source. Grow a low resistance 5-type ZNSE epitaxial film. The growth temperature was 500 to 520°C. Duck-type dopants include triethylaluminum, triethylgallium, and 1,4-dichlorobutane.

塩素ガス、HOAガスなどを用いた。比抵抗が(L1〜
1Ω・ロウキャリア濃度が5X101’〜11×101
7crrr4程度になる様、ドーピング量企調節した。
Chlorine gas, HOA gas, etc. were used. The specific resistance is (L1~
1Ω・low carrier concentration is 5×101' to 11×101
The doping amount was adjusted to about 7crrr4.

b)高抵抗アンドープZn5eの形成 α)で低抵抗聾−型Zn5eを形成した後に、高抵抗ア
ンドープZn5e膜■を厚さCL2〜α5μm成長する
。低抵抗層から高抵抗層への切p換えは、α)と同じ成
長条件下で、ドーパントの供給のみを中断することによ
り行なう。
b) Formation of high-resistance undoped Zn5e After forming low-resistance deaf-type Zn5e in α), a high-resistance undoped Zn5e film 2 is grown to a thickness of CL2 to α5 μm. The switching from a low resistance layer to a high resistance layer p is carried out under the same growth conditions as α) by interrupting only the dopant supply.

成長は連続して行なった。Growth was continuous.

C)イオン注入 イオン注入法により高抵抗Z n S e膜■にp −
型ドーパントである窒素(N)、リンCP)。
C) Ion implantation P − to high resistance ZnSe film ■ by ion implantation method
Type dopants nitrogen (N), phosphorus CP).

リチウム(Li)、ナトリウム(Na)、銀(VAg)
などを添加する。注入条件は、室温において、加速エネ
ルギー50〜70KeV、ドーズ量10”〜10 ” 
cm−”  とした。注入後、イオン注入により照射欠
陥を除去するために、窒素気流中で300〜480℃に
おいて10〜40分間のアニール処理を施した。処理時
間は、処理温度が低いほど長くした。アニールにより添
加した不純物の活性化がなされ、比抵抗[15〜10Ω
・釧の低抵抗P−型Zn5e膜■が形成できた。高抵抗
Zn5e膜■の厚さとイオン注入条件を制御することに
より、良好なP−n接合か形成できた。
Lithium (Li), sodium (Na), silver (VAg)
etc. are added. The implantation conditions are room temperature, acceleration energy of 50 to 70 KeV, and dose of 10'' to 10''.
cm-". After the implantation, in order to remove irradiation defects by ion implantation, annealing treatment was performed at 300 to 480°C for 10 to 40 minutes in a nitrogen stream.The lower the treatment temperature, the longer the treatment time. The added impurities were activated by annealing, and the specific resistance [15-10Ω
・A low-resistance P-type Zn5e film (2) was formed. By controlling the thickness of the high-resistance Zn5e film and the ion implantation conditions, a good P-n junction could be formed.

d)基板への電極形成 GaAs基板の裏面にAu−Geの合金を蒸着し、不活
性雰囲気中400〜450℃においてアニールをil、
GaAs基板へのオーム性コンタクト■を形成する。
d) Electrode formation on the substrate Au-Ge alloy was deposited on the back surface of the GaAs substrate, and annealed at 400 to 450°C in an inert atmosphere.
Form an ohmic contact (2) to the GaAs substrate.

1)p−型Zn5e層への電極形成 厚さsoo〜yoOXのAu■をP−型Zn5e膜の上
に真空蒸着し、不活性雰囲気中で赤外線ランプによるア
ニールを行ない、P−型Zn5e膜へのコンタクトを形
成した。
1) Formation of electrodes on p-type Zn5e layer Au■ with a thickness of soo to yo OX is vacuum deposited on the P-type Zn5e film, and annealed with an infrared lamp in an inert atmosphere to form the P-type Zn5e film. contacts were formed.

上記の工程を経て形成されたウェハーを適当なチップサ
イズに切9出し、電極■、■からり−ドを取シ出した後
、順方向に゛底圧を印加すると、2V付近から青色発光
が肉眼で確認できた。発光スペクトルの代表例を第2図
に示す。発光ピーク波長はバンド端発光に・相当する4
65〜470nmであり、欠陥やCuなどが−4した深
い準位からの発光はスペクトル上に現われず、純粋な青
色発光が得られた。これは、MOOVD法による成長温
度がバルクの結晶成長温度に比べて低いことやイオン注
入後のアニール温度が成長温度より低いこと、MOCv
D法によって得られるznseエピタキシャル膜が高品
質であることなどによるものと考える。
After cutting the wafer formed through the above steps into appropriate chip sizes and removing the wires from electrodes (1) and (2), when a bottom pressure is applied in the forward direction, blue light is emitted from around 2V. It could be confirmed with the naked eye. A typical example of the emission spectrum is shown in FIG. The emission peak wavelength corresponds to band edge emission4
The wavelength ranged from 65 to 470 nm, and no light emission from deep levels where defects or Cu were -4 appeared on the spectrum, and pure blue light emission was obtained. This is because the growth temperature in the MOOVD method is lower than the bulk crystal growth temperature, the annealing temperature after ion implantation is lower than the growth temperature, and the MOCv
This is thought to be due to the fact that the ZNSE epitaxial film obtained by method D is of high quality.

また発光の外部を子効率は10−3程度と比較的良い値
が得られた。これは、良好なp −n接合が形成された
結果であり、今後、高抵抗Z n S e J’fJの
厚さとイオン注入及びアニール条件を最適化することに
よりさらに向上するものと考える。
In addition, a comparatively good value of approximately 10<-3> was obtained for the external efficiency of light emission. This is a result of the formation of a good p-n junction, and it is believed that this will be further improved in the future by optimizing the thickness of the high-resistance Z n S e J'fJ and the ion implantation and annealing conditions.

本発明においては上記実施例からも明らかな様に、市販
されているGaAB基板への薄膜形成プロセスによって
素子構造を形成するため、バルク結晶の育成及びZn融
液処理による低抵抗化工程にそれぞれ1週間程度の長時
間を公安とした従来技術に比べ量産性が大幅に向上する
のは明らかである。
In the present invention, as is clear from the above examples, in order to form an element structure by a thin film formation process on a commercially available GaAB substrate, one step is required for each of bulk crystal growth and Zn melt treatment to reduce resistance. It is clear that mass productivity is greatly improved compared to the conventional technology, which uses public safety over a long period of about a week.

上述す工程はGaAθ基板上にZn5eからなる発光素
子を形成する場合のみならず、Gap。
The above steps are used not only when forming a light emitting element made of Zn5e on a GaAθ substrate, but also when forming a light emitting element made of Zn5e on a GaAθ substrate.

Si 、Geなどの基板上にZn5eをはじめとする種
々の材料を用φて素子を形成する場合においても全く同
じ手順で適当することが可能である。
Exactly the same procedure can be used to form an element using various materials such as Zn5e on a substrate such as Si or Ge.

例えば、硫黄ソースとしてジメチル硫黄(DMS)、ジ
エチル硫黄(DES)、プロパンチオール(P r O
−S H)などを用いることにより、znSxSel−
、(0≦X≦1)からなるp −n接合型の発光素子が
作製できる。
For example, dimethyl sulfur (DMS), diethyl sulfur (DES), propanethiol (P r O
-S H) etc., znSxSel-
, (0≦X≦1), a p-n junction type light emitting device can be manufactured.

又同様に、カドミニウムソースとして、ジメチルカドミ
ニウム(DMCd)、ジエチルカドミニウム(DEOd
)を用いることにより、Z n l −X 0dxs 
 (0≦末≦1)あるいはZ n 1−1 Cd XS
 1−y S 137 (0≦x、y≦1)からなるp
 −n接合型の発光素子が作製できる。これらの材料を
用いた発光素子の作製も不発明によって実現されるもの
であり、いずれも不発明の範躊に含まれるものである。
Similarly, dimethyl cadmium (DMCd) and diethyl cadmium (DEOd) are used as cadmium sources.
), Z n l −X 0dxs
(0≦end≦1) or Z n 1-1 Cd XS
p consisting of 1-y S 137 (0≦x, y≦1)
- An n-junction type light emitting device can be manufactured. The production of light emitting elements using these materials is also achieved by non-invention, and both fall within the scope of non-invention.

作製した素子はバンド帯発光を呈し、特性は、前述σU
G tLA s基板上に形成したZn5eからなるP−
%接合型発光素子と同程度でありAいずれの場合も良好
であった。
The fabricated device exhibits band-band light emission, and its characteristics are as described above.
P- made of Zn5e formed on a G tLA s substrate
% was comparable to that of the junction type light emitting element, and both cases of A were good.

〔発明の効果〕〔Effect of the invention〕

以上述べた様に本発明によれば、…−■族化合物半導体
薄膜を積層してなる発光素子の製造法において、単結晶
基板上に低抵抗5−型単結晶薄膜をエピタキシャル成長
する工程、ノンドープの高抵抗単結晶薄膜をエピタキシ
ャル成長する工程、前記高抵抗薄膜にイオン注入法を用
いてP−型ドーパントを添加する工程、及びアニールに
より添加したドーパントを活性化する工程を実施するこ
とにより、純粋なバンド帯発光のみを呈する高効率の発
光素子が菫産可能となりた1本発明が1−■族化合物半
導体薄膜を用いた発光素子、主として発光波長が可視短
波長領域に属する発光素子の製造に寄与するところ極め
て大きいと確信する。
As described above, according to the present invention, in a method for manufacturing a light emitting device formed by laminating thin films of group compound semiconductors, a step of epitaxially growing a low resistance 5-type single crystal thin film on a single crystal substrate, a non-doped By performing the steps of epitaxially growing a high-resistance single crystal thin film, adding a P-type dopant to the high-resistance thin film using ion implantation, and activating the added dopant by annealing, a pure band It has become possible to produce highly efficient light-emitting devices that only emit light in the band. The present invention contributes to the production of light-emitting devices using thin films of 1-■ group compound semiconductors, mainly light-emitting devices whose emission wavelengths belong to the visible short wavelength region. I'm sure it's extremely large.

本発明により可視短波長発光素子を用いたディスプレイ
などのデバイスの普及が期待される。
The present invention is expected to popularize devices such as displays that use visible short wavelength light emitting elements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(α)〜(g)は本発明に係る発光素子Q)製造
法の一実施例を示す工程図。 1・・・・・・基板 2・・・・・・低抵抗、−型znseエピタキシャル膜 3・・・・・・高抵抗アンドープZn5ei4・・・・
・・イオンビーム 5・・・・・・低抵抗P−型Z n S−e膜6・・・
・・・基板へのオーム性コンタクト7・・・・・・P 
 Zn5e膜へのオーム性フンタクト第2図は本発明に
よって作製した発光素子σつ特性?示す発光スペクトル
図。 以  上 出願人 セイコーエプソン株式会社 代理人 弁理士般上務(他1名) し 第1圀 物     伽    乙00 シ皮−fz、<x九) *2 凹
FIGS. 1(α) to (g) are process diagrams showing one embodiment of the method for manufacturing the light emitting device Q) according to the present invention. 1...Substrate 2...Low resistance, -type Znse epitaxial film 3...High resistance undoped Zn5ei4...
...Ion beam 5...Low resistance P-type ZnSe film 6...
...Ohmic contact 7 to the board...P
Ohmic contact with Zn5e film Figure 2 shows the characteristics of the light emitting device fabricated according to the present invention. The emission spectrum diagram shown. Applicant Seiko Epson Co., Ltd. Agent General Patent Attorney (1 other person)

Claims (3)

【特許請求の範囲】[Claims] (1)II−VI族化合物半導体薄膜を積層してなる発光素
子の製造法において、単結晶基板上に低抵抗n−型単結
晶薄膜をエピタキシャル成長する工程、ノンドープの高
抵抗単結晶薄膜をエピタキシャル成長する工程、前記高
抵抗薄膜にイオン注入法を用いてp−型ドーパントを添
加する工程、及びアニールにより添加したドーパントを
活性化する工程を含むことを特徴とした発光素子の製造
(1) In a method for manufacturing a light emitting device formed by laminating II-VI group compound semiconductor thin films, a step of epitaxially growing a low resistance n-type single crystal thin film on a single crystal substrate, a step of epitaxially growing a non-doped high resistance single crystal thin film. A method for manufacturing a light emitting device, comprising: a step of adding a p-type dopant to the high-resistance thin film using an ion implantation method; and a step of activating the added dopant by annealing.
(2)II−VI族化合物半導体薄膜をエピタキシャル成長
する温度が、イオン注入後のアニール温度より高いこと
を特徴とする特許請求の範囲第一項記載の発光素子の製
造法。
(2) The method for manufacturing a light emitting device according to claim 1, wherein the temperature at which the II-VI group compound semiconductor thin film is epitaxially grown is higher than the annealing temperature after ion implantation.
(3)II−VI族化合物半導体薄膜のエピタキシャル成長
を、II族元素を含む有機金属化合物とVI族元素を含む有
機化合物をソースとする有機金属気相熱分解法により行
なうことを特徴とする特許請求の範囲第一項記載の発光
素子の製造法。
(3) A patent claim characterized in that the epitaxial growth of a II-VI group compound semiconductor thin film is performed by an organometallic vapor phase pyrolysis method using an organometallic compound containing a group II element and an organic compound containing a group VI element as sources. A method for manufacturing a light emitting device according to item 1.
JP61205687A 1986-09-01 1986-09-01 Manufacture of light-emitting device Pending JPS6360573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61205687A JPS6360573A (en) 1986-09-01 1986-09-01 Manufacture of light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61205687A JPS6360573A (en) 1986-09-01 1986-09-01 Manufacture of light-emitting device

Publications (1)

Publication Number Publication Date
JPS6360573A true JPS6360573A (en) 1988-03-16

Family

ID=16511041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61205687A Pending JPS6360573A (en) 1986-09-01 1986-09-01 Manufacture of light-emitting device

Country Status (1)

Country Link
JP (1) JPS6360573A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63119280A (en) * 1986-11-06 1988-05-23 Matsushita Electric Ind Co Ltd Blue light emitting diode
JPS63184373A (en) * 1986-09-26 1988-07-29 Toshiba Corp Semiconductor light emitting device and manufacture of the same
JPS63185077A (en) * 1987-01-27 1988-07-30 Matsushita Electric Ind Co Ltd Blue light emitting diode
JPH0824357B2 (en) * 1992-05-27 1996-03-06 シーメンス ニクスドルフ インフオルマチオーンスジステーメ アクチエンゲゼルシヤフト Picture tube screen device with standby position function

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63184373A (en) * 1986-09-26 1988-07-29 Toshiba Corp Semiconductor light emitting device and manufacture of the same
JPS63119280A (en) * 1986-11-06 1988-05-23 Matsushita Electric Ind Co Ltd Blue light emitting diode
JPS63185077A (en) * 1987-01-27 1988-07-30 Matsushita Electric Ind Co Ltd Blue light emitting diode
JPH0824357B2 (en) * 1992-05-27 1996-03-06 シーメンス ニクスドルフ インフオルマチオーンスジステーメ アクチエンゲゼルシヤフト Picture tube screen device with standby position function

Similar Documents

Publication Publication Date Title
US7612363B2 (en) N-type group III nitride semiconductor stacked layer structure
JP2009506529A (en) P-type-intrinsic-n-type light emitting diode manufacturing method using zinc oxide
JPH0268968A (en) Compound semiconductor light-emitting device
KR100827993B1 (en) Gallium nitride-based semiconductor device
KR101030823B1 (en) Transparent thin film, light emitting device comprising the same, and methods for preparing the same
WO2005076373A1 (en) Semiconductor material and semiconductor device using same
KR100421800B1 (en) Method of manufacturing zinc oxide semiconductor
CN105789399B (en) P-type broad stopband oxide and ZnO combination vertical structure light-emitting devices and preparation method thereof
US20060049425A1 (en) Zinc-oxide-based light-emitting diode
JPS6360573A (en) Manufacture of light-emitting device
JPH02264483A (en) Semiconductor light emitting element and manufacture thereof
JPH11177135A (en) Gallium nitride semiconductor element and its manufacture
US7847314B2 (en) Gallium nitride-based compound semiconductor light-emitting device
JP4705384B2 (en) Gallium nitride semiconductor device
CN101976800B (en) ZnO and GaN-combined ZnO-based end surface transmitting laser and preparation method thereof
JP3060931B2 (en) Nitride semiconductor device and method of manufacturing the same
US20200212259A1 (en) Semiconductor stack, semiconductor device and method for manufacturing the same
JP2995186B1 (en) Semiconductor light emitting device
CN102263369B (en) p-ZnO and n-GaN combined ZnO-based terminal emitting lasers and preparation methods
JP2561321B2 (en) Method of manufacturing light emitting device
JP2597624B2 (en) Semiconductor light emitting device
KR100389738B1 (en) SHORT WAVELENGTH ZnO LED AND METHOD FOR PRODUCING OF THE SAME
JP2004207721A (en) Surface acoustic wave filter
JP2003133335A (en) METHOD FOR MANUFACTURING ZnTe-BASED COMPOUND SEMICONDUCTOR AND THE ZnTe-BASED COMPOUND SEMICONDUCTOR, AND SEMICONDUCTOR DEVICE
JP2001077419A (en) Group iii nitride semiconductor light-emitting element