KR100421800B1 - Method of manufacturing zinc oxide semiconductor - Google Patents

Method of manufacturing zinc oxide semiconductor Download PDF

Info

Publication number
KR100421800B1
KR100421800B1 KR10-2001-0017301A KR20010017301A KR100421800B1 KR 100421800 B1 KR100421800 B1 KR 100421800B1 KR 20010017301 A KR20010017301 A KR 20010017301A KR 100421800 B1 KR100421800 B1 KR 100421800B1
Authority
KR
South Korea
Prior art keywords
zinc oxide
dopant
thin film
oxide semiconductor
type
Prior art date
Application number
KR10-2001-0017301A
Other languages
Korean (ko)
Other versions
KR20020077557A (en
Inventor
박성주
김경국
이지면
김민호
최원국
정형진
Original Assignee
한국과학기술연구원
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원, 광주과학기술원 filed Critical 한국과학기술연구원
Priority to KR10-2001-0017301A priority Critical patent/KR100421800B1/en
Publication of KR20020077557A publication Critical patent/KR20020077557A/en
Application granted granted Critical
Publication of KR100421800B1 publication Critical patent/KR100421800B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02266Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by physical ablation of a target, e.g. sputtering, reactive sputtering, physical vapour deposition or pulsed laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment

Abstract

아연산화물 반도체 제조방법에 관하여 개시한다. 본 발명의 방법은, 도판트가 첨가된 아연산화물 박막이 증착된 기판을 열처리 반응기에 안착시키고, 도판트가 활성화되도록 아연산화물 박막을 급속 열처리하는 것을 특징으로 한다. 본발명에 의하면, 아연산화물 박막을 급속 열처리함으로써 도판트 및 산소가 확산할 시간을 주지 않기 때문에 도판트의 확산으로 인한 도핑 농도의 불균일이나 도핑 효율의 감소를 방지할 수 있고, 전기 광학적 특성이 향상된 n형 아연산화물 반도체를 제작할 수 있으므로 발광다이오드, 레이저 다이오드, 및 자외선 센서 등의 광전 소자의 개발에 기여할 수 있으며 특히, 상온에서 다결정으로 성장된 알루미늄이 도핑된 아연산화물 박막의 경우에 급속 열처리를 통해서 전기적 광학적 특성을 크게 향상될 뿐 만 아니라, 열처리를 실시하기 위하여 반응기 내의 분위기를 반드시 산소 분위기로 형성할 필요가 없이 여러 종류의 기체 분위기에서도 가능하게 됨으로써 아연산화물 반도체를 이용한 광전소자를 용이하게 제작할 수 있다.A zinc oxide semiconductor manufacturing method is disclosed. The method of the present invention is characterized in that the substrate on which the zinc oxide thin film to which the dopant is added is deposited is placed in a heat treatment reactor, and the zinc oxide thin film is rapidly heat treated so that the dopant is activated. According to the present invention, since the dopant and oxygen do not give time to diffuse by rapidly heat-treating the zinc oxide thin film, it is possible to prevent the dopant dispersion due to the diffusion of the dopant and to reduce the doping efficiency, and improve the electro-optic characteristics Since the n-type zinc oxide semiconductor can be manufactured, it can contribute to the development of photovoltaic devices such as light emitting diodes, laser diodes, and ultraviolet sensors. Especially, in the case of the aluminum oxide-doped zinc oxide thin film grown at polycrystalline temperature at room temperature, In addition to greatly improving the electro-optical characteristics, it is not necessary to form an atmosphere in the reactor as an oxygen atmosphere to perform heat treatment, and thus it is possible to produce a photoelectric device using a zinc oxide semiconductor by enabling it in various gas atmospheres. have.

Description

아연산화물 반도체 제조 방법 {Method of manufacturing zinc oxide semiconductor}Method of manufacturing zinc oxide semiconductor

본 발명은 아연산화물 반도체 제조방법에 관한 것으로서, 특히 아연산화물 박막에 첨가되어 있는 도판트를 활성화시킬 수 있는 아연산화물 반도체 제조방법에 관한 것이다.The present invention relates to a zinc oxide semiconductor manufacturing method, and more particularly to a zinc oxide semiconductor manufacturing method capable of activating the dopant added to the zinc oxide thin film.

화합물 반도체를 이용한 광전소자의 제작은 여러 물질에 대해서 이루어지고있다. 그 중에서도 특히, 아연산화물 반도체의 경우에는 투명전극(Transparent Electrode), 음성 어쿠스틱 파장 소자(Sound Acoustic Wave Device), 배리스터 소자(Varistors Device) 등의 많은 광전소자에 응용되고 있다.Optoelectronic devices using compound semiconductors have been made for many materials. In particular, zinc oxide semiconductors have been applied to many optoelectronic devices such as transparent electrodes, sound acoustic wave devices, and varistors devices.

특히 아연산화물 반도체는 질화물 반도체와 매우 유사한 특성을 가지고 있고 자유엑스톤 결합에너지(Free Exciton Binding Energy)가 질화물 반도체(GaN)의 약 3배인 60 meV이며 저온 성장이 가능하다는 등의 장점을 가지고 있어 최근 아연산화물 반도체에 대한 연구가 매우 활발히 이루어지고 있다. 이러한 아연산화물을 이용한 광전소자 제작에는 반드시 양질의 고농도 n형 또는 p형 아연산화물 박막의 제작이 필수적이다.In particular, zinc oxide semiconductors have very similar characteristics to nitride semiconductors. Free Exciton Binding Energy is about 60 meV, which is about three times that of nitride semiconductors (GaN), and can be grown at low temperatures. Research on zinc oxide semiconductors is very active. It is essential to manufacture a high quality n-type or p-type zinc oxide thin film of high quality to fabricate an optoelectronic device using the zinc oxide.

아연산화물의 박막을 제조하는 방법으로는 레이저 분자선 에피텍시(Laser Molecular Beam Epitaxy)법, 화학 기상증착(Chemical Vapor Deposition, CVD)법, 또는 펄스레이저 증착(Plus Laser Deposition)법 등이 연구되고 있으며, 특히 상기한 방법들에 비해 상대적으로 저온 성장과 넓은 면적의 성장이 가능한 RF 및 직류 마그네트론 스퍼터링(RF, DC magnetron sputtering)법이 활발하게 연구되고 있다.As a method of preparing a thin film of zinc oxide, laser molecular beam epitaxy, chemical vapor deposition (CVD), or pulse laser deposition (Plus Laser Deposition) has been studied. In particular, RF and DC magnetron sputtering (RF) methods, which are capable of relatively low temperature growth and large-area growth, have been actively studied in comparison with the aforementioned methods.

아연산화물 반도체는, 아연산화물 반도체의 박막 성장 과정에서 산소의 공급으로 인하여 도판트로 첨가되는 원소들이 산화되게 되고, 산화가 이루어지지 않은 상태로 도판트가 첨가되었을 경우에는 박막 내에서 도판트가 산소와 결합하게 되어 도판트로써의 역할을 충분히 할 수 없는 경우가 많다. 특히 스퍼터링법으로 박막을 성장시키는 경우에는, 산화물 상태의 도판트를 첨가하여 만든 타겟(Target)을 사용하는 경우가 많기 때문에 도판트는 박막이 성장하는 과정에서도 산화물의 형태로박막에 증착되는 경우가 많다.In the zinc oxide semiconductor, the elements added to the dopant are oxidized due to the supply of oxygen in the thin film growth process of the zinc oxide semiconductor, and when the dopant is added without oxidation, the dopant is dissolved in the thin film. In many cases, they do not fully serve as dopants. In particular, when a thin film is grown by sputtering, a target made of an oxide dopant is often used, so the dopant is often deposited on the thin film in the form of oxide even during the growth of the thin film. .

일반적으로 후 열처리 공정을 거치지 않은 박막 성장 직후의 캐리어(Carrier) 농도는 1020(cm-3)이상이지만 캐리어 이동도는 1∼20(cm2/V-s)이다(참조문헌:R. Cebulla, R. Wendt, and K. Ellmer, J.Appl. Phys. 83, 1087(1998)). 따라서 광전소자의 제작을 위해서는 캐리어 이동도의 향상이 요구되며, 캐리어의 농도 및 이동도가 향상된 n형 또는 p형 아연산화물 반도체를 제작하기 위해서는 첨가된 도판트를 충분히 활성화시켜야한다.In general, the carrier concentration immediately after the thin film growth without the post-heat treatment step is 10 20 (cm -3 ) or more, but the carrier mobility is 1-20 (cm 2 / Vs) (see R. Cebulla, R). Wendt, and K. Ellmer, J. Appl. Phys. 83, 1087 (1998). Therefore, an improvement in carrier mobility is required for fabricating an optoelectronic device, and in order to fabricate an n-type or p-type zinc oxide semiconductor having improved carrier concentration and mobility, an added dopant must be sufficiently activated.

일반적으로 캐리어의 농도 및 이동도가 향상된 n형 또는 p형 아연산화물 반도체의 박막을 제조하기 위하여 로(Furnace)에서 후 공정으로 열처리 공정을 실시한다.In general, in order to manufacture a thin film of an n-type or p-type zinc oxide semiconductor having improved carrier concentration and mobility, a heat treatment process is performed in a furnace in a post process.

그러나 이와 같이 후 공정으로 열처리를 하는 경우에는 공정에 많은 시간이 소요되고, 공정을 진행하는 동안 도판트로 첨가된 원소들이 전위(Dislocation), 결정입계(Grain Boundary) 또는 공공(Vacancy)의 농도가 높은 지역으로 확산하게 되어 전체적인 도판트의 분포가 불균일하게 되는 문제점이 있어 양질의 박막을 제작하는데는 어려움이 있고 박막 제작에 많은 시간이 요구된다. 그리고, 고순도의 산소 분위기를 요구하는 공정이므로 많은 비용이 요구된다. 또한 도판트 원자들의 확산이 이루어질 경우 첨가된 도판트들이 박막 내에서 다른 원소들과 반응하여 결함으로 작용하는 화합물을 만들게 됨으로써 실제 도판트로써의 역할이 크게 감소하여 양질의 고농도 아연산화물 반도체 박막을 제작할 수 없다.However, when the heat treatment in the post-process like this takes a long time, the elements added to the dopant during the process is high in dislocation, grain boundary or vacancy concentration. It is difficult to manufacture high quality thin films because of the problem of uneven distribution of the entire dopant due to the diffusion into regions, and a lot of time is required for thin film production. In addition, since the process requires a high purity oxygen atmosphere, a large cost is required. In addition, when dopant atoms are diffused, the added dopants react with other elements in the thin film to form compounds that act as defects, thereby significantly reducing the role of the dopant, thereby producing high quality zinc oxide semiconductor thin films. Can not.

따라서 이러한 단점을 해결하고 전기적 광학적 특성이 우수한 n형 또는 p형 아연산화물 반도체 박막을 제작하기 위해서는 공정의 용이함과 효율이 우수한 기술 개발이 지속적으로 요망되어 왔다.Therefore, in order to solve these shortcomings and fabricate an n-type or p-type zinc oxide semiconductor thin film having excellent electro-optical properties, there has been a continuous demand for technology development with excellent process ease and efficiency.

따라서, 본 발명이 이루고자 하는 기술적 과제는, 아연산화물 박막 내에 첨가된 도판트를 활성화시킴으로써 전기 광확적인 특성이 향상된 아연산화물 반도체의 제조방법을 제공하는 데 있다.Accordingly, an aspect of the present invention is to provide a method for manufacturing a zinc oxide semiconductor having improved electro-optical properties by activating a dopant added in a zinc oxide thin film.

도 1은 종래 아연산화물 반도체의 광학적 특성을 측정한 그래프;1 is a graph measuring optical characteristics of a conventional zinc oxide semiconductor;

도 2a 및 도 2b는 본 발명에 의한 아연산화물 반도체의 광학적 특성을 측정한 그래프들;2A and 2B are graphs measuring optical characteristics of zinc oxide semiconductors according to the present invention;

도 3은 종래 아연산화물 반도체와 본 발명에 의한 아연산화물 반도체의 전기적 특성을 측정한 그래프이다.3 is a graph measuring electrical characteristics of a zinc oxide semiconductor and a zinc oxide semiconductor according to the present invention.

상기 기술적 과제를 달성하기 위한 본 발명의 아연산화물 반도체의 제조방법은, 도판트가 첨가된 아연산화물 박막이 증착된 기판을 열처리 반응기에 장입시키고, 상기 도판트가 활성화되도록 상기 아연산화물 박막을 급속 열처리하는 것을 특징으로 한다.In order to achieve the above technical problem, a method of manufacturing a zinc oxide semiconductor according to the present invention includes charging a substrate on which a zinc oxide thin film to which a dopant is added is deposited into a heat treatment reactor, and rapidly heat treating the zinc oxide thin film to activate the dopant. Characterized in that.

이하에서, 본 발명의 바람직한 실시예들을 상세히 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail.

먼저, Si 또는 사파이어(Sapphire) 기판 상에 도판트가 포함되어 있는 아연산화물 박막을 증착한다. 여기서, 제조되어지는 아연산화물 반도체가 n형 특성을 갖게 하기 위해서는 도판트로서 알루미늄(Al), 인듐(In), 갈륨(Ga), 및 붕소(B)로 이루어진 군으로부터 선택된 적어도 어느 하나가 아연산화물 박막에 첨가되거나,알루미늄, 인듐, 갈륨, 또는 붕소의 성분을 함유한 산화물이 아연산화물 박막에 첨가된다. 그리고 제조되어지는 아연산화물 반도체가 p형 특성을 갖게 하기 위해서는 도판트로서 리튬(Li), 나트륨(Na), 칼륨(K), 질소(N), 인(P), 비소(As), 및 니켈(Ni)로 이루어진 군으로부터 선택된 적어도 어느 하나가 아연산화물 박막에 첨가되거나 리튬, 나트륨, 칼륨, 질소, 인, 비소, 또는 니켈 성분을 함유한 산화물이 아연산화물 박막에 첨가되게 된다. 한편, 제조되어지는 아연산화물 반도체가 p형 특성을 갖게 하기 위하여 알루미늄, 인듐, 갈륨, 및 붕소로 이루어진 군으로부터 선택된 적어도 어느 하나로 이루어지는 n형 도판트 또는 n형 도판트 성분이 함유된 산화물과 리튬, 나트륨, 칼륨, 질소, 인, 비소, 및 니켈로 이루어진 군으로부터 선택된 적어도 어느 하나로 이루어지는 p형 도판트 또는 p형 도판트 성분이 함유된 산화물이 혼합되어 사용되어도 좋다. 이 때, 아연산화물 박막에는 p형 도판트 또는 p형 도판트 성분을 함유한 산화물의 농도가 n형 도판트 또는 n형 도판트 성분을 함유한 산화물의 농도보다 높게 첨가된다.First, a zinc oxide thin film containing a dopant is deposited on a Si or sapphire substrate. Herein, in order for the zinc oxide semiconductor to be manufactured to have n-type characteristics, at least one selected from the group consisting of aluminum (Al), indium (In), gallium (Ga), and boron (B) is a zinc oxide. An oxide containing a component of aluminum, indium, gallium, or boron is added to the thin film or the zinc oxide thin film. In order for the zinc oxide semiconductor to be manufactured to have p-type characteristics, lithium (Li), sodium (Na), potassium (K), nitrogen (N), phosphorus (P), arsenic (As), and nickel are used as dopants. At least one selected from the group consisting of (Ni) is added to the zinc oxide thin film, or an oxide containing lithium, sodium, potassium, nitrogen, phosphorus, arsenic, or nickel components is added to the zinc oxide thin film. Meanwhile, in order for the zinc oxide semiconductor to be manufactured to have a p-type characteristic, an oxide and lithium containing an n-type dopant or an n-type dopant component composed of at least one selected from the group consisting of aluminum, indium, gallium, and boron, An oxide containing a p-type dopant or a p-type dopant component composed of at least one selected from the group consisting of sodium, potassium, nitrogen, phosphorus, arsenic, and nickel may be used in combination. At this time, the concentration of the oxide containing the p-type dopant or the p-type dopant component is added to the zinc oxide thin film higher than the concentration of the oxide containing the n-type dopant or the n-type dopant component.

다음에, 도판트가 첨가된 아연산화물 박막이 증착된 기판을 열처리 반응기에 장입하고, 아연산화물 박막을 급속 열처리함으로써 아연산화물 박막 내의 도판트를 활성화시킨다. 이 때 급속 열처리 조건은, 열처리 반응기를 수소, 산소, 질소, 아르곤, 과산화질소(NO), 아산화질소(N2O), 및 이산화질소(NO2) 기체로 이루어진 군으로부터 선택되어진 적어도 어느 하나로 분위기를 형성한 다음, 열처리 반응기 내의 온도를 초당 1∼100℃로 상승시켜 반응기 내의 온도가 500∼1500℃에 도달하면 그온도에서 10초에서 30분 동안 열처리한다.Next, the substrate on which the zinc oxide thin film to which the dopant is added is deposited is charged into a heat treatment reactor, and the dopant in the zinc oxide thin film is activated by rapid heat treatment of the zinc oxide thin film. At this time, the rapid heat treatment conditions, the heat treatment reactor is at least one selected from the group consisting of hydrogen, oxygen, nitrogen, argon, nitrogen peroxide (NO), nitrous oxide (N 2 O), and nitrogen dioxide (NO 2 ) gas. After the formation, the temperature in the heat treatment reactor is increased to 1 to 100 ° C per second, and when the temperature in the reactor reaches 500 to 1500 ° C, heat treatment is performed at that temperature for 10 seconds to 30 minutes.

[실시예 1]Example 1

산화알루미늄이 2%의 무게 비율로 첨가된 산화아연(ZnO)을 박막의 재료가 되는 타겟으로 사용하여 RF 마그네트론 스퍼터링 방법으로 사파이어(0001) 기판 상에 n형 아연산화물 박막을 형성하였다.An n-type zinc oxide thin film was formed on a sapphire (0001) substrate by RF magnetron sputtering using zinc oxide (ZnO) in which aluminum oxide was added at a weight ratio of 2% as a target of a thin film material.

[실시예 2]Example 2

실시예 1에 의하여 만들어진 시편을 열처리 반응기에 장입한 다음, 열처리 반응기를 질소 분위기로 유지하면서 반응기 내의 온도를 초당 50∼100℃의 속도로700∼1000℃될 때까지 상승시켜서 3분 동안 유지하였다.The specimen prepared in Example 1 was charged to a heat treatment reactor, and then the temperature in the reactor was raised to 700 to 1000 ° C. at a rate of 50 to 100 ° C. per second while maintaining the heat treatment reactor in a nitrogen atmosphere and maintained for 3 minutes.

도 1은 실시예 1에 의한 아연산화물 반도체에 대하여 급속 열처리하기 전에 광학적 특성을 측정한 그래프이고, 도 2a는 실시예 2에 의한 급속 열처리를 실시한 아연산화물 반도체에 대하여 광학적 특성을 측정한 그래프이며, 도 2b는 실시예 2에 아연산화물 반도체에서 각각의 열처리 온도에 대하여 광학적 특성을 측정한 그래프이다. 이 때, 각각의 그래프를 나타내는 광학적 특성은 광발광(Photo Luminescence, PL)법으로 측정하였다.1 is a graph measuring optical characteristics of a zinc oxide semiconductor according to Example 1 before rapid heat treatment, and FIG. 2A is a graph measuring optical characteristics of a zinc oxide semiconductor subjected to rapid heat treatment according to Example 2, FIG. 2B is a graph of optical characteristics measured for respective heat treatment temperatures in the zinc oxide semiconductor of Example 2. FIG. At this time, the optical characteristics showing the respective graphs were measured by the photoluminescence (PL) method.

도 1을 참조하면, 급속 열처리되지 않은 아연산화물 반도체의 경우는 밴드갭의 발광강도가 매우 낮게 측정된다. 하지만, 도 2a를 참조하면, 급속 열처리된 아연산화물 반도체의 경우는 파장 3830Å 부근의 밴드갭 발광강도가 도 1에 비하여 약 20배 이상 증가하였고 밴드갭 내에 불순물 준위가 없는 발광 특성을 나타내고 있다. 그리고, 도 2b를 참조하면, 실시예 2에 의한 아연산화물 반도체는 급속 열처리 온도가 900℃인 경우에 광학적 특성이 가장 향상된 것으로 나타난다.Referring to FIG. 1, in the case of a zinc oxide semiconductor not rapidly heat-treated, the emission intensity of the band gap is measured to be very low. However, referring to FIG. 2A, in the case of the fast-annealed zinc oxide semiconductor, the bandgap emission intensity near the wavelength of 3830 kHz was increased by about 20 times or more than that of FIG. 1, and the emission characteristics without impurity levels were shown in the bandgap. In addition, referring to FIG. 2B, the zinc oxide semiconductor according to Example 2 is shown to have the most improved optical properties when the rapid heat treatment temperature is 900 ° C. FIG.

도 3은 급속 열처리를 하기 전의 아연산화물 반도체와 급속 열처리를 실시한 후의 아연산화물 반도체에 대하여 전기적 특성을 측정한 그래프이다.3 is a graph measuring electrical characteristics of the zinc oxide semiconductor before the rapid heat treatment and the zinc oxide semiconductor after the rapid heat treatment.

도 3을 참조하면, 급속 열처리하기 전의 아연산화물 반도체의 경우에는 캐리어의 농도가 1017(/cm3) ∼ 1018(/cm3)정도였지만 급속 열처리를 실시한 경우에는 1020(/cm3)으로 크게 향상되었으며, 이동도 역시 급속 열처리 전에는 10(cm2/V-s) 미만 이지만 급속 열처리를 실시한 경우에는 45(cm2/V-s) ∼ 50(cm2/V-s) 정도로 향상되었다.Referring to FIG. 3, in the case of the zinc oxide semiconductor before the rapid heat treatment, the concentration of the carrier was about 10 17 (/ cm 3 ) to 10 18 (/ cm 3 ), but in the case of the rapid heat treatment, 10 20 (/ cm 3 ) In addition, the mobility was also less than 10 (cm 2 / Vs) before the rapid heat treatment, but in the case of the rapid heat treatment, it was improved to about 45 (cm 2 / Vs) to 50 (cm 2 / Vs).

상술한 바와 같은 아연산화물 반도체 제조방법에 의하면, 아연산화물 박막을 급속 열처리함으로써 도판트 및 산소가 확산할 시간을 주지 않기 때문에 도판트의 확산으로 인한 도핑 농도의 불균일이나 도핑 효율의 감소를 방지할 수 있다.According to the zinc oxide semiconductor manufacturing method as described above, since the dopant and oxygen do not give time to diffuse by rapid heat treatment of the zinc oxide thin film, it is possible to prevent the doping concentration unevenness or decrease in the doping efficiency due to diffusion of the dopant. have.

그리고 전기 광학적 특성이 향상된 n형 아연산화물 반도체를 제작할 수 있으므로 발광다이오드, 레이저 다이오드, 및 자외선 센서 등의 광전 소자의 개발에 기여할 수 있다.In addition, since the n-type zinc oxide semiconductor having improved electro-optic properties can be manufactured, it can contribute to the development of photoelectric devices such as light emitting diodes, laser diodes, and ultraviolet sensors.

특히, 상온에서 다결정으로 성장된 알루미늄이 도핑된 아연산화물 박막의 경우에 급속 열처리를 통해서 전기적 광학적 특성을 크게 향상될 뿐 만 아니라, 열처리를 실시하기 위하여 반응기 내의 분위기를 반드시 산소 분위기로 형성할 필요가 없이 여러 종류의 기체 분위기에서도 가능하게 됨으로써 아연산화물 반도체를 이용한 광전소자를 용이하게 제작할 수 있다.In particular, in the case of aluminum oxide doped zinc oxide thin film grown at room temperature, not only the electro-optical characteristics are greatly improved through rapid heat treatment, but also the atmosphere in the reactor must be formed as an oxygen atmosphere in order to perform heat treatment. Without being possible in various gas atmospheres, it is possible to easily manufacture a photoelectric device using a zinc oxide semiconductor.

본 발명은 상기 실시예들에만 한정되지 않으며, 본 발명의 기술적 사상 내에서 당 분야의 통상의 지식을 가진 자에 의해 많은 변형이 가능함은 명백하다.The present invention is not limited to the above embodiments, and it is apparent that many modifications are possible by those skilled in the art within the technical spirit of the present invention.

Claims (9)

도판트가 첨가된 아연산화물 박막이 증착된 기판을 열처리 반응기에 장입시키고, 상기 도판트가 활성화되도록 상기 아연산화물 박막을 급속 열처리하는 것을 특징으로 하는 아연산화물 반도체 제조방법.A method of manufacturing a zinc oxide semiconductor, characterized in that a substrate on which a zinc oxide thin film to which a dopant is added is deposited is charged into a heat treatment reactor, and the zinc oxide thin film is rapidly heat treated to activate the dopant. 제 1항에 있어서, 상기 기판은 실리콘 또는 사파이어로 이루어지며, 상기 아연산화물 박막은 산화알루미늄이 2%의 무게 비율로 첨가된 산화아연을 타겟으로 사용하여 RF 마그네트론 스퍼터링 방법으로 제조되는 것을 특징으로 하는 아연산화물 반도체 제조방법.The method of claim 1, wherein the substrate is made of silicon or sapphire, and the zinc oxide thin film is manufactured by RF magnetron sputtering method using zinc oxide containing aluminum oxide added at a weight ratio of 2%. Zinc oxide semiconductor manufacturing method. 제 1항에 있어서, 상기 반응기 내의 온도는 초당 1∼100℃로 상승되는 것을 특징으로 하는 아연산화물 반도체 제조방법.The method of claim 1, wherein the temperature in the reactor is increased to 1 to 100 ° C. per second. 제 3항에 있어서, 상기 반응기 내의 온도는 500∼1500℃로 유지되는 것을 특징으로 하는 아연산화물 반도체 제조방법.The method of claim 3, wherein the temperature in the reactor is maintained at 500 ~ 1500 ℃. 제 4항에 있어서, 상기 반응기 내의 온도는 10초∼30분 동안 유지되는 것을 특징으로 하는 아연산화물 반도체 제조방법.The method of claim 4, wherein the temperature in the reactor is maintained for 10 seconds to 30 minutes. 제 1항에 있어서, 상기 반응기의 분위기는 수소, 산소, 질소, 아르곤, 과산화질소, 아산화질소, 및 이산화질소 기체로 이루어진 군으로부터 선택되어진 적어도 어느 하나로 이루어지는 것을 특징으로 하는 아연산화물 반도체 제조방법.The method of claim 1, wherein the atmosphere of the reactor is at least one selected from the group consisting of hydrogen, oxygen, nitrogen, argon, nitrogen peroxide, nitrous oxide, and nitrogen dioxide gas. 제 1항에 있어서, 상기 도판트는 알루미늄, 인듐, 갈륨, 및 붕소로 이루어진 군으로부터 선택된 적어도 어느 하나로 이루어지는 n형 도판트이며, 상기 아연산화물은 상기 n형 도판트 또는 n형도판트의 산화물이 첨가된 n형 아연산화물인 것을 특징으로 하는 아연산화물 반도체 제조방법.The dopant of claim 1, wherein the dopant is an n-type dopant formed of at least one selected from the group consisting of aluminum, indium, gallium, and boron, and the zinc oxide is added with an oxide of the n-type dopant or n-type dopant. Zinc oxide semiconductor manufacturing method characterized in that the n-type zinc oxide. 제 1항에 있어서, 상기 도판트는 리튬, 나트륨, 칼륨, 질소, 인, 비소, 및 니켈로 이루어진 군으로부터 선택된 적어도 어느 하나로 이루어지는 p형 도판트이며, 상기 아연산화물은 상기 p형 도판트 또는 p형도판트의 산화물이 첨가된 p형 아연산화물인 것을 특징으로 하는 아연산화물 반도체 제조방법.The p-type dopant of claim 1, wherein the dopant is at least one selected from the group consisting of lithium, sodium, potassium, nitrogen, phosphorus, arsenic, and nickel, and the zinc oxide is the p-type dopant or p-type. A zinc oxide semiconductor manufacturing method, characterized in that the p-type zinc oxide to which the oxide of the dopant is added. 제 1항에 있어서, 상기 도판트는 알루미늄, 인듐, 갈륨, 및 붕소로 이루어진 군으로부터 선택된 어느 하나로 이루어지는 n형 도판트 또는 n형도판트의 산화물과 리튬, 나트륨, 칼륨, 질소, 인, 비소, 및 니켈로 이루어진 군으로부터 선택된 어느 하나로 이루어지는 p형 도판트 또는 p형도판트의 산화물이 혼합된 것이며, 상기 아연산화물은 상기 p형 도판트 또는 상기 p형 도판트 산화물의 농도가 상기 n형 도판트 또는 상기 n형 도판트 산화물의 농도보다 높게 첨가된 p형 아연산화물인 것을 특징으로 하는 아연산화물 반도체 제조방법.The method of claim 1, wherein the dopant is an oxide of n-type dopant or n-type dopant selected from the group consisting of aluminum, indium, gallium, and boron and lithium, sodium, potassium, nitrogen, phosphorus, arsenic, and An oxide of a p-type dopant or a p-type dopant made of any one selected from the group consisting of nickel is mixed, and the zinc oxide has a concentration of the p-type dopant or the p-type dopant oxide of the n-type dopant or Zinc oxide semiconductor manufacturing method characterized in that the p-type zinc oxide added higher than the concentration of the n-type dopant oxide.
KR10-2001-0017301A 2001-04-02 2001-04-02 Method of manufacturing zinc oxide semiconductor KR100421800B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0017301A KR100421800B1 (en) 2001-04-02 2001-04-02 Method of manufacturing zinc oxide semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0017301A KR100421800B1 (en) 2001-04-02 2001-04-02 Method of manufacturing zinc oxide semiconductor

Publications (2)

Publication Number Publication Date
KR20020077557A KR20020077557A (en) 2002-10-12
KR100421800B1 true KR100421800B1 (en) 2004-03-10

Family

ID=27699538

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0017301A KR100421800B1 (en) 2001-04-02 2001-04-02 Method of manufacturing zinc oxide semiconductor

Country Status (1)

Country Link
KR (1) KR100421800B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100806681B1 (en) 2006-09-06 2008-02-26 한양대학교 산학협력단 Fabrication of highly conductive zno using low temperature rapid thermal annealing

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030025354A (en) * 2001-09-20 2003-03-29 한국과학기술연구원 Fabrication method of blue light emitting ZnO thin film phosphor
KR20030033228A (en) * 2001-10-19 2003-05-01 (주)블루트론 P-type Zinc Oxide Film and Compound semiconductor using the same and Method for producing the same
KR100698588B1 (en) * 2005-05-30 2007-03-22 원광대학교산학협력단 Fabricating method for phosphorus- and arsenic- doped p-type ZnO thin films with ampoule-tube method
KR100745811B1 (en) * 2005-09-13 2007-08-02 한국과학기술연구원 Formation Method of p-type ZnO Thin Film and Fabrication Method of Opto-Electronic Device Using the Same
KR100798430B1 (en) * 2006-11-14 2008-01-28 인하대학교 산학협력단 Method for preparing gallium doped zinc oxide thin layer according to post heat processing
EP2009683A3 (en) 2007-06-23 2011-05-04 Gwangju Institute of Science and Technology Zinc oxide semiconductor and method of manufacturing the same
KR100948603B1 (en) 2007-10-31 2010-03-24 한국전자통신연구원 Thin film type varistor and method thereof
WO2009057885A1 (en) * 2007-10-31 2009-05-07 Electronics And Telecommunications Research Institute A thin film type varistor and a method of manufacturing the same
KR100870837B1 (en) 2008-03-04 2008-11-28 한국철강 주식회사 Moisture removal method of thin film zinc oxide
KR101239615B1 (en) * 2011-04-18 2013-03-11 삼성코닝정밀소재 주식회사 Method of manufacturing substrate for light emitting apparatus and substrate for light emitting apparatus by the method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950006208A (en) * 1993-08-06 1995-03-20 전성원 Intake swirl generating means of internal combustion engine
EP1041644A2 (en) * 1999-03-30 2000-10-04 Rockwell Science Center, LLC Transparent and conductive zinc oxide film with low growth temperature
WO2001012884A1 (en) * 1999-08-13 2001-02-22 Japan Science And Technology Corporation p-TYPE SINGLE CRYSTAL ZINC OXIDE HAVING LOW RESISTIVITY AND METHOD FOR PREPARATION THEREOF
KR20020026518A (en) * 1999-09-01 2002-04-10 가와사키 마사히로 Ferromagnetic p-type single-crystal zinc oxide meterial and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950006208A (en) * 1993-08-06 1995-03-20 전성원 Intake swirl generating means of internal combustion engine
EP1041644A2 (en) * 1999-03-30 2000-10-04 Rockwell Science Center, LLC Transparent and conductive zinc oxide film with low growth temperature
WO2001012884A1 (en) * 1999-08-13 2001-02-22 Japan Science And Technology Corporation p-TYPE SINGLE CRYSTAL ZINC OXIDE HAVING LOW RESISTIVITY AND METHOD FOR PREPARATION THEREOF
KR20020034174A (en) * 1999-08-13 2002-05-08 가와사키 마사히로 p-TYPE SINGLE CRYSTAL ZINC OXIDE HAVING LOW RESISTIVITY AND METHOD FOR PREPARATION THEREOF
KR20020026518A (en) * 1999-09-01 2002-04-10 가와사키 마사히로 Ferromagnetic p-type single-crystal zinc oxide meterial and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100806681B1 (en) 2006-09-06 2008-02-26 한양대학교 산학협력단 Fabrication of highly conductive zno using low temperature rapid thermal annealing

Also Published As

Publication number Publication date
KR20020077557A (en) 2002-10-12

Similar Documents

Publication Publication Date Title
US6852623B2 (en) Method for manufacturing zinc oxide semiconductors
Iwata et al. Nitrogen-induced defects in ZnO: N grown on sapphire substrate by gas source MBE
Li et al. Optical properties and electrical characterization of p-type ZnO thin films prepared by thermally oxiding Zn 3 N 2 thin films
US7964868B2 (en) Semiconductor light-emitting device and method of manufacturing the same
KR100884883B1 (en) Zinc Oxide Semiconductor and Method of manufacturing the same
KR100421800B1 (en) Method of manufacturing zinc oxide semiconductor
CN113410348B (en) Deep ultraviolet light-emitting element and preparation method thereof
Kukimoto MOVPE growth of wide bandgap II–VI materials
JP3605643B2 (en) Growth method of zinc oxide based thin film
JP2007129271A (en) Semiconductor light emitting element and method of manufacturing same
Balakrishnan et al. Fabrication of tridoped p-ZnO thin film and homojunction by RF magnetron sputtering
CN104451867A (en) Method for preparing high-quality ZnMgBeO film
EP0507400B1 (en) Method of producing epitaxial layers of II-VI semiconductors with high acceptor concentrations
JPH01234400A (en) Semiconductor crystal
JP2003133335A (en) METHOD FOR MANUFACTURING ZnTe-BASED COMPOUND SEMICONDUCTOR AND THE ZnTe-BASED COMPOUND SEMICONDUCTOR, AND SEMICONDUCTOR DEVICE
Skromme et al. Rapid Thermal Annealing and Ion Implantation of Heteroepitaxial ZnSe/GaAs
Liday et al. Ohmic contacts to p-GaN using Au/Ni-Zn-O metallization
Mezdrogina et al. Formation of optically active centers in films of erbium-doped amorphous hydrated silicon
JPS5850408B2 (en) How to use hand-held equipment
JPS6247174A (en) Manufacture of semiconductor light emitting device
Zhu et al. Optical and electronic properties of ZnO: P/n+-Si heterostructures fabricated by metalorganic chemical vapour deposition
JP2001019599A (en) Zinc-selenium substrate and its production, and light emission element
Zhao et al. Native deep level defects in ZnO single crystal grown by CVT method
Yasuda et al. ACCEPTOR DOPING IN ZnSe BY ION-IMPLANTATION
Nishizawa et al. Stoichiometry Control of Compound Semiconductors

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121211

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20131211

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20141218

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20151217

Year of fee payment: 13

LAPS Lapse due to unpaid annual fee