JPS63185077A - Blue light emitting diode - Google Patents

Blue light emitting diode

Info

Publication number
JPS63185077A
JPS63185077A JP62016921A JP1692187A JPS63185077A JP S63185077 A JPS63185077 A JP S63185077A JP 62016921 A JP62016921 A JP 62016921A JP 1692187 A JP1692187 A JP 1692187A JP S63185077 A JPS63185077 A JP S63185077A
Authority
JP
Japan
Prior art keywords
layer
light emitting
blue light
emitting diode
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62016921A
Other languages
Japanese (ja)
Inventor
Kazuhiro Okawa
和宏 大川
Tsuneo Mitsuyu
常男 三露
Osamu Yamazaki
山崎 攻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62016921A priority Critical patent/JPS63185077A/en
Publication of JPS63185077A publication Critical patent/JPS63185077A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to form a highly efficient blue light emitting diode, by sequentially forming chlorine added n-type ZnSe layer and a nitrogen added p-type ZnSe layer by epitaxial growth on a suitable substrate. CONSTITUTION:As a substrate, gallium arsenide or zinc sulfide telluride, both having approximately the same lattice constant as that of ZnSe, and a ZnSe single crystal are used. The temperature of a GaAs single crystal substrate 1 is set between, e.g., 300 deg.C and 350 deg.C. Atomic and molecular beams of metal zinc and metal selenium, which are host crystal materials, and a molecular beam of zinc chloride as a doner source are simultaneously applied to the GaAs single crystal substrate 1 in a super high vacuum state. Thus a chlorine added n-type ZnSe layer 2 is formed. Then the ZnCl2 molecular beam is stopped in order to form a p-type ZnSe layer 3. Nitrogen molecule ions as an acceptor source and the atomic and molecular beams of the metal zinc and the metal selenium are simultaneously applied to the n-type ZnSe layer 2. Thus the nitrogen added p-type ZnSe layer 3 is formed by epitaxial growth. A gold electrode layer 4 is evaporated and annealed in order to obtain an electrode which has an ohmic contact with the p-type ZnSe layer 3.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は発光ダイオードの構造及び材料に関し、特にセ
レン化亜鉛半導体を用いた高効率の青色発光ダイオード
の添加不純物及び基板材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to the structure and materials of light emitting diodes, and more particularly to doped impurities and substrate materials for high efficiency blue light emitting diodes using zinc selenide semiconductors.

従来の技術 従来得られている青色発光ダイオードには、窒ガリウム
を用いたものや〔例えばNational TeaIL
Rep、 (ナシッナル テクニカル レポート)、2
8゜1 、1)I)83−92 (昭57))、炭化ケ
イ素を用いたもの〔応用電子物性分科会研究報告、39
2゜pp7−12(昭67)〕が知られている。
BACKGROUND OF THE INVENTION Conventionally available blue light emitting diodes include those using gallium nitrate and those using National TeaIL.
Rep, (Nasinal Technical Report), 2
8゜1, 1) I) 83-92 (1982)), using silicon carbide [Applied Electronic Materials Subcommittee Research Report, 39
2°pp7-12 (1986)] is known.

発明が解決しようとする問題点 しかし窒化ガリウムの場合はp型の半導体が得られない
ため、n型結晶の表面に金属膜を設けたシ冒ットキー接
合型ダイオードとなっており、発光効率を高めることが
難かしい。また炭化硅素の場合、pn接合ダイオードは
得られるが、間接遷移型半導体であるため、発光効率を
高めることが本質的に難かしい。このような理由により
、上記の従来例で得られる発光効率は0.01%程度と
極めて低く、実用性に乏しかった。
Problems that the invention aims to solve However, in the case of gallium nitride, it is not possible to obtain a p-type semiconductor, so a Schottky junction diode is used, which has a metal film on the surface of an n-type crystal, increasing luminous efficiency. It's difficult. In the case of silicon carbide, a pn junction diode can be obtained, but since it is an indirect transition type semiconductor, it is essentially difficult to increase luminous efficiency. For these reasons, the luminous efficiency obtained in the above-mentioned conventional example was extremely low at about 0.01%, making it impractical.

問題点を解決するための手段 上記問題点を解決する本発明の技術的手段は、材料とし
てセレン化亜鉛(以下ZnS・と記す)を用いることで
ある。そして塩素を添加したnfiZnSeと窒素を添
加したp型Zn8・を連続的にエピタキシャル成長させ
ることKよりpn接合発光ダイオードを形成させたもの
である。
Means for Solving the Problems The technical means of the present invention for solving the above problems is to use zinc selenide (hereinafter referred to as ZnS) as the material. Then, a pn junction light emitting diode was formed by successively epitaxially growing nfiZnSe to which chlorine was added and p-type Zn8 to which nitrogen was added.

作用 この技術的手段による作用は次のようになる。action The effect of this technical means is as follows.

塩素添加n型ZnS・及び窒素添加p型Zn5eは共に
低抵抗であり、しかもZn5eは直接遷移型半導体であ
るため、得られたpn接合青色発光ダイオードは発光効
率が実用的に高いものである。
Both the chlorine-doped n-type ZnS and the nitrogen-doped p-type Zn5e have low resistance, and since Zn5e is a direct transition semiconductor, the obtained pn junction blue light emitting diode has a practically high luminous efficiency.

実施例 以下、本発明を実施例によシ詳細に説明する。Example Hereinafter, the present invention will be explained in detail using examples.

第1図は、本発明による発光ダイオードの構造を模式的
に示す断面図である。
FIG. 1 is a cross-sectional view schematically showing the structure of a light emitting diode according to the present invention.

このエピタキシャル成長の方法としては、分子線エピタ
キシー法が好適である。基板にはZn8eとほぼ同一の
格子定数を有する砒化ガリウム(GaAs)単結晶基板
1を用いた。”GaAs単結晶基板1は基板から電極が
取れるように低抵抗n型のものを使用した。結晶性の良
いZn5e単結晶を得るためにGILA!I単結晶基板
1の温度は300°Cから350 ”Cの間に設定し、
超高真空中で結晶母体材料である金属亜鉛と金属セレン
の原子及び分子線と同時にドナー源として塩化亜鉛(Z
nC1z)の分子線をGILA!!単結晶基板1に照射
することにより塩素添加n型Zn5・層2を形成した。
Molecular beam epitaxy is suitable as a method for this epitaxial growth. A gallium arsenide (GaAs) single crystal substrate 1 having almost the same lattice constant as Zn8e was used as the substrate. "The GaAs single crystal substrate 1 was a low-resistance n-type one so that the electrode could be removed from the substrate. In order to obtain a Zn5e single crystal with good crystallinity, the temperature of the GILA!I single crystal substrate 1 was varied from 300°C to 350°C. “Set between C and
Zinc chloride (Z
GILA! nC1z) molecular beam! ! By irradiating the single crystal substrate 1, a chlorine-doped n-type Zn5 layer 2 was formed.

次にp型Zn80層3を形成するためにZnO12の分
子線を止め、窒素分子イオン(N2” )をアクセプタ
源として金属亜鉛及び金属セレンの原子及び分子線と同
時Kn型Zn5e層2上に照射することによシ窒素添加
p型Zn5e層3をエピタキシャル成長した。
Next, in order to form the p-type Zn80 layer 3, the ZnO12 molecular beam is stopped, and nitrogen molecular ions (N2'') are used as acceptor sources to simultaneously irradiate the Kn-type Zn5e layer 2 with atoms and molecular beams of metallic zinc and metallic selenium. By doing this, a nitrogen-doped p-type Zn5e layer 3 was epitaxially grown.

さらにp型Zn5・層3とオーム性接触の電極を取るた
めに金電極層4を蒸着し、アニールした。このようにし
て得られたpn接合實色発光ダイオードは実用的に発光
効率の高いものであった。またM(IVD法などの気相
成長法でも不純物原料ガスを切シ換えることによシ、同
一の成長を行うことができる。
Further, a gold electrode layer 4 was deposited and annealed to provide an electrode in ohmic contact with the p-type Zn5 layer 3. The thus obtained pn junction true color light emitting diode had a practically high luminous efficiency. Further, even with a vapor phase growth method such as M (IVD method), the same growth can be performed by switching the impurity source gas.

第2図は、室温において塩素添加n型Zn8・層2の電
子密度と青色及び長波長(esoonII75λらTo
Figure 2 shows the electron density of chlorinated n-type Zn8 layer 2 at room temperature and the blue and long wavelengths (esoonII75λ et al.
.

nmの間にある幅の広い発光)の発光強度の関係を測定
したものである。こや図かられかるように、電子密度が
3×1016cm− 3  以上から9×1016cm
− 3以下の狭い範囲で十分に強い青色発光が得られ、
青色発光素子として有効であることを発見した。
This is a measurement of the relationship between the luminescence intensity of a wide range of luminescence in the range of 1 nm to 50 nm. As you can see from the diagram, the electron density is from 3 x 1016 cm-3 to 9 x 1016 cm.
- Sufficiently strong blue light emission can be obtained in a narrow range of 3 or less,
It was discovered that this material is effective as a blue light-emitting device.

GILム8基板上にエピタキシャル成長したZn8e単
結晶の膜厚と前記Zn5e膜の結晶性をX線回折(40
0)で調べた結果、第3図にあるように結晶性を示すロ
ッキングカーブの半値全幅はGILAS単結晶基板上に
エピタキシャル成長させたZn5e単結晶の膜厚が1μ
論程度の所で緩和していることがわかった。ゆえにGa
ムS単結晶基板1上にエピタキシャル成長させた最初の
電導型である塩素添加nmznse層2の膜厚を1μ曹
以上と−することによって、pn接合界面付近の結晶欠
陥を低減することができ、高効率の青色発光ダイオード
が可能となった。この結晶欠陥は、基板材料とエピタキ
シャル膜材料との格子定数及び熱膨張係数の相違が原因
であると考えられる。そのためZn5e単結晶の格子定
数と±0.3チ以内のほぼ同一の格子定数を有−する硫
化テルル化亜鉛及びZnS・単結晶を基板材料に用いて
も高効率の青色発光ダイオ−5ドが可能であることがわ
かった。
The film thickness of the Zn8e single crystal epitaxially grown on the GIL 8 substrate and the crystallinity of the Zn5e film were measured by X-ray diffraction (40
0), as shown in Figure 3, the full width at half maximum of the rocking curve indicating crystallinity is 1μ when the film thickness of the Zn5e single crystal epitaxially grown on the GILAS single crystal substrate is 1μ.
It was found that the situation has eased to a certain degree. Therefore, Ga
By making the film thickness of the chlorine-doped nmznse layer 2, which is the first conductivity type, epitaxially grown on the muS single crystal substrate 1, to 1μ or more, crystal defects near the p-n junction interface can be reduced, and the crystal defects near the pn junction interface can be reduced. Efficient blue light emitting diodes are now possible. This crystal defect is thought to be caused by the difference in lattice constant and thermal expansion coefficient between the substrate material and the epitaxial film material. Therefore, even if zinc sulfide telluride and ZnS single crystals, which have almost the same lattice constant within ±0.3 degrees as the Zn5e single crystal, are used as substrate materials, high efficiency blue light emitting diodes cannot be produced. It turns out it's possible.

またGaAs単結晶基板1と塩素添加n型Zn8e層2
0間に室温における電子密度がl×1016cm− 3
以上を有するn+型Zn5e接触層を設けることは直列
抵抗を低減し、発光のしきい電圧を下げることに効果が
あった。
In addition, a GaAs single crystal substrate 1 and a chlorine-doped n-type Zn8e layer 2
The electron density at room temperature between 0 and 0 is l×10 cm
Providing the n+ type Zn5e contact layer having the above structure was effective in reducing the series resistance and lowering the threshold voltage for light emission.

発明の効果 以上述べてきたように、本発明によれば適当な基板上に
塩素添加n型Zn5e層と窒素添加p型Zn5e層を順
次エピタキシャル成長することにより高効率の青色発光
ダイオードを実現することができ、実用的にきわめて有
用である。
Effects of the Invention As described above, according to the present invention, a highly efficient blue light emitting diode can be realized by sequentially epitaxially growing a chlorine-doped n-type Zn5e layer and a nitrogen-doped p-type Zn5e layer on a suitable substrate. and is extremely useful in practice.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の青色発光ダイオードを示す
断面図、第2図は室温における塩素添加n型Zn5e層
の電子密度と青色及び長波長の関係を示すグラフ、第3
図はZn5e単結晶のX線回折(400)ロッキングカ
ーブの半値全幅とZn5eエピタキシヤル膜の厚さ依存
性を示したグラフである。 1・・・・・・低抵抗n型GaAs単結晶基板、2・・
・・・・塩素添加n型Zn5e層、3・・・・・・窒素
添加p型Zn5e層、4・・・・・・金電極層、5・・
・・・・リード線。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名5−
 ワード線 第1111 第2図 電子急度 (G帆−リ。
FIG. 1 is a cross-sectional view showing a blue light emitting diode according to an embodiment of the present invention, FIG. 2 is a graph showing the relationship between the electron density of a chlorine-doped n-type Zn5e layer and blue color and long wavelength at room temperature.
The figure is a graph showing the full width at half maximum of the X-ray diffraction (400) rocking curve of a Zn5e single crystal and the dependence on the thickness of the Zn5e epitaxial film. 1...Low resistance n-type GaAs single crystal substrate, 2...
...Chlorine-doped n-type Zn5e layer, 3...Nitrogen-doped p-type Zn5e layer, 4...Gold electrode layer, 5...
····Lead. Name of agent: Patent attorney Toshio Nakao and 1 other person5-
Word line No. 1111 Figure 2 Electronic steepness (G sail-li.

Claims (8)

【特許請求の範囲】[Claims] (1)塩素添加n型セレン化亜鉛層及び窒素添加p型セ
レン化亜鉛層によりpn接合を形成したことを特徴とす
る青色発光ダイオード。
(1) A blue light emitting diode characterized in that a pn junction is formed by a chlorine-doped n-type zinc selenide layer and a nitrogen-doped p-type zinc selenide layer.
(2)基板として砒化ガリウム単結晶を用いた特許請求
の範囲第1項記載の青色発光ダイオード。
(2) A blue light emitting diode according to claim 1, which uses gallium arsenide single crystal as a substrate.
(3)基板としてセレン化亜鉛単結晶を用いた特許請求
の範囲第1項記載の青色発光ダイオード。
(3) A blue light emitting diode according to claim 1, which uses a zinc selenide single crystal as a substrate.
(4)基板として硫化テルル化亜鉛単結晶を用いた特許
請求の範囲第1項記載の青色発光ダイオード。
(4) The blue light emitting diode according to claim 1, which uses a zinc sulfide telluride single crystal as a substrate.
(5)硫化テルル化亜鉛としてセレン化亜鉛の格子定数
との違いが室温において±0.3%以下のものを用いた
特許請求の範囲第1項記載の青色発光ダイオード。
(5) The blue light emitting diode according to claim 1, wherein the zinc telluride sulfide has a lattice constant difference of ±0.3% or less from that of zinc selenide at room temperature.
(6)基板上にエピタキシャル成長させた最初の電導型
のセレン化亜鉛の膜厚を1μm以上とした特許請求の範
囲第1項記載の青色発光ダイオード。
(6) The blue light emitting diode according to claim 1, wherein the film thickness of the initial conductivity type zinc selenide epitaxially grown on the substrate is 1 μm or more.
(7)塩素添加n型セレン化亜鉛層の室温における電子
密度を3×10^1^6cm^−^3以上から9×10
^1^8cm^−^3以下とした特許請求の範囲第1項
記載の青色発光ダイオード。
(7) Change the electron density of the chlorine-doped n-type zinc selenide layer at room temperature from 3 x 10^1^6 cm^-^3 to 9 x 10
The blue light emitting diode according to claim 1, which has a diameter of ^1^8 cm^-^3 or less.
(8)基板とn型セレン化亜鉛層の間に室温における電
子密度が1×10^1^8cm^−^3以上を有するn
^+型セレン化亜鉛接触層を設けた特許請求の範囲第1
項記載の青色発光ダイオード。
(8) An n layer with an electron density of 1×10^1^8 cm^-^3 or more at room temperature between the substrate and the n-type zinc selenide layer.
Claim 1 in which a ^+ type zinc selenide contact layer is provided
The blue light emitting diode described in Section 1.
JP62016921A 1987-01-27 1987-01-27 Blue light emitting diode Pending JPS63185077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62016921A JPS63185077A (en) 1987-01-27 1987-01-27 Blue light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62016921A JPS63185077A (en) 1987-01-27 1987-01-27 Blue light emitting diode

Publications (1)

Publication Number Publication Date
JPS63185077A true JPS63185077A (en) 1988-07-30

Family

ID=11929588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62016921A Pending JPS63185077A (en) 1987-01-27 1987-01-27 Blue light emitting diode

Country Status (1)

Country Link
JP (1) JPS63185077A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992021170A2 (en) * 1991-05-15 1992-11-26 Minnesota Mining And Manufacturing Company Blue-green laser diode
US5324963A (en) * 1992-04-13 1994-06-28 Kabushiki Kaisha Toshiba Electroluminescent semiconductor device having chalcogenide layer and mixed crystal layer
US5399524A (en) * 1992-05-05 1995-03-21 Philips Electronics North America Corporation Method of providing an ohmic type contact on p-type Zn(S)Se

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53117390A (en) * 1977-03-24 1978-10-13 Nippon Telegr & Teleph Corp <Ntt> Zinc selenide light emitting diode and production of the same
JPS5529155A (en) * 1978-08-23 1980-03-01 Shunpei Yamazaki Semiconductor device
JPS5696885A (en) * 1980-12-12 1981-08-05 Semiconductor Res Found Hetero-junction of 2-6 group compound semiconductor
JPS59117180A (en) * 1982-12-23 1984-07-06 Toshiba Corp Semiconductor light-emitting element
JPS6360573A (en) * 1986-09-01 1988-03-16 Seiko Epson Corp Manufacture of light-emitting device
JPS63116475A (en) * 1986-11-04 1988-05-20 Seiko Epson Corp Led array and manufacture thereof
JPS63241342A (en) * 1988-02-24 1988-10-06 Nikon Corp Defect inspector

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53117390A (en) * 1977-03-24 1978-10-13 Nippon Telegr & Teleph Corp <Ntt> Zinc selenide light emitting diode and production of the same
JPS5529155A (en) * 1978-08-23 1980-03-01 Shunpei Yamazaki Semiconductor device
JPS5696885A (en) * 1980-12-12 1981-08-05 Semiconductor Res Found Hetero-junction of 2-6 group compound semiconductor
JPS59117180A (en) * 1982-12-23 1984-07-06 Toshiba Corp Semiconductor light-emitting element
JPS6360573A (en) * 1986-09-01 1988-03-16 Seiko Epson Corp Manufacture of light-emitting device
JPS63116475A (en) * 1986-11-04 1988-05-20 Seiko Epson Corp Led array and manufacture thereof
JPS63241342A (en) * 1988-02-24 1988-10-06 Nikon Corp Defect inspector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992021170A2 (en) * 1991-05-15 1992-11-26 Minnesota Mining And Manufacturing Company Blue-green laser diode
EP0670593A2 (en) * 1991-05-15 1995-09-06 Minnesota Mining And Manufacturing Company II-VI semiconductor device and blue-green laser diode
EP0670593A3 (en) * 1991-05-15 1996-02-07 Minnesota Mining & Mfg II-VI semiconductor device and blue-green laser diode.
US5324963A (en) * 1992-04-13 1994-06-28 Kabushiki Kaisha Toshiba Electroluminescent semiconductor device having chalcogenide layer and mixed crystal layer
US5399524A (en) * 1992-05-05 1995-03-21 Philips Electronics North America Corporation Method of providing an ohmic type contact on p-type Zn(S)Se

Similar Documents

Publication Publication Date Title
US7622398B2 (en) Semiconductor device, semiconductor layer and production method thereof
US5027168A (en) Blue light emitting diode formed in silicon carbide
US6791257B1 (en) Photoelectric conversion functional element and production method thereof
US4918497A (en) Blue light emitting diode formed in silicon carbide
Akasaki The evolution of nitride semiconductors
US5313078A (en) Multi-layer silicon carbide light emitting diode having a PN junction
US6531716B2 (en) Group-III nitride semiconductor light-emitting device and manufacturing method for the same
US3496429A (en) Solid state light sources
Götz et al. Shallow and deep level defects in GaN
JPS63185077A (en) Blue light emitting diode
JP3260001B2 (en) Semiconductor element
JP2001226200A (en) LOW RESISTANCE p-TYPE SINGLE CRYSTAL ZnS AND ITS PRODUCING METHOD
US4040074A (en) Semiconductor cold electron emission device
US4012760A (en) Semiconductor cold electron emission device
US4040079A (en) Semiconductor cold electron emission device
JPH05304314A (en) Light emitting diode
Sleger et al. The growth and electrical characteristics of epitaxial layers of zinc sulphide and of zinc selenide on p-type gallium phosphide
JPH03161981A (en) Manufacture of semiconductor device and ii-vi compound semiconductor crystal layer
JP3785705B2 (en) Gallium arsenide mixed crystal epitaxial wafer and light emitting diode
JP3525704B2 (en) Gallium arsenide arsenide epitaxial wafers and light emitting diodes
JP3659202B2 (en) LAMINATED STRUCTURE FOR LIGHT EMITTING ELEMENT, ITS MANUFACTURING METHOD, LIGHT EMITTING ELEMENT, LAMP, AND LIGHT SOURCE
JP3736401B2 (en) COMPOUND SEMICONDUCTOR DEVICE, ITS MANUFACTURING METHOD, LIGHT EMITTING DEVICE, LAMP, AND LIGHT SOURCE
JPH0463479A (en) Compound semiconductor light emitting element
JP2540229B2 (en) Compound semiconductor light emitting device
Nishizawa et al. Stoichiometry Control of Compound Semiconductors