JPS6360563A - Optoelectronic integrated element - Google Patents

Optoelectronic integrated element

Info

Publication number
JPS6360563A
JPS6360563A JP20488986A JP20488986A JPS6360563A JP S6360563 A JPS6360563 A JP S6360563A JP 20488986 A JP20488986 A JP 20488986A JP 20488986 A JP20488986 A JP 20488986A JP S6360563 A JPS6360563 A JP S6360563A
Authority
JP
Japan
Prior art keywords
layer
semiconductor laser
bipolar transistor
active layer
vicinity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20488986A
Other languages
Japanese (ja)
Inventor
Tomoji Terakado
知二 寺門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP20488986A priority Critical patent/JPS6360563A/en
Publication of JPS6360563A publication Critical patent/JPS6360563A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0261Non-optical elements, e.g. laser driver components, heaters

Abstract

PURPOSE:To enable the simplification of a manufacturing process and ultra-high speed-high reliability-low cost without deteriorating the performance of an element by burying a section in the vicinity of an active layer with a base layer in an NPN type hetero-junction bipolar transistor. CONSTITUTION:When a semiconductor laser 2 and a hetero-junction bipolar transistor 3 are integrated onto the same semi-insulating InP substrate 10, sections in the vicinity of both ends of an active layer 13 in the semiconductor laser 2 are buried with P-type base layers 16 having high resistivity. Accordingly, leakage currents flowing through sections except the active layer 13 are reduced, the laser can be operated by low threshold currents, and only two-time crystal growth processes may be used, thus simplifying a manufacturing process, then improving the nondefective rate of products.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、超高速・大容量の光通信装置や光情報処理
装置等の主構成要素となる光電子集積素子に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an opto-electronic integrated device that is a main component of ultra-high-speed, large-capacity optical communication devices, optical information processing devices, and the like.

(従来の技術) 光ファイバを伝送路とする光通信システムは。(Conventional technology) An optical communication system uses optical fiber as the transmission path.

高速・大容量の信号伝送が可能であシ、これまでに半導
体レーザ、トランジスタ、抵抗等の個別部品の組立によ
って数百メガビットの伝送スピードにおいてシステムが
実用化されている。そして、さらに超高速・高信頼・低
価格な光通信システムの実現のために半導体レーザ等の
光素子とトランジスタ等の電子素子を同一基板上に集積
する試みが活発に進められている。半導体レーザとトラ
ンジスタを集積した例として、例えばアプライド・フィ
ジク、t、−レターズ(Appl、 Phys、 Le
tt、 )の45巻、3号、191−193頁、198
4年に掲載された論文に詳しい記載がある。これによる
とn−InP基板上に通常の埋め込みヘテロ構造の半導
体レーザとヘテロ接合バイポーラトランジスタ(HBT
)が集積された構造をとシ、1.6 GHzの高速動作
を実現している。
High-speed, large-capacity signal transmission is possible, and systems with transmission speeds of several hundred megabits have been put into practical use by assembling individual parts such as semiconductor lasers, transistors, and resistors. Furthermore, in order to realize ultra-high-speed, highly reliable, and low-cost optical communication systems, attempts are being made to integrate optical elements such as semiconductor lasers and electronic elements such as transistors on the same substrate. As an example of integrating a semiconductor laser and a transistor, for example, Applied Physics, T,-Letters (Appl, Phys, Le
45, No. 3, pp. 191-193, 198
A paper published in 2014 provides detailed information. According to this, a normal buried heterostructure semiconductor laser and a heterojunction bipolar transistor (HBT) are mounted on an n-InP substrate.
), it achieves high-speed operation at 1.6 GHz.

(発明が解決しようとする問題点) 従来例においては、n基板を用いていたから、半導体レ
ーザとヘテロ接合バイポーラトランジスタとのn基板を
通して静置容量が無視できないこと、また電気配線をヘ
テロ接合バイポーラトランジスタの上部に施しているか
ら、電気配線間の静電容量が無視できないなどの理由に
よ5.2GHz以上の高速動作が実現できなかった。
(Problems to be Solved by the Invention) In the conventional example, since an n-substrate was used, static capacitance could not be ignored through the n-substrate between the semiconductor laser and the heterojunction bipolar transistor. Because it is applied to the upper part, the capacitance between the electrical wiring cannot be ignored, and high-speed operation of 5.2 GHz or higher cannot be realized.

これらの原因を除くためには、半絶縁性基板上に半導体
レーザとヘテロ接合バイポーラトランジスタを集積させ
ることによシ、これらの間の静電容量を下げることが考
えられるが、半導体レーザとヘテロ接合バイポーラトラ
ンジスタの層構造の違いから、低しきい値電流でレーザ
動作をさせるためには、実願昭61−9027号(昭和
61年1月24日出a)K述べられている様に、半導体
レーザとヘテロ接合バイポーラトランジスタを別々に最
適化する必要があった。しかしこの方法では3回の結晶
成長プロセスを必要とし、製造プロセスが複雑になるか
ら、製品の歩留りが低かった。
In order to eliminate these causes, it is possible to reduce the capacitance between the semiconductor laser and the heterojunction bipolar transistor by integrating the semiconductor laser and the heterojunction bipolar transistor on a semi-insulating substrate. Due to the difference in the layer structure of bipolar transistors, in order to operate a laser with a low threshold current, semiconductor It was necessary to optimize the laser and the heterojunction bipolar transistor separately. However, this method required three crystal growth processes, complicating the manufacturing process and resulting in a low product yield.

本発明の目的は、これらの問題点を解決し、超高速に作
動し、信頼性が高く、安価に製造できる光電子集積素子
を提供することにある。
An object of the present invention is to solve these problems and provide an optoelectronic integrated device that operates at ultra high speed, has high reliability, and can be manufactured at low cost.

(問題点を解決するための手段) 前述の問題点を解決し上記目的を達成するために本発明
が提供する手段は、一基板上に半導体レーザ素子とnp
nヘテロ接合バイポーラトランジスタとが集積された光
電子集積素子であって、前記半導体レーザ素子の活性層
が前記npnヘテロ接合バイポーラトランジスタのベー
ス層で埋め込まれていることを特徴とする。
(Means for Solving the Problems) Means provided by the present invention in order to solve the above-mentioned problems and achieve the above objects is to combine a semiconductor laser element and an np on one substrate.
The present invention is an opto-electronic integrated device in which an n-heterojunction bipolar transistor is integrated, and is characterized in that the active layer of the semiconductor laser element is embedded in the base layer of the npn-heterojunction bipolar transistor.

(作用) 上述の本発明では、半導体レーザの活性層の近傍をnp
n形ヘテロ接合バイポーラトランジスタのベース層で埋
め込むことによって、半導体レーザとヘテロ接合バイポ
ーラトランジスタの光電子集積素子を素子性能を落とさ
ずに2回の結晶成長プロセスで形成することが可能とな
り、超高速・高信頼・低価格の光電子集積素子が得られ
る。
(Function) In the present invention described above, the vicinity of the active layer of the semiconductor laser is
By embedding the base layer of an n-type heterojunction bipolar transistor, it becomes possible to form an optoelectronic integrated device consisting of a semiconductor laser and a heterojunction bipolar transistor in two crystal growth processes without degrading the device performance, resulting in ultra-high speed and high performance. A reliable and low-cost optoelectronic integrated device can be obtained.

(実施例) 以下、本発明について図面を参照して詳細に説明する。(Example) Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は、本発明の一実施例の光電子集積素子を示す断
面図である。半導体レーザ2は、特願昭56−1666
66に記載があるブレーナ型ノ埋め込みヘテロ構造にお
いて、埋め込み半導体層をヘテロ接合バイポーラトラン
ジスタの層構造でおきかえた構造である。
FIG. 1 is a sectional view showing an optoelectronic integrated device according to an embodiment of the present invention. Semiconductor laser 2 is manufactured by patent application No. 56-1666.
This is a structure in which the buried semiconductor layer in the Brehner-type buried heterostructure described in No. 66 is replaced with a layered structure of a heterojunction bipolar transistor.

先づ、液相または気相成長法によりFeドープの半絶縁
性InP基板10(厚さ350μm)上に、n−In(
1,61Ga□、19Aso、nPo、ss第1のコン
タクト層11 (厚さ0.5μm、キャリア濃度5X1
018cm−3)、n −I n Pクラッド層12(
厚さ1.03m1キヤリア濃度sx 1o”cm−3)
、 ノンドーグのI n O,71G a O,29A
 S Q、151 P 0.39活性層13(厚さ0.
1μm)、p−InPクラッド層14(厚さ’l、Qμ
m。
First, n-In(
1,61Ga□, 19Aso, nPo, ss First contact layer 11 (thickness 0.5 μm, carrier concentration 5X1
018 cm-3), n-I n P cladding layer 12 (
Thickness 1.03m1 Carrier density sx 1o”cm-3)
, Nondawg's I n O, 71G a O, 29A
S Q, 151 P 0.39 Active layer 13 (thickness 0.
1 μm), p-InP cladding layer 14 (thickness 'l, Qμ
m.

キャリア濃度1x 1018 cm−3)  を順次成
長させる。次にこのウェハに、通常のフォトリングラフ
イック技術でメサストライプ21が逆メサ構造になシ、
活性層13の幅が1,5〜2.0μmになる様K 0.
4%のBr−メタノール液でn−InPクラッド層12
の中間までエツチングする。次に、このウェハに液相成
長技術によl)、  n−Ino、s*G a 6,1
1 A s O,25P o、75 コL’クタ層15
(厚さQ、]Jtm。
The carrier concentration is 1x 1018 cm-3). Next, mesa stripes 21 are formed into an inverted mesa structure on this wafer using normal photophosphorographic technology.
K 0. The width of the active layer 13 is 1.5 to 2.0 μm.
n-InP cladding layer 12 with 4% Br-methanol solution
Etch to the middle. Next, this wafer was coated with l), n-Ino, s*G a 6,1 by liquid phase growth technology.
1 A s O, 25 P o, 75 Collector layer 15
(Thickness Q,] Jtm.

キャリア濃度5 X I 916cm−”)、p −I
 n O,89G a 0011 A s 645 P
 O,75ベ一ス層16(厚さQ、24m1キヤリア濃
度5 X 1018 crn−3)、n −I n P
エミッタ層17 (厚さ0,2μm1キヤリア濃度5X
10’cm−3)、n+−InPnPoコンタクト層1
8(厚さ0.25m1キヤリア濃度1 x 1019 
c m −3)、p−I n 6.aIG a o、t
s A S 0.4I P 0.59キャップ層19(
厚さIAm、キャリア濃度1 x 1019 cm−3
)を順次に形成する。この場合、メサストライプ21上
には、幅が2μm程度と狭いためにコレクタ層15、ベ
ース層16、エミツタ層17、第2のコンタクト層18
は成長しない。2回目の液相成長は、半導体レーザ2の
埋め込み結晶成長とヘテロg合バイポー2トランジスタ
3の結晶成長を兼ねており、このとき、活性層13の両
端近傍をn形に比べて抵抗率の高いp形のベース層16
で埋め込むことによって、半導体レーザの活性層13以
外に流れる漏れ電流を減少させることが可能となシ、低
しきい値電流でレーザ動作が可能となる。
Carrier concentration 5 X I 916 cm-''), p-I
n O,89G a 0011 A s 645 P
O,75 base layer 16 (thickness Q, 24 m1 carrier concentration 5 x 1018 crn-3), n - I n P
Emitter layer 17 (thickness 0.2 μm 1 carrier concentration 5X
10'cm-3), n+-InPnPo contact layer 1
8 (thickness 0.25m1 carrier density 1 x 1019
cm -3), p-I n 6. aIG ao,t
s A S 0.4I P 0.59 Cap layer 19 (
Thickness IAm, carrier concentration 1 x 1019 cm-3
) are formed sequentially. In this case, on the mesa stripe 21, since the width is as narrow as about 2 μm, the collector layer 15, the base layer 16, the emitter layer 17, and the second contact layer 18 are formed on the mesa stripe 21.
does not grow. The second liquid phase growth serves both the buried crystal growth of the semiconductor laser 2 and the crystal growth of the hetero G-type bipolar transistor 3, and at this time, the vicinity of both ends of the active layer 13 is p-type base layer 16
By embedding the semiconductor laser with the active layer 13, it is possible to reduce the leakage current flowing to a region other than the active layer 13 of the semiconductor laser, and the laser operation can be performed with a low threshold current.

結晶成長後、通常のフォトリングラフイック技術とエツ
チングによシ、半導体レーザ2となるメサストライプ2
1を含む幅30μmを残し、キャップ層19を除去する
。次にヘテロ接合バイポーラトランジスタ3のエミッタ
電極26 (面積10×40μm2)、ベース電極25
(面積10X40μm”)、コレクタ電極24(面積1
0X40μm 2 )、半導体レーザのn側電極22(
幅30μm)になる部分を残して、n−InP第2のコ
ンタクト層18、n −I n P xミッタ層17、
p −I n G a A s P  ベース層16、
n−InGaAsP:xレクタ層15、n −I n 
Pクラッド層12、n”−InGaAsP第1のコンタ
クト層11、半絶縁性InP基板10を順次にエツチン
グする。この場合、InGaAsP組成であるキャップ
層19、ベース層16、コレクタ層15、第1のコンタ
クト層11は、H2S 04 + H20x + Hz
 Oの混合液で除去され、InP組成である第2のコン
タクト層18、エミツタ層17、クラッド層12基板1
0は、HCn+H3PO4の混合液によって除去される
。次にCVD法によpsi02膜20を全20付着させ
た後、フォトリソグラフィック技術によシ、各電極22
,23.24.25.26となる部分の5i02をバッ
ファードック酸を用いて除去する。
After crystal growth, the mesa stripe 2, which becomes the semiconductor laser 2, is formed using normal photophosphorographic technology and etching.
The cap layer 19 is removed, leaving a width of 30 μm including 1. Next, the emitter electrode 26 (area 10 x 40 μm2) of the heterojunction bipolar transistor 3, and the base electrode 25
(area 10 x 40 μm”), collector electrode 24 (area 1
0×40 μm 2 ), the n-side electrode 22 of the semiconductor laser (
n-InP second contact layer 18, n-InP x emitter layer 17,
p-InGaAsP base layer 16,
n-InGaAsP: x-rector layer 15, n-I n
The P cladding layer 12, the n''-InGaAsP first contact layer 11, and the semi-insulating InP substrate 10 are sequentially etched. In this case, the cap layer 19, the base layer 16, the collector layer 15, and the first The contact layer 11 is H2S 04 + H20x + Hz
The second contact layer 18 having an InP composition, the emitter layer 17, the cladding layer 12 and the substrate 1 are removed with a mixed solution of O.
0 is removed by a mixture of HCn+H3PO4. Next, after depositing all 20 psi02 films 20 by CVD method, each electrode 22 is deposited by photolithographic technology.
, 23.24.25.26 of 5i02 is removed using buffered dock acid.

次にTiAuのスパッタ又は緊着及びリスト・オフ法を
用いて各電極22,23.24.25.26を形成する
。熱処理後、電気配線27をAuの蒸着及びフォトリソ
グラフィックの技術を用いて形成する。最後に半絶縁性
InP基板10を100μm程度に研磨してウェハの製
作を終了する。このウェハを通常の伸開法によシ各素子
を分離することによって素子が製作できる。
Next, each electrode 22, 23, 24, 25, 26 is formed using TiAu sputtering or a bonding and list-off method. After the heat treatment, electrical wiring 27 is formed using Au vapor deposition and photolithographic techniques. Finally, the semi-insulating InP substrate 10 is polished to about 100 μm to complete the wafer fabrication. Elements can be manufactured by separating each element from this wafer using the usual stretching method.

この様に半導体レーザ2とヘテロ接合バイポーラトラン
ジスタ3を同一の半絶縁性InP基板10上に集積する
場合、寄生容量が減少できるから高速化に有利であるこ
とはもちろんのこと、半導体レーザ2の活性層130両
端近傍を抵抗率の高いp形のベース層16で埋め込むこ
とによって、活性層13以外に流れる漏れ電流が減少し
、20mAという低しきい値電流でレーザ動作が可能と
なり、また2回の結晶成長工程で済むから、製造プロセ
スの簡略化が可能となシ、製品の良品率が向上する。そ
こで、本実施例の光電子集積素子は、超高速で作動し、
信頼性が高く、そのうえ安価に製造できる。
In this way, when the semiconductor laser 2 and the heterojunction bipolar transistor 3 are integrated on the same semi-insulating InP substrate 10, the parasitic capacitance can be reduced, which is advantageous in increasing the speed. By burying the vicinity of both ends of the layer 130 with the p-type base layer 16 having high resistivity, the leakage current flowing to areas other than the active layer 13 is reduced, and laser operation is possible with a low threshold current of 20 mA. Since only a crystal growth step is required, the manufacturing process can be simplified and the yield rate of products can be improved. Therefore, the optoelectronic integrated device of this example operates at ultra high speed,
It is highly reliable and can be manufactured at low cost.

上記実施例において寸法例も示したが、結晶成長の様子
は成長方法や条件等によシ大幅に変わるので、それらと
ともに適切な寸法を採用すべきことはいうまでもない。
Although size examples are shown in the above embodiments, since the manner of crystal growth varies greatly depending on the growth method, conditions, etc., it goes without saying that appropriate dimensions should be adopted.

また上記実施例において電極金属をTiAuとしたが良
好なオーミック接触が得られるものであれば電極金属の
種類に制限はない。またノンドープInGaAsP活性
層13は、InGaAsP層とInP層とを100λ程
度の厚さで多層にした多重量子井戸構造にしてもよい。
Furthermore, although TiAu was used as the electrode metal in the above embodiments, there is no restriction on the type of electrode metal as long as good ohmic contact can be obtained. Further, the non-doped InGaAsP active layer 13 may have a multi-quantum well structure in which InGaAsP layers and InP layers are multilayered with a thickness of about 100λ.

またI n G a A s P活性層13の近傍に回
折格子を有したDFB構造としてもよい。また以上の実
施例では、I n P/ I n G a A s P
系の半導体材料を用いたが、G a A I A s 
/ G a A s系等の他の半導体材料を用いてもよ
い。
Further, a DFB structure having a diffraction grating near the InGaAsP active layer 13 may be used. Furthermore, in the above embodiments, I n P/ I n Ga A s P
Although we used a semiconductor material of the Ga A I A s
/GaAs-based and other semiconductor materials may also be used.

(発明の効果) 以上詳述した様に、本発明によれば、活性層を含む多層
メサストライプ構造が埋め込み半導体層で埋め込まれて
いる光電子集積素子用の埋め込み半導体レーザにおいて
、活性層の近傍をnpn形ヘテロ接合バイポーラトラン
ジスタのベース層で埋め込むことにより、素子性能を落
とさずに製造プロセスの簡略化が可能となシ、超高速・
高信頼・低価格な光電子集積素子が実現できる。
(Effects of the Invention) As detailed above, according to the present invention, in a buried semiconductor laser for an optoelectronic integrated device in which a multilayer mesa stripe structure including an active layer is buried with a buried semiconductor layer, the vicinity of the active layer is buried. By embedding the base layer of an npn-type heterojunction bipolar transistor, it is possible to simplify the manufacturing process without degrading device performance, and to achieve ultra-high speed and
Highly reliable and low-cost optoelectronic integrated devices can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を示す断面図である。 1・・・・・・光電子集積素子、2・・・・・・半導体
レーザ、3・・・・・・ヘテロ接合バイポーラトランジ
スタ、10・・・・・・半絶縁性InP基板、11・・
・・・・n  I n 041G a o、19A s
 o、41P O,59第1のコンタクト層、12・・
・・・・n−InPクラッド層、13・・・・・・ノン
ドープI n 6,710 a O,2g A s 0
,61 P O,3g活性層114°−−−−− P 
−InPクラッド層、15 =−n −1n O,89
G a o、ttA S O,2S P 0.75コレ
クタ層、16°−−−P −I n O,HG a O
,11A s 0725 P 0.75ベ一ス層、17
−・−n−InPエミツタ層、18・・・・・・n  
−InP$2のコンタクト層119°°0°°p −I
 n 041 Ga O,1g As (1,41P 
O,59キャップ層、2o・・曲S i O2膜、21
・・・・・・メサス)フイ、7’、22・・・・・・半
導体レーザのn側電極、23・・・・・・半導体レーザ
のp側電極、24・・曲コレクタ電極、25・・・・・
・ベース電極、26・・曲エミッタ電極、27・・・・
・・電気配線。 代理人 弁理士  本 庄 伸 弁 口       1〒
FIG. 1 is a sectional view showing one embodiment of the present invention. DESCRIPTION OF SYMBOLS 1...Optoelectronic integrated device, 2...Semiconductor laser, 3...Heterojunction bipolar transistor, 10...Semi-insulating InP substrate, 11...
・・・・n I n 041G ao, 19A s
o, 41P O, 59 first contact layer, 12...
...N-InP cladding layer, 13...Non-doped In 6,710 a O, 2g A s 0
, 61 P O, 3g active layer 114° ----- P
-InP cladding layer, 15 = -n -1n O, 89
G ao, ttA SO, 2S P 0.75 collector layer, 16° --- P -I n O, HG a O
, 11A s 0725 P 0.75 base layer, 17
-・-n-InP emitter layer, 18......n
-InP$2 contact layer 119°°0°°p -I
n 041 Ga O,1g As (1,41P
O, 59 Cap layer, 2o... Song S i O2 film, 21
. . . Mesas) F, 7', 22 . . . N-side electrode of semiconductor laser, 23 . . . P-side electrode of semiconductor laser, 24 . . Curved collector electrode, 25.・・・・・・
・Base electrode, 26...Curved emitter electrode, 27...
··Electric wiring. Agent Patent Attorney Nobu Honjo Attendance 1〒

Claims (1)

【特許請求の範囲】[Claims] 一基板上に半導体レーザ素子とnpnヘテロ接合バイポ
ーラトランジスタとが集積された光電子集積素子におい
て、前記半導体レーザ素子の活性層が前記npnヘテロ
接合バイポーラトランジスタのベース層で埋め込まれて
いることを特徴とする光電子集積素子。
An optoelectronic integrated device in which a semiconductor laser element and an npn heterojunction bipolar transistor are integrated on one substrate, characterized in that the active layer of the semiconductor laser element is embedded in the base layer of the npn heterojunction bipolar transistor. Optoelectronic integrated device.
JP20488986A 1986-08-29 1986-08-29 Optoelectronic integrated element Pending JPS6360563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20488986A JPS6360563A (en) 1986-08-29 1986-08-29 Optoelectronic integrated element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20488986A JPS6360563A (en) 1986-08-29 1986-08-29 Optoelectronic integrated element

Publications (1)

Publication Number Publication Date
JPS6360563A true JPS6360563A (en) 1988-03-16

Family

ID=16498074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20488986A Pending JPS6360563A (en) 1986-08-29 1986-08-29 Optoelectronic integrated element

Country Status (1)

Country Link
JP (1) JPS6360563A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH023239A (en) * 1988-06-20 1990-01-08 Nippon Telegr & Teleph Corp <Ntt> Bipolar transistor
US5281829A (en) * 1991-09-12 1994-01-25 Kabushiki Kaisha Toshiba Optical semiconductor device having semiconductor laser and photodetector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH023239A (en) * 1988-06-20 1990-01-08 Nippon Telegr & Teleph Corp <Ntt> Bipolar transistor
US5281829A (en) * 1991-09-12 1994-01-25 Kabushiki Kaisha Toshiba Optical semiconductor device having semiconductor laser and photodetector

Similar Documents

Publication Publication Date Title
EP0390262B1 (en) Radiation-emitting semiconductor device and method of manufacturing such a semiconductor device
JP3230785B2 (en) Semiconductor laser and method of manufacturing the same
US8847357B2 (en) Opto-electronic device
CA2051453C (en) Long wavelength transmitter opto-electronic integrated circuit
US4888781A (en) Semiconductor laser
US4980313A (en) Method of producing a semiconductor laser
JPS6360563A (en) Optoelectronic integrated element
JPS6243357B2 (en)
US6031857A (en) Semiconductor device having a current-constricting spaces and method of manufacturing the device
JP2002314196A (en) Compound semiconductor and semiconductor optical device
US5218614A (en) Semiconductor laser device
JPH059951B2 (en)
US5323412A (en) Semiconductor laser device
JPH05110186A (en) Monolithic optical element and manufacture of the same
US20220294187A1 (en) Semiconductor device and method for manufacturing semiconductor device
JP2527197B2 (en) Optical integrated device
JPH03297173A (en) Semiconductor optical detector device
JP2940185B2 (en) Embedded semiconductor laser
JP2751306B2 (en) Semiconductor light emitting device
JPS6261383A (en) Semiconductor laser and manufacture thereof
JPS61187287A (en) Semiconductor light-emitting device
EP0508618B1 (en) Method of making ohmic contact to a III-V semiconductor device
JPS6292386A (en) Photoelectronic integrated element
JPH021979A (en) Manufacture of photoelectric integrated circuit
JPH01239987A (en) Semiconductor laser