JPS6360169B2 - - Google Patents

Info

Publication number
JPS6360169B2
JPS6360169B2 JP17936185A JP17936185A JPS6360169B2 JP S6360169 B2 JPS6360169 B2 JP S6360169B2 JP 17936185 A JP17936185 A JP 17936185A JP 17936185 A JP17936185 A JP 17936185A JP S6360169 B2 JPS6360169 B2 JP S6360169B2
Authority
JP
Japan
Prior art keywords
ground
hardening
hardened
water
compressed air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17936185A
Other languages
Japanese (ja)
Other versions
JPS61165417A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17936185A priority Critical patent/JPS61165417A/en
Publication of JPS61165417A publication Critical patent/JPS61165417A/en
Publication of JPS6360169B2 publication Critical patent/JPS6360169B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/18Bulkheads or similar walls made solely of concrete in situ

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Bulkheads Adapted To Foundation Construction (AREA)

Description

【発明の詳細な説明】 本発明は地中止水壁の形成方法に関する。[Detailed description of the invention] The present invention relates to a method for forming a ground-stopping water wall.

従来、地中止水壁の構築は、地盤を掘削して縦
孔を形成し、該縦孔内に壁崩壊防止用の安定液を
満たし、次いでこの安定液中に粉末状の硬化剤、
例えばセメント、ベントナイト、粘土あるいは生
石灰などを空気搬送して注入し、これを撹拌して
硬化させて形成していた。しかしながら、従来の
地中止水壁の構築方法では掘削した縦孔の領域に
ついてのみ硬化ゾーンができるだけであつた。こ
れは、安定液である泥水の土中での滲透効果が低
いことが原因している。このことから、前記構築
方法を繰り返して連続した地中止水壁を構築する
場合、上水域を大きくするため多数の前記縦孔領
域の硬化ゾーンを形成しなければならずその作業
能率が非常に低いものであつた。
Conventionally, to construct a ground-stopping water wall, the ground is excavated to form a vertical hole, the vertical hole is filled with a stabilizing liquid to prevent the wall from collapsing, and then a powdered hardening agent,
For example, cement, bentonite, clay, or quicklime was injected by air conveyance, and the mixture was stirred and hardened. However, conventional methods of constructing underground water walls only create a hardened zone in the area of the excavated vertical hole. This is due to the low percolation effect of mud, which is a stabilizing liquid, in the soil. For this reason, when constructing a continuous ground-stop water wall by repeating the construction method described above, in order to enlarge the water area, a large number of hardened zones in the vertical hole area must be formed, and the work efficiency is extremely low. It was hot.

本発明の目的は、一度の作業で止水性が大きく
かつ比較的広い範囲の硬化領域を地盤中に部分的
に形成すると共に地中止水壁の施工能率を向上さ
せることにある。
An object of the present invention is to partially form a hardened area in the ground with high water-stopping properties and a relatively wide range in a single operation, and to improve the construction efficiency of a ground-stop water wall.

本発明は、地中止水壁を、部分的に重複する大
小2つの硬化域をもつて、地中に部分的に形成す
る方法であつて、地盤に穿たれた孔を任意の深度
位置で遮閉して前記孔の下方部分を密閉し、該下
方部分に高圧力空気を導入して地中の地下水位を
低下させ、次いで前記下方部分に水と反応して硬
化するセメントのような粉末状の硬化剤を圧縮空
気により吹き込んで地盤中に前記下方部分を含む
第1の硬化領域を形成し、該第1の硬化領域の硬
化前に前記下方部分に前記硬化剤と反応するケイ
酸ソーダのような液状の硬化促進剤を注入して第
2の硬化領域を形成することを特徴とする。
The present invention is a method of partially forming a ground-stopping water wall in the ground with two large and small hardened areas that partially overlap, and which blocks a hole drilled in the ground at an arbitrary depth position. The hole is closed to seal the lower portion of the hole, high pressure air is introduced into the lower portion to lower the water table underground, and the lower portion is filled with a cement-like powder that hardens upon reaction with water. A hardening agent is blown into the ground by compressed air to form a first hardening region including the lower portion, and before hardening of the first hardening region, sodium silicate is added to the lower portion to react with the hardening agent. The second hardening region is formed by injecting a liquid hardening accelerator such as:

本発明によれば、止水性を有する第1の硬化領
域と該第1の硬化領域内に形成される、第1の硬
化領域におけるより大きい止水性を有する第2の
硬化領域とにより、両硬化領域によつて形成され
る地中止水壁全体の止水性を大きくすることがで
きる。
According to the present invention, a first hardened region having a water-stopping property and a second hardened region formed within the first hardened region and having a greater water-stopping property than the first hardened region, both harden and harden. It is possible to increase the water-stopping performance of the entire ground stop water wall formed by the area.

また、第1の硬化領域の形成に際して空気を用
いることにより地盤中に粉末状硬化剤を広範囲に
拡散することができる。これは、空気が低粘性
で、液体と比較して地盤中での滲透度合が著しく
大きいことによる。したがつて、一施工単位にお
ける第1の硬化領域を地盤中に広範囲に亘つて形
成することができ、これにより広い止水域を形成
することができると共に、地中止水壁の施工能率
を著しく向上させることができる。
Further, by using air when forming the first hardened region, the powdered hardening agent can be widely diffused into the ground. This is because air has a low viscosity and its permeability into the ground is significantly greater than that of liquids. Therefore, the first hardened area in one construction unit can be formed over a wide range in the ground, thereby making it possible to form a wide water stop area and significantly improving the construction efficiency of the ground stop water wall. can be done.

本発明が特徴とするところは、図示の実施例に
ついての以下の説明により、さらに明らかとなろ
う。
The features of the invention will become clearer from the following description of the illustrated embodiments.

本発明に係る地中止水壁すなわち硬化ゾーン4
8は、第2図に示すように、地盤中に部分的に形
成される。
Ground stop water wall or hardening zone 4 according to the invention
8 is partially formed in the ground, as shown in FIG.

本発明の硬化ゾーン48の形成方法の説明の便
宜のために、その説明に先立ち、地中止水壁形成
装置10を使用しての第1図に示す地中止水壁の
形成方法について述べる。
For convenience in explaining the method for forming the hardened zone 48 of the present invention, prior to the description, a method for forming the ground stop water wall shown in FIG. 1 using the ground stop water wall forming apparatus 10 will be described.

地中止水壁形成装置10は同心的に配置された
内管12および外管14から成る2重管16を備
え、該2重管の下端近傍には前記内管および外管
のための開口18が複数個形成されている。これ
らの開口は、後述するように、内管12に送給さ
れた圧縮空気と粉末状硬化剤および外管14に送
給された液状の硬化促進剤を噴射する吐出口であ
る。
The underground water wall forming device 10 includes a double pipe 16 consisting of an inner pipe 12 and an outer pipe 14 arranged concentrically, and an opening 18 for the inner pipe and the outer pipe near the lower end of the double pipe. are formed in multiple numbers. These openings are discharge ports through which the compressed air and powdered curing agent supplied to the inner tube 12 and the liquid curing accelerator supplied to the outer tube 14 are injected, as will be described later.

前記2重管の下端にはカツタヘツド20が取り
付けられ且つ該2重管の周囲にはその長さ方向に
亘つてスクリユー22が取付けられている。さら
に、前記2重管の吐出口18付近には複数の撹拌
羽根24が取り付けられている。このような2重
管をシヤフトとするスクリユーオーガは、クロー
ラクレーン26によつて支持されたリーダ28の
掘進装置30によつてその上端を固定支持されて
いる。この掘進装置30は内部に回転駆動手段を
備え且つリーダ28に対して上下方向へ滑動可能
に支持されている。これにより、前記スクリユー
オーガは回転しながら地盤32内へ掘進できる。
A cutter head 20 is attached to the lower end of the double tube, and a screw 22 is attached around the double tube along its length. Further, a plurality of stirring blades 24 are attached near the discharge port 18 of the double pipe. The screw auger having such a double pipe as a shaft has its upper end fixedly supported by an excavation device 30 of a leader 28 supported by a crawler crane 26. This excavation device 30 is provided with a rotational drive means therein, and is supported so as to be slidable in the vertical direction relative to the leader 28. Thereby, the screw auger can dig into the ground 32 while rotating.

さらに、前記2重管の内管12の上端は、接続
用の耐圧ホース34によつて圧縮空気供給源3
6、例えばコンプレツサなどに接続される。圧縮
空気供給源36から耐圧ホース34を介して内管
12へ圧縮空気を供給する際、その圧縮空気中に
粉末状の硬化剤を混入するため耐圧ホース34に
粉末状硬化剤供給フイーダ38が取り付けられ
る。この供給フイーダ38はロータリー型式のフ
イーダを用いた場合、粉末状硬化剤の定量供給が
できることから好ましい。このようなロータリー
型式のフイーダは従来その構造をよく知られてい
ることからその詳細な説明は省略する。また、2
重管の外管14の上端はホース40によつてグラ
ウトポンプ42に接続されている。
Further, the upper end of the inner pipe 12 of the double pipe is connected to a compressed air supply source 3 by a pressure hose 34 for connection.
6. Connected to, for example, a compressor. When compressed air is supplied from the compressed air supply source 36 to the inner pipe 12 via the pressure hose 34, a powder hardening agent supply feeder 38 is attached to the pressure hose 34 in order to mix the powder hardening agent into the compressed air. It will be done. When a rotary type feeder is used as the supply feeder 38, it is preferable to use a rotary type feeder because the powdered curing agent can be supplied in a fixed amount. Since the structure of such a rotary type feeder is well known, a detailed explanation thereof will be omitted. Also, 2
The upper end of the outer pipe 14 of the heavy pipe is connected to a grout pump 42 by a hose 40.

次に、地中止水壁形成装置10による第1図に
示す地中止水壁の形成方法を説明する。
Next, a method of forming the ground stop water wall shown in FIG. 1 using the ground stop water wall forming apparatus 10 will be explained.

前記2重管16をシヤフトとするスクリユーオ
ーガにて地盤32を地表から1〜2mほど穿孔す
る。次いで、圧縮空気供給源36によつて地下水
位44より若干高めの圧力の空気を耐圧ホース3
4を介して内管12へ送給する。その際、前記硬
化剤供給フイーダ38よりセメント、ベントナイ
ト、粘土、あるいは生石灰のような水和性の粉末
状の硬化剤を耐圧ホース34内へ供給し、前記圧
縮空気に混入して内管12へ送給する。そして、
前記粉末状の硬化剤は圧縮空気と共に吐出口18
より噴射され、穿孔内部に導入される。その間、
前記スクリユーオーガは引き続いて地盤中を回転
しながら掘進して行く。この時、吐出口より噴出
した粉末状の硬化剤は、撹拌羽根24によつて前
記穿孔内で均一に分散され且つ穿孔壁から周囲地
盤中に滲透する。空気は水のような液体に比べそ
の粘性係数が著しく小さいため、粉末状の硬化剤
を空気搬送することにより、液体を前記硬化剤の
搬送媒体とするよりはるかに広範囲に硬化剤を地
盤中に滲透させることができる。
The ground 32 is bored about 1 to 2 m from the ground surface using a screw auger using the double pipe 16 as a shaft. Next, air at a pressure slightly higher than the underground water level 44 is supplied to the pressure hose 3 by the compressed air supply source 36.
4 to the inner tube 12. At that time, a hydratable powder hardening agent such as cement, bentonite, clay, or quicklime is supplied from the hardening agent feeder 38 into the pressure hose 34, mixed with the compressed air, and sent to the inner pipe 12. send. and,
The powdered curing agent is delivered to the discharge port 18 together with compressed air.
It is injected into the borehole and introduced into the borehole. meanwhile,
The screw auger continues to dig through the ground while rotating. At this time, the powdered curing agent ejected from the discharge port is uniformly dispersed within the perforation by the stirring blades 24 and seeps into the surrounding ground from the perforation wall. Air has a significantly lower viscosity coefficient than liquids such as water, so by air transporting the hardening agent in powder form, it is possible to spread the hardening agent into the ground over a much wider range than by using a liquid as the transport medium for the hardening agent. It can be permeated.

このようにして所定の深度まで地盤中に粉末状
の硬化剤を吹き込むことにより、地盤32中に広
範囲に亘る第1の硬化領域が形成される。該硬化
領域中の硬化剤は前記穿孔およびその周囲地盤中
の土中水と反応してゆつくりと硬化する。その
後、硬化剤を混入された前記圧縮空気の噴射が停
止され、次いで前記2重管をシヤフトとするスク
リユーオーガの回転を掘削時とは反対の方向へ回
転すなわち逆転させ、且つグラウトポンプ42か
ら外管14内へ送給された液状の硬化促進剤であ
るケイ酸ソーダが前記吐出口18より噴出され
る。前記ケイ酸ソーダの噴出は前記第1の硬化領
域の硬化前に行なわれる。次いで、前記スクリユ
ーオーガはこの状態のまま引き上げられる。この
結果、穿孔内に下方から注入されたケイ酸ソーダ
は、逆転するスクリユーオーガの撹拌羽根24に
よつて前記穿孔内で撹拌混合され該孔中の硬化剤
と反応して、最終的に柱列の固結物である第2の
硬化領域が前記第1の硬化領域のほぼ中央に形成
される。
By injecting the powdered hardening agent into the ground to a predetermined depth in this manner, a first hardened region extending over a wide range is formed in the ground 32. The hardening agent in the hardening region reacts with the soil water in the perforation and the surrounding ground, and hardens slowly. Thereafter, the injection of the compressed air mixed with the curing agent is stopped, and then the rotation of the screw auger, which uses the double pipe as a shaft, is rotated or reversed in the direction opposite to that during excavation, and the grout pump 42 is Sodium silicate, which is a liquid hardening accelerator, is fed into the outer tube 14 and is ejected from the discharge port 18 . The jetting of the sodium silicate is performed before curing the first curing area. Next, the screw auger is pulled up in this state. As a result, the sodium silicate injected into the borehole from below is stirred and mixed within the borehole by the stirring blade 24 of the screw auger that rotates in reverse, reacts with the hardening agent in the borehole, and finally forms a pillar. A second hardened region of row consolidation is formed approximately centrally of the first hardened region.

しかし、粉末状の硬化剤とケイ酸ソーダとの硬
化反応が水と粉末状の硬化剤との硬化反応に比べ
著しく早いことから、前記第2の硬化領域が先に
固化し、その後前記第1の硬化領域が完全に固化
する。第2の硬化領域は第1の硬化領域より硬度
すなわち強度が大きくしかも不透水性が高い。
However, since the curing reaction between the powdered curing agent and sodium silicate is significantly faster than the curing reaction between water and the powdered curing agent, the second curing region solidifies first, and then the first curing region hardens. The hardened area is completely solidified. The second hardened region has greater hardness or strength and is more impermeable to water than the first hardened region.

前記したように第1の硬化領域は地盤中に広範
囲に形成されて広い範囲の止水域を形成すると共
に構築されるべき地中止水壁の一施工単位を著し
く拡大する。また第1の硬化領域のほぼ中央に形
成された第2の硬化領域は地中止水壁の強度を保
持すると共にそのより大きい止水性が前記第1の
硬化領域の止水性と相俟つて地中止水壁全体の止
水性を向上させる。
As described above, the first hardened area is formed in a wide area in the ground, forms a wide range of water stopping area, and significantly enlarges one construction unit of the ground stopping water wall to be constructed. Further, the second hardened area formed approximately in the center of the first hardened area maintains the strength of the ground-stopping water wall, and its greater water-stopping property works together with the water-stopping property of the first hardened area to prevent the ground-stopping. Improves the water-stopping properties of the entire water wall.

次に第2図を参照して、前記地中止水壁形成装
置によつて地盤中に部分的に硬化ゾーンを形成す
る本発明の方法を説明する。
Next, with reference to FIG. 2, the method of the present invention for forming a partially hardened zone in the ground using the ground anchoring water wall forming device will be described.

地中内部に部分的に第1および第2の硬化領域
即ち硬化ゾーン48を形成するためには、前記2
重管16をシヤフトとするスクリユーオーガによ
つて地盤32を所定深度まで掘削して縦孔46を
形成し、その後前記スクリユーオーガを停止させ
る。
In order to form first and second hardened regions or hardened zones 48 partially within the earth, the two
A vertical hole 46 is formed by excavating the ground 32 to a predetermined depth using a screw auger having the heavy pipe 16 as a shaft, and then the screw auger is stopped.

次に、グラウトポンプ42を用いて所望の深度
位置すなわち硬化予定領域の上部における外管の
吐出口(最上位の吐出口)18より粘性材料から
成るパツカーグラウト50を注出し、縦孔46を
前記硬化予定領域の上部で密閉する。
Next, using the grout pump 42, Packer grout 50 made of a viscous material is poured out from the discharge port (top discharge port) 18 of the outer tube at a desired depth position, that is, the upper part of the area to be hardened, and the vertical hole 46 is poured out. The upper part of the area to be cured is sealed.

パツカーグラウト50を最上位の吐出口18か
ら吐出させるべく前記グラウトを2重管16の所
定の位置でせき止めるパツカーとして、従来周知
のいわゆるエアパツカーを用いることができる。
Packer A conventionally well-known so-called air packer can be used as a packer for damming the grout 50 at a predetermined position of the double pipe 16 in order to discharge the grout 50 from the uppermost discharge port 18.

前記エアパツカーはゴム製のスリーブ(図示せ
ず)を有し、該スリーブは、最上位の吐出口18
と該吐出口の直ぐ下位に位置する吐出口18との
間において内管12を取り巻いて該内管に取り付
けられている。前記エアパツカーの一部を構成す
る前記スリーブには該スリーブと内管12との間
に圧縮空気を供給して前記スリーブを膨張させる
ための給気管(図示せず)が接続されている。前
記給気管は、内管12と外管14との間の空間を
経て伸び、地上に設置された圧縮空気供給源(図
示せず)に接続されている。
The air packer has a rubber sleeve (not shown), which is connected to the uppermost outlet 18.
and the discharge port 18 located immediately below the discharge port, surrounding the inner pipe 12 and attached to the inner pipe. An air supply pipe (not shown) for supplying compressed air between the sleeve and the inner tube 12 to inflate the sleeve is connected to the sleeve forming a part of the air packer. The air supply pipe extends through the space between the inner pipe 12 and the outer pipe 14 and is connected to a compressed air supply source (not shown) installed on the ground.

前記スリーブをこれが外管14の内面を押圧す
るまで膨張させることにより、パツカーグラウト
50は前記スリーブの配置位置よりも下方へ流動
することを阻止される。したがつて、膨張された
前記スリーブによつてせき止められるパツカーグ
ラウト50は、最上位の吐出口18のみから吐出
される。また、膨張された前記スリーブは、前記
給気管を介して前記圧縮空気を抜くことにより収
縮し、これにより内外両管12,14間の空間が
連通状態となる。
By expanding the sleeve until it presses against the inner surface of outer tube 14, Packer grout 50 is prevented from flowing below the sleeve's location. Therefore, the Packer grout 50 dammed up by the expanded sleeve is discharged only from the uppermost discharge port 18. Further, the expanded sleeve is deflated by extracting the compressed air through the air supply pipe, thereby bringing the space between the inner and outer pipes 12 and 14 into communication.

次に、圧縮空気供給源36から内管12内に圧
縮空気だけを送給し、スクリユーオーガの下端の
吐出口18より密閉された縦孔46の下方部分に
地下水圧よりもはるかに高い圧縮空気を導入し、
第2図に線52で示されるように地下水位を低下
させる。地下水位はいわゆる井戸理論が説明する
原理によつて低下すると考えられる。
Next, only compressed air is supplied from the compressed air supply source 36 into the inner pipe 12, and from the discharge port 18 at the lower end of the screw auger to the lower part of the vertical hole 46, which is sealed, the compressed air is compressed much higher than the groundwater pressure. introduce air,
The groundwater level is lowered as indicated by line 52 in FIG. It is thought that the groundwater level decreases according to the principle explained by the so-called well theory.

以下水位の低下の状態は地盤中に配置された測
定装置54により測定される。当該装置により地
下水位の低下を確認した後、圧縮空気供給源36
から耐圧ホース34を介して内管12へ送給され
ている圧縮空気中に硬化剤供給フイーダ38より
粉末状の硬化剤が混入され、縦孔46の密閉され
た前記下方部分内へ噴射される。この時、スクリ
ユーオーガは回転されていて、噴射された粉末状
の硬化剤は撹拌羽根24によつて前記下方部分内
部で第1図の例と同様に均一に拡散され、且つ圧
縮空気の土中での滲透作用によつて硬化剤の粉末
が前記下方部分の孔壁から広範囲に土中に進入
し、前記下方部分を含む第1の硬化領域が形成さ
れる。このとき、前記スクリユーオーガは、前記
粘性材料から成るパツカーグラウト50と密接状
態で回転することから、前記スクリユーオーガと
パツカーグラウト50との間からの前記圧縮空気
の漏れはほとんどない。
The lowering of the water level is then measured by a measuring device 54 placed in the ground. After confirming that the groundwater level has decreased using the device, the compressed air supply source 36
A hardening agent in powder form is mixed into the compressed air fed from the hardening agent supply feeder 38 to the inner pipe 12 via the pressure hose 34, and is injected into the sealed lower portion of the vertical hole 46. . At this time, the screw auger is being rotated, and the injected powder hardening agent is uniformly dispersed inside the lower part by the stirring blade 24 as in the example of FIG. Due to the osmosis therein, the hardening agent powder penetrates into the soil over a wide area through the pore walls of the lower part, forming a first hardened area including the lower part. At this time, since the screw auger rotates in close contact with the Packer grout 50 made of a viscous material, there is almost no leakage of the compressed air between the screw auger and the Packer grout 50.

その後、グラウトポンプ42によつて外管の吐
出口18よりケイ酸ソーダが縦孔46の密閉され
た前記下方部分内に噴射され、その間スクリユー
オーガは逆転されながら引き上げられる。
Thereafter, sodium silicate is injected into the sealed lower portion of the vertical hole 46 from the outlet 18 of the outer tube by the grout pump 42, while the screw auger is pulled up while being reversed.

これにより、前記ケイ酸ソーダは、逆転するス
クリユーオーガの撹拌羽根24によつて前記下方
部分内で撹拌混合され該下方部分中の硬化剤と反
応して固結物から成る第2の硬化領域が形成さ
れ、第2図に示されるように地中の内部に部分的
に硬化ゾーン48が形成されしかもその硬化ゾー
ンの範囲は従来の方法よりも、極めて広く形成で
きる。このため、トンネル掘削中のトンネル上部
からの出水の防止対策あるいはトンネル上部の崩
壊防止のための補強対策として本発明の方法によ
り容易に広範囲に亘つて硬化ゾーンを形成するこ
とができる。
As a result, the sodium silicate is stirred and mixed in the lower part by the stirring blade 24 of the screw auger that rotates in reverse, and reacts with the curing agent in the lower part to form a second hardened region consisting of a solidified material. As shown in FIG. 2, a hardening zone 48 is formed partially inside the ground, and the range of the hardening zone can be formed much wider than in the conventional method. Therefore, a hardening zone can be easily formed over a wide range by the method of the present invention as a measure to prevent water from flowing out from the upper part of the tunnel during tunnel excavation or as a reinforcement measure to prevent the upper part of the tunnel from collapsing.

本発明によれば一度の作業で地盤中に止水性が
大きくかつ向範囲の硬化領域を形成することがで
き、しかも地中止水壁の施工能率を著しく向上さ
せることができる。
According to the present invention, it is possible to form a hardened area in the ground with a large water-stopping property and a wide range in a single operation, and moreover, it is possible to significantly improve the construction efficiency of the ground-stopping water wall.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は地中止水壁形成方法を実施する装置を
概略的に示す断面図、第2図は本発明に係る地中
止水壁形成方法を概略的に示す説明図である。 10:地中止水壁形成装置、16:2重管、1
8:吐出口、32:地盤、34:耐圧ホース、3
6:圧縮空気供給源、38:硬化剤供給フイー
ダ、42:グラウトポンプ、48:硬化ゾーン。
FIG. 1 is a sectional view schematically showing an apparatus for carrying out a method for forming a water wall forming a ground stop, and FIG. 2 is an explanatory diagram schematically showing a method for forming a water wall forming a ground stop according to the present invention. 10: Ground suspension water wall forming device, 16: Double pipe, 1
8: Discharge port, 32: Ground, 34: Pressure resistant hose, 3
6: compressed air supply source, 38: curing agent supply feeder, 42: grout pump, 48: curing zone.

Claims (1)

【特許請求の範囲】[Claims] 1 地盤に穿たれた孔を任意の深度位置で遮閉し
て前記孔の下方部分を密閉し、該下方部分に高圧
力空気を導入して地中の地下水位を低下させ、次
いで前記下方部分に水と反応して硬化するセメン
トのような粉末状の硬化剤を圧縮空気により吹き
込んで地盤中に前記下方部分を含む第1の硬化領
域を形成し、該第1の硬化領域の硬化前に前記下
方部分に前記硬化剤と反応するケイ酸ソーダのよ
うな液状の硬化促進剤を注入して第2の硬化領域
を形成する、地中止水壁形成方法。
1. A hole drilled in the ground is closed off at a desired depth to seal the lower part of the hole, high pressure air is introduced into the lower part to lower the groundwater level underground, and then the lower part is sealed. forming a first hardening region including the lower portion in the ground by blowing with compressed air a powder hardening agent such as cement that hardens by reacting with water, and before hardening the first hardening region; A method for forming a subterranean water wall, comprising injecting a liquid hardening accelerator such as sodium silicate that reacts with the hardening agent into the lower portion to form a second hardened region.
JP17936185A 1985-08-16 1985-08-16 Formation of cut-off wall under ground Granted JPS61165417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17936185A JPS61165417A (en) 1985-08-16 1985-08-16 Formation of cut-off wall under ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17936185A JPS61165417A (en) 1985-08-16 1985-08-16 Formation of cut-off wall under ground

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP52094658A Division JPS6056848B2 (en) 1977-08-09 1977-08-09 Ground stop water wall formation method

Publications (2)

Publication Number Publication Date
JPS61165417A JPS61165417A (en) 1986-07-26
JPS6360169B2 true JPS6360169B2 (en) 1988-11-22

Family

ID=16064507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17936185A Granted JPS61165417A (en) 1985-08-16 1985-08-16 Formation of cut-off wall under ground

Country Status (1)

Country Link
JP (1) JPS61165417A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0295634U (en) * 1989-01-11 1990-07-30

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4546853B2 (en) * 2005-03-02 2010-09-22 丸順重工株式会社 Auger drive device for work equipment
JP5726007B2 (en) * 2011-07-27 2015-05-27 松原建設株式会社 Ground improvement method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0295634U (en) * 1989-01-11 1990-07-30

Also Published As

Publication number Publication date
JPS61165417A (en) 1986-07-26

Similar Documents

Publication Publication Date Title
AU2020101047A4 (en) Method for filling underground cavity in bedrock by grouting and hydraulic filling device
US20020057948A1 (en) Multi grouting system
CN104929114A (en) High pressure jet grouting pile waterproof curtain construction device and method
CN106320354B (en) The Seepage method on solution cavity development stratum under coating
US4514112A (en) Method for injecting grouting agent and apparatus for conducting the method
CN106284295A (en) Multichannel high-pressure vibro-grouting jet groutinl construction method
KR100656142B1 (en) The foundation grouting construction method of having used foundation digging and the equipment for grout material and this
JP6632018B1 (en) Tunnel waterproofing method, tunnel waterproofing system, and waterproofing material
JPH0469251B2 (en)
JPS6360169B2 (en)
KR100564368B1 (en) Consistency compaction grouting system for a construction of water-proof wall
GB2062072A (en) Method of and Apparatus for the Construction of Mixed or Augered-in-place Piles
JPS6056848B2 (en) Ground stop water wall formation method
Bruce et al. Glossary of grouting terminology
KR100463104B1 (en) Pillar-shaped hardening structure formation equipment and the formation method of leading cement milk pressure injection
JPH0468109A (en) Injection method with horizontal sleeve
JPH06158636A (en) Method for grouting
JP2003171949A (en) Excavating bottom surface-stabilizing construction method and underground building construction method
Moehrl Well grouting and well protection
JPH0476110A (en) Installation method for medical fluid injection strainer pipe and strainer pipe therefor
CN109488333A (en) A kind of level stirs spray interpolation pipe canopy pile driving construction engineering method
CN216341904U (en) High-water-head fine sand layer pore-forming device in civil construction
JPS61113924A (en) Method of forming pileform body
JPH0516497B2 (en)
CN115961625A (en) Foam concrete grouting system and method for karst area