JPS635925B2 - - Google Patents

Info

Publication number
JPS635925B2
JPS635925B2 JP57205213A JP20521382A JPS635925B2 JP S635925 B2 JPS635925 B2 JP S635925B2 JP 57205213 A JP57205213 A JP 57205213A JP 20521382 A JP20521382 A JP 20521382A JP S635925 B2 JPS635925 B2 JP S635925B2
Authority
JP
Japan
Prior art keywords
resistor
group
charge
resistance
ladder resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57205213A
Other languages
Japanese (ja)
Other versions
JPS5994918A (en
Inventor
Fumihide Murao
Koji Shinomya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP20521382A priority Critical patent/JPS5994918A/en
Publication of JPS5994918A publication Critical patent/JPS5994918A/en
Publication of JPS635925B2 publication Critical patent/JPS635925B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/74Simultaneous conversion
    • H03M1/78Simultaneous conversion using ladder network
    • H03M1/785Simultaneous conversion using ladder network using resistors, i.e. R-2R ladders

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Analogue/Digital Conversion (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、モノリシツク集積回路によるラダ
ー抵抗型D―A変換回路に関し、特に高精度のラ
ダー抵抗型D―A変換回路を実現するための素子
配置の改善に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a ladder resistance type DA conversion circuit using a monolithic integrated circuit, and in particular to an element arrangement for realizing a highly accurate ladder resistance type DA conversion circuit. This is related to the improvement of

〔従来の技術〕[Conventional technology]

第1図に示すような、ラダー抵抗網RO,ベー
スを共通接続したトランジスタ群TR、その各々
のトランジスタのエミツタに接続される抵抗群
REO,及び上記ラダー抵抗網ROとトランジスタ群
TRとの間に設けられたスイツチ群SO(重み切換回
路群)より構成されるD―A変換回路では、その
分解能は、ラダー抵抗網ROの抵抗精度と、エミ
ツタに抵抗REが接続されたベース共通のトラン
ジスタ群TRから成る定電流回路群の相対的出力
電流精度とに起因する為、従来、抵抗のトリミン
グ等の方法を用いて高分解能を得ることが実施さ
れていた。
As shown in Figure 1, there is a ladder resistor network R O , a group of transistors T R whose bases are commonly connected, and a group of resistors connected to the emitter of each transistor.
R EO , and the above ladder resistance network R O and transistor group
In the DA converter circuit, which is composed of a switch group S O (weight switching circuit group) provided between T R and T R, its resolution depends on the resistance accuracy of the ladder resistor network R O and the resistance R This is due to the relative output current accuracy of a constant current circuit group consisting of a group of connected transistors T R with a common base, so conventionally methods such as resistor trimming have been used to obtain high resolution.

〔発明の概要〕[Summary of the invention]

この発明は、以上のようなトリミング等の方法
を用いず、ラダー抵抗型D―A変換回路のR―
2Rラダー抵抗網を、抵抗Rを直列接続して抵抗
2Rを得ることによりすべて抵抗Rを単位として
構成するか、または抵抗2Rを並列接続して抵抗
Rを得ることによりすべて抵抗2Rを単位として
構成し、かつこのラダー抵抗網を構成する各単位
抵抗によるラダー抵抗群、トランジスタ群、前記
トランジスタ群の各トランジスタのエミツタにそ
れぞれ接続された抵抗で構成される抵抗群(以下
エミツタ抵抗群と称す)の各群を構成する素子
を、最上位ビツトを担当するものを中央に、以下
より上位のビツトを担当するものから順に上記中
央の構成素子の左右に順次交互に振り分けて配置
することにより、各素子間の相対的整合性を利用
して、従来とは全く異なる方法で容易にかつ安価
に高分解能が得られるモノリシツク集積回路によ
るラダー抵抗型D―A変換回路を提供することを
目的としている。
In this invention, the R-
Connect the 2R ladder resistor network with resistor R in series to create a resistor.
By obtaining 2R, all resistors R are configured as a unit, or by connecting resistors 2R in parallel to obtain resistance R, all resistors 2R are configured as a unit, and by each unit resistor that configures this ladder resistance network. The elements constituting each group of the ladder resistance group, the transistor group, and the resistor group (hereinafter referred to as the emitter resistance group) each consisting of a resistor connected to the emitter of each transistor in the transistor group are in charge of the most significant bit. By placing components in the center and sequentially distributing them to the left and right of the central component in order from those in charge of higher-order bits, the relative consistency between each element is utilized. The object of the present invention is to provide a ladder resistance type DA converter circuit using a monolithic integrated circuit that can easily and inexpensively obtain high resolution using a completely different method.

〔発明の実施例〕[Embodiments of the invention]

ここで、一般にモノリシツク集積回路におい
て、結晶方向が同一で近接する素子間では、その
特性が類似し、また素子間隔が大きいとその特性
の差が大きくなるという特徴がある。したがつ
て、モノリシツク集積回路で第1図のようなラダ
ー抵抗型D―A変換回路をつくる場合、その構成
素子の配置がD―A変換出力の精度に大きく影響
する。ここでは、第2図に示す5ビツトのラダー
抵抗型D―A変換回路を例にとつて、その構成素
子の最適な配置について具体的に説明する。
Generally speaking, in a monolithic integrated circuit, adjacent elements having the same crystal direction have similar characteristics, and the larger the distance between the elements, the greater the difference in their characteristics. Therefore, when building a ladder resistance type DA converter circuit as shown in FIG. 1 using a monolithic integrated circuit, the arrangement of its constituent elements greatly affects the accuracy of the DA conversion output. Here, by taking the 5-bit ladder resistance type DA converter circuit shown in FIG. 2 as an example, the optimum arrangement of its constituent elements will be specifically explained.

図において、T1〜T5は入力されるデイジタル
データの各ビツトに対応して設けられたNPN型
のトランジスタであり、トランジスタT1が最上
位ビツト(MSB)を担当し、以下トランジスタ
T2〜T5が順次、より下位ビツトを担当し、トラ
ンジスタT5が最下位ビツト(LSB)を担当して
いる。また、T6は上記トランジスタT1〜T5とと
もにカレントミラーを構成するトランジスタであ
り、これらのトランジスタT1〜T6によりトラン
ジスタ群TRが構成されている。RE1〜RE6は上記
トランジスタT1〜T6の各エミツタに接続されエ
ミツタ抵抗群REOを構成するエミツタ抵抗、R1
R3,R5,R7,R9は上記トランジスタT1〜T5の各
コレクタに接続されたビツト抵抗、R2,R4,R6
R8は上記トランジスタT1〜T5とビツト抵抗R1
R3,R5,R7,R9との各接続点間をそれぞれ接続
するビツト間抵抗であり、上記ビツト抵抗R1
R3,R5,R7,R9とビツト間抵抗R2,R4,R6
R8とによりラダー抵抗網、即ちラダー抵抗群RO
が構成されている。
In the figure, T 1 to T 5 are NPN transistors provided corresponding to each bit of input digital data, with transistor T 1 in charge of the most significant bit (MSB), and hereinafter referred to as transistors.
T 2 to T 5 are sequentially responsible for the lower bits, and transistor T 5 is responsible for the least significant bit (LSB). Furthermore, T6 is a transistor that forms a current mirror together with the transistors T1 to T5 , and these transistors T1 to T6 form a transistor group TR . R E1 to R E6 are emitter resistors connected to each emitter of the transistors T 1 to T 6 and forming an emitter resistor group R EO ;
R 3 , R 5 , R 7 , R 9 are bit resistors connected to the collectors of the transistors T 1 to T 5 , and R 2 , R 4 , R 6 ,
R8 is the above transistors T1 to T5 and the bit resistor R1 ,
This is an inter-bit resistance that connects each connection point with R 3 , R 5 , R 7 , and R 9 , and the above-mentioned bit resistances R 1 ,
R 3 , R 5 , R 7 , R 9 and inter-bit resistance R 2 , R 4 , R 6 ,
R 8 and the ladder resistance network, i.e. the ladder resistance group R O
is configured.

なお、S1〜S5は入力されるデイジタルデータに
応じて開閉するスイツチであり、これらのスイツ
チS1〜S5により重み切換回路群SOが構成されてい
る。また、Irefは定電流源、Vrefは基準電圧源で
ある。
Note that S 1 to S 5 are switches that open and close according to input digital data, and these switches S 1 to S 5 constitute a weight switching circuit group SO . Further, Iref is a constant current source, and Vref is a reference voltage source.

このようにまず、ラダー抵抗群ROに関しては、
第3図a,bに示すように、抵抗2R(R1,R3
R5,R7)は抵抗Rを直列接続して得ており、従
つて該ラダー抵抗群ROはすべて抵抗Rを単位と
して構成されている。またこのラダー抵抗群RO
は、抵抗値RのP+拡散1による抵抗R1〜R9をで
きるだけ近接してかつ平行に並べて配置し、これ
ら抵抗R1〜R9の両端に該抵抗の方向と垂直な向
きにN+拡散2を入れ、そこでこの抵抗の島の電
位をとる。こうすることによつて、非常に整合の
とれた抵抗値Rの抵抗群R1〜R9を形成し、しか
も最上位ビツト(MSB)を担当するビツト抵抗
R1及びビツト間抵抗R2についてはビツト間抵抗
R2の左右にビツト抵抗R1を配置し、以下、より
上位のビツトを担当する抵抗から順に、抵抗R3
R4,R5,R6,R7,R8,R9をこの順序で、この左
右に交互に振り分けて配置し、次にこれらを同図
に示すようにAl配線3で接続して、ラダー抵抗
群を構成する。このように最上位ビツト(MSB)
を担当する抵抗R2を中心に、以下、より上位の
ビツトを担当する抵抗から順に左右に振り分けて
配置することにより、各素子間のばらつきとチツ
プ内での熱勾配から生じるD―A変換出力の誤差
を最小にすることができる。
In this way, first of all, regarding the ladder resistance group R O ,
As shown in Figure 3a and b, the resistors 2R (R 1 , R 3 ,
R 5 , R 7 ) are obtained by connecting resistors R in series, and therefore the ladder resistor group R O is all constructed using resistors R as a unit. Also, this ladder resistance group R O
In this example, resistors R 1 to R 9 formed by P + diffusion 1 with a resistance value R are arranged as close as possible and in parallel, and N + is placed at both ends of these resistors R 1 to R 9 in a direction perpendicular to the direction of the resistors. Diffusion 2 is inserted and the potential of this resistor island is taken there. By doing this, a resistor group R 1 to R 9 with highly matched resistance values R is formed, and the bit resistor responsible for the most significant bit (MSB)
For R 1 and the bit-to-bit resistance R 2 , the bit-to-bit resistance is
Bit resistors R 1 are arranged on the left and right of R 2 , and resistors R 3 , R 3 ,
R 4 , R 5 , R 6 , R 7 , R 8 , and R 9 are arranged in this order, alternately on the left and right, and then connected with Al wiring 3 as shown in the figure. Configure a ladder resistance group. Most significant bit (MSB) like this
By arranging the resistors R2 , which is in charge of the bits, as the center, and distributing the resistors to the left and right in order from the resistors in charge of higher-order bits, the D-A conversion output caused by variations between each element and thermal gradients within the chip can be reduced. The error can be minimized.

また、第2図において定電流源回路群を構成す
るトランジスタT1,T2,T3,T4,T5,T6とそ
のトランジスタのエミツタに接続されるエミツタ
抵抗群RE1,RE2,RE3,RE4,RE5,RE6について
も、第4図に示すように最上位ビツト(MSB)
を担当するトランジスタT1,及び該トランジス
タのエミツタに接続される抵抗RE1を中心に配置
し、その左右により上位ビツトを担当するものか
ら順番にトランジスタT2,T3,T4,T5,エミツ
タ抵抗RE2,RE3,RE4,RE5をそれぞれ左右に交
互に振り分け、さらにトランジスタT1,抵抗RE1
に平行にかつできるだけ近接するよう配置し、同
図に示すようにAl配線3で接続する。このよう
な素子配置により上記トランジスタ群及びエミツ
タ抵抗群を構成することにより、上記ラダー抵抗
群の場合と同様に、各素子間のばらつきとチツプ
内での熱勾配の影響とを最小限におさえることが
できる。
In addition, in FIG. 2, transistors T 1 , T 2 , T 3 , T 4 , T 5 , T 6 constituting the constant current source circuit group and emitter resistance groups R E1 , R E2 , connected to the emitters of the transistors are shown. For R E3 , R E4 , R E5 , and R E6 , the most significant bit (MSB) is also
The transistor T 1 in charge of the upper bit and the resistor R E1 connected to the emitter of the transistor are arranged in the center, and the transistors T 2 , T 3 , T 4 , T 5 , The emitter resistors R E2 , R E3 , R E4 , and R E5 are distributed alternately to the left and right, respectively, and the transistor T 1 and resistor R E1 are
They are arranged parallel to and as close to each other as possible, and connected with Al wiring 3 as shown in the figure. By configuring the transistor group and emitter resistor group with such an element arrangement, as in the case of the ladder resistor group, variations between each element and the influence of thermal gradients within the chip can be minimized. Can be done.

なお、上記実施例において、は、ラダー抵抗網
を、抵抗Rを直列接続して抵抗2Rを得ることに
よりすべて抵抗Rを単位として構成したが、これ
は、抵抗2Rを並列接続して抵抗Rを得ることに
よりすべて抵抗2Rを単位として構成してもよく、
上記実施例と同様の効果を得ることができる。
In the above embodiment, the resistor ladder network was constructed using each resistor R as a unit by connecting resistors R in series to obtain resistor 2R. By obtaining, all resistors 2R may be configured as a unit,
Effects similar to those of the above embodiment can be obtained.

なお、上記実施例においては、第2図のラダー
抵抗型D―A変換回路について、具体的に説明し
たが、これは一実施例であつて、素子配置の詳
細、ビツト数、トランジスタの種類等は上記実施
例に限定するものではない。
Note that in the above embodiment, the ladder resistance type DA converter circuit shown in FIG. is not limited to the above embodiments.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、ラダー抵抗
型D―A変換回路のR―2Rラダー抵抗網を、抵
抗Rを直列接続して抵抗2Rを得ることによりす
べて抵抗Rを単位として構成するか、または抵抗
2Rを並列接続して抵抗Rを得ることによりすべ
て抵抗2Rを単位として構成し、かつこのラダー
抵抗網を構成する各単位抵抗によるラダー抵抗
群、トランジスタ群、エミツタ抵抗群の各群の構
成素子を、最上位ビツトを担当するものを中央
に、以下より上位ビツトを担当するものから順に
中央の構成素子の左右に順次交互に振り分けて配
置構成したので、高精度のD―A変換器をモノリ
シツク集積回路で容易に製造することができ、ま
た他回路との組合せも容易にできるため、D―A
変換回路内蔵の種々の回路の1チツプモノリシツ
ク集積回路化を図ることが可能となる効果があ
る。
As described above, according to the present invention, the R-2R ladder resistance network of the ladder resistance type D-A converter circuit can be configured entirely using the resistance R as a unit by connecting the resistances R in series to obtain the resistance 2R. , or resistance
By connecting 2R in parallel to obtain a resistor R, all resistors 2R are configured as a unit, and the constituent elements of each group of ladder resistance groups, transistor groups, and emitter resistance groups are made up of each unit resistance that makes up this ladder resistance network. The components in charge of the most significant bit are arranged in the center, and the components in charge of the higher order bits are distributed alternately to the left and right of the central component, allowing for monolithic integration of high-precision D-A converters. Because it can be easily manufactured with circuits and can be easily combined with other circuits, D-A
This has the effect of making it possible to integrate various circuits with built-in conversion circuits into one-chip monolithic circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はNPNトランジスタを用いた典型的な
ラダー抵抗型D―A変換器の回路図、第2図は本
発明の一実施例によるモノリシツク集積回路にお
けるラダー抵抗型D―A変換回路の回路図、第3
図a,bはそれぞれ第2図の回路をモノリシツク
集積回路として実規したときのラダー抵抗群の素
子配置図及びそのA―A′線断面図、第4図は第
2図の回路をモノリシツク集積回路として実現し
たときのトランジスタ群及びエミツタ抵抗群の素
子配置図である。 TR……トランジスタ群、SO……重み切換回路
群、R1,R3,R5,R7,R9……ビツト抵抗、R2
R4,R6,R8……ビツト間抵抗、RO……ラダー抵
抗群、REO……エミツタ抵抗群。なお、図中同一
符号は同一又は相当部分を示す。
Fig. 1 is a circuit diagram of a typical ladder resistance type DA converter using NPN transistors, and Fig. 2 is a circuit diagram of a ladder resistance type DA converter circuit in a monolithic integrated circuit according to an embodiment of the present invention. , 3rd
Figures a and b are an element layout diagram of a ladder resistor group and its sectional view taken along the line A-A' when the circuit in Figure 2 is implemented as a monolithic integrated circuit, and Figure 4 is a monolithic integrated circuit in which the circuit in Figure 2 is implemented as a monolithic integrated circuit. FIG. 2 is an element layout diagram of a transistor group and an emitter resistor group when realized as a transistor. T R ...Transistor group, S O ...Weight switching circuit group, R 1 , R 3 , R 5 , R 7 , R 9 ... Bit resistor, R 2 ,
R 4 , R 6 , R 8 ... Resistance between bits, R O ... Ladder resistance group, R EO ... Emitter resistance group. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 1 R―2Rラダー抵抗網、定電流源群、重み切
換回路群から構成されるモノリシツク集積回路に
よるラダー抵抗型D―A変換回路であつて、上記
R―2Rラダー抵抗網は抵抗Rを直列接続して抵
抗2Rを得ることによりすべて抵抗Rを単位とし
て構成されるか、抵抗2Rを並列接続して抵抗R
を得ることによりすべて抵抗2Rを単位として構
成され、かつ上記定電流源群を構成するトランジ
スタ群と抵抗群、および上記R―2Rラダー抵抗
網を構成する各単位抵抗による抵抗群の各素子群
において、最上位ビツトを担当する素子が中央に
配置され、それ以下のビツトを担当する素子は上
記中央の素子と素子形状を同じに、かつ素子方向
をそろえてその左右に上位ビツトを担当する素子
から順次交互に振り分けて配置され、最下位ビツ
トを担当する素子が一番外側に配置されているこ
とを特徴とするモノリシツク集積回路によるラダ
ー抵抗型D―A変換回路。
1. A ladder resistance type D-A conversion circuit using a monolithic integrated circuit consisting of an R-2R ladder resistance network, a constant current source group, and a weight switching circuit group. By doing this to obtain a resistor 2R, it can be constructed using a resistor R as a unit, or by connecting resistors 2R in parallel to obtain a resistor R.
As a result, in each element group, all of which are composed of the resistor 2R as a unit, the transistor group and the resistor group that make up the constant current source group, and the resistor group of each unit resistor that makes up the above R-2R ladder resistance network. , the element in charge of the most significant bit is arranged in the center, and the elements in charge of the lower bits have the same element shape as the above-mentioned center element, and the element directions are aligned, and the elements in charge of the upper bit are placed on the left and right of it. A ladder resistance type D-A converter circuit using a monolithic integrated circuit, characterized in that the elements are arranged in an alternating manner, and the element in charge of the least significant bit is arranged at the outermost side.
JP20521382A 1982-11-20 1982-11-20 Ladder resistance type d-a converting circuit by monolithic integrated circuit Granted JPS5994918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20521382A JPS5994918A (en) 1982-11-20 1982-11-20 Ladder resistance type d-a converting circuit by monolithic integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20521382A JPS5994918A (en) 1982-11-20 1982-11-20 Ladder resistance type d-a converting circuit by monolithic integrated circuit

Publications (2)

Publication Number Publication Date
JPS5994918A JPS5994918A (en) 1984-05-31
JPS635925B2 true JPS635925B2 (en) 1988-02-05

Family

ID=16503271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20521382A Granted JPS5994918A (en) 1982-11-20 1982-11-20 Ladder resistance type d-a converting circuit by monolithic integrated circuit

Country Status (1)

Country Link
JP (1) JPS5994918A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6079766A (en) * 1983-10-05 1985-05-07 Nec Corp R-2r ladder type resistor circuit
JPH04352466A (en) * 1991-05-30 1992-12-07 Mitsubishi Electric Corp R-2r ladder-type resistor circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55104128A (en) * 1978-01-02 1980-08-09 Nippon Telegr & Teleph Corp <Ntt> R-2r resistor series

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55104128A (en) * 1978-01-02 1980-08-09 Nippon Telegr & Teleph Corp <Ntt> R-2r resistor series

Also Published As

Publication number Publication date
JPS5994918A (en) 1984-05-31

Similar Documents

Publication Publication Date Title
JPH0522136A (en) A/d converter
JPH0646709B2 (en) Digital / Analog converter
JPH01189227A (en) Complementary voltage interpolating circuit with compensated transmission delay
US3890610A (en) High-precision digital-to-analog converters
JPH0261822B2 (en)
JPS635925B2 (en)
JPH0123966B2 (en)
US3943431A (en) Current-splitting network
JP3513608B2 (en) Digital / analog converter
US4542368A (en) Trimmable resistive scaling network suitable for digital to analog converters
JPH06268523A (en) D/a converter
JP2663845B2 (en) Digital to analog converter
JPH0578214B2 (en)
JPH0119474Y2 (en)
JP3820210B2 (en) D / A converter circuit
JP3031582B2 (en) Semiconductor integrated circuit
JPH01248829A (en) Digital/analog converter
JPH0198322A (en) Resistance voltage division type digital-analog converter
JP3879912B2 (en) Semiconductor device provided with DAC
JPS6359166B2 (en)
WO1991007825A2 (en) Termination circuit for an r-2r ladder that compensates for temperature drift
JPS6022675Y2 (en) AD converter
JPS61196622A (en) Digital-analog converter
JPS6236403B2 (en)
JPS6244728B2 (en)