JPS6358226B2 - - Google Patents

Info

Publication number
JPS6358226B2
JPS6358226B2 JP57147368A JP14736882A JPS6358226B2 JP S6358226 B2 JPS6358226 B2 JP S6358226B2 JP 57147368 A JP57147368 A JP 57147368A JP 14736882 A JP14736882 A JP 14736882A JP S6358226 B2 JPS6358226 B2 JP S6358226B2
Authority
JP
Japan
Prior art keywords
electrodes
container
plasma
vacuum
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57147368A
Other languages
Japanese (ja)
Other versions
JPS5935674A (en
Inventor
Naoharu Fujimori
Akira Doi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP14736882A priority Critical patent/JPS5935674A/en
Publication of JPS5935674A publication Critical patent/JPS5935674A/en
Publication of JPS6358226B2 publication Critical patent/JPS6358226B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/503Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using dc or ac discharges

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 (イ) 技術分野 本発明は工業的な量産可能なプラズマCVD装
置に関するものである。CVD法は熱的な活性に
より反応を起し基材に特定化合物を被覆する方法
であり、プラズマCVDもその1つの方法である。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical field The present invention relates to a plasma CVD apparatus that can be industrially mass-produced. The CVD method is a method of coating a substrate with a specific compound by causing a reaction through thermal activation, and plasma CVD is one of these methods.

(ロ) 技術の背景 化学的蒸着法(CVD法)は現在、半導体工業、
光フアイバー、切削用工具にて広く利用されてい
る技術である。このCVD法は比較的高温を要す
るためその処理温度をできるだけ下げる努力が
種々の方法で試みられている。その1つは有機化
合物を供給源として用いて低温での分解を利用す
ることである。他の方法はプラズマ放電を利用し
て反応を促進する方法である。後者は既にアモル
フアスSiやSi3N4パツシベーシヨン膜の製造に用
いられているものであり、第1図はその装置の1
例を示す。真空容器6の中に加熱ヒータ2を内蔵
する被処理物1の載せ台があり、容器内は排気孔
5を通じて真空ポンプにより排気一定減圧に保た
れるようになつており、加熱ヒータにより一定温
度に加熱された状態でガス導入孔4から導入され
た反応ガスが電極8と被処理物載せ台間に電源7
により放電したプラズマ中を通過してイオン化し
て被処理物1の表面を被覆するものである。
(b) Background of the technology Chemical vapor deposition (CVD) is currently used in the semiconductor industry,
This technology is widely used in optical fibers and cutting tools. Since this CVD method requires a relatively high temperature, various methods have been attempted to lower the processing temperature as much as possible. One is to use organic compounds as a source and take advantage of their decomposition at low temperatures. Another method uses plasma discharge to accelerate the reaction. The latter is already used in the production of amorphous Si and Si 3 N 4 passivation films, and Figure 1 shows one of the devices.
Give an example. A vacuum container 6 has a stage for placing the workpiece 1 with a built-in heater 2, and the inside of the container is maintained at a constant reduced pressure by exhausting air through an exhaust hole 5 by a vacuum pump, and the heater maintains a constant temperature. The reactant gas introduced from the gas introduction hole 4 in a heated state is connected to the power supply 7 between the electrode 8 and the workpiece mounting table.
The plasma passes through the discharged plasma and is ionized to coat the surface of the object 1 to be processed.

従来この装置は平面基板の一面のみへの被覆を
目的にして設計されており、製造装置もこれに合
つた形で500℃以下の温度での処理を目指してい
る。特開昭58−164777号公報には、平面基板とし
て多段にする方法が記載されているが電極面に大
きな温度分布が生じて均一な被覆は困難である。
また特開昭56−5972号公報ではプラズマ放電によ
る膜形成を多量生産する方法として、支持体を可
能状態に設置し、ワイヤー電極を使用する方法が
提案されているが、プラズマ発生条件が限定さ
れ、またプラズマの均一性に問題がある。
Conventionally, this equipment has been designed to coat only one side of a flat substrate, and the manufacturing equipment is designed to accommodate this, aiming for processing at temperatures below 500°C. JP-A-58-164777 describes a method of forming a flat substrate in multiple stages, but a large temperature distribution occurs on the electrode surface, making uniform coating difficult.
Furthermore, Japanese Patent Application Laid-open No. 56-5972 proposes a method for mass-producing film formation by plasma discharge, in which a support is installed in a possible state and a wire electrode is used, but the plasma generation conditions are limited. , there is also a problem with plasma uniformity.

一方、CVD法を多く採用している切削工具用
被覆超硬合金の場合は3次元的にすべての面を被
覆する必要があり、従つて上述の如き従来の設備
では量産上使用不可能である。また、平面上に被
覆する場合においても温度分布、最高温度等の問
題があり上述の従来の装置の改良が望まれてい
る。
On the other hand, in the case of coated cemented carbide for cutting tools, for which the CVD method is often used, it is necessary to coat all surfaces three-dimensionally, and therefore it is impossible to use the conventional equipment described above for mass production. . Further, even when coating a flat surface, there are problems such as temperature distribution and maximum temperature, and improvements to the above-mentioned conventional apparatus are desired.

(ハ) 発明の開示 発明者らはプラズマCVD法の特徴を最大限に
引き出し得る多量生産装置につき検討した結果本
発明に至つたものであり、温度分布、最高温度の
問題を解決し、3次元的被覆を均一に行うことの
出来る装置を開発したものである。
(C) Disclosure of the Invention The inventors have arrived at the present invention as a result of studying a mass production device that can maximize the characteristics of the plasma CVD method. We have developed a device that can uniformly cover targets.

第2図は本発明の蒸着装置の概要を示す断面図
を示す。本発明の要件は、真空容器6内に同一中
心軸を有し直径の異る円筒状の電極9,9′及び
10,10′を配置し、この間にプラズマを発生
させ、この中に被処理物1を基板支持具(図示せ
ず)に固定して設置し、加熱は容器外に設けられ
たヒータ2によつて行うことにあり、これによつ
て温度分布を均一にすることが出来、プラズマの
発生を全く別個に制御することができるものであ
る。又、処理温度は1000℃あるいはそれ以上に上
昇させることが可能となつた。被処理物を固定す
る基板支持具は、耐熱性の材質、たとえばステン
レス(SUS316)の棒またはパイプを、真空容器
の壁部(外部ヒータとは別の壁)でアルミナの如
き絶縁物を介して固定し、内外電極間に電極軸と
平行に支持される。
FIG. 2 shows a cross-sectional view showing an outline of the vapor deposition apparatus of the present invention. The requirements of the present invention are to arrange cylindrical electrodes 9, 9' and 10, 10' having the same central axis and different diameters in the vacuum container 6, to generate plasma between them, and to generate a plasma therein. The object 1 is fixedly installed on a substrate support (not shown), and heating is performed by a heater 2 provided outside the container, thereby making it possible to make the temperature distribution uniform. The generation of plasma can be controlled completely separately. Furthermore, it has become possible to raise the processing temperature to 1000°C or more. The substrate support for fixing the object to be processed is a heat-resistant material such as a stainless steel (SUS316) rod or pipe that is attached to the wall of the vacuum chamber (separate wall from the external heater) through an insulating material such as alumina. It is fixed and supported parallel to the electrode axis between the inner and outer electrodes.

電極9,10の形状を円筒状とするのは放電が
均一に起ることを目的とするためである。また通
常外熱式真空容器は円筒形が強度上好ましいので
反応容器として最大限の体積を利用しようとする
ならば容器そのものが電極となつても良い。
The reason why the electrodes 9 and 10 are cylindrical is to ensure that discharge occurs uniformly. Further, since it is generally preferable for an externally heated vacuum container to have a cylindrical shape in terms of strength, the container itself may serve as an electrode if the maximum volume is to be utilized as a reaction container.

内部電極9と外部電極10とは好ましくはその
中心軸が一致すべきであり、これはプラズマ発生
状態を均一にするために重要である。
The central axes of the internal electrode 9 and the external electrode 10 should preferably coincide, and this is important for making the plasma generation state uniform.

被処理物は内外電極間に設置されるが、両電極
が絶縁されても良いし、あるいは片側電極にとり
つけられてもよい。又被処理物自体に何らかのバ
イアスを印加することも公知の手段であり本発明
の効果に変りはない。
The object to be processed is placed between the inner and outer electrodes, but both electrodes may be insulated or may be attached to one electrode. Furthermore, applying some kind of bias to the object to be processed itself is a known method, and the effects of the present invention are unchanged.

プラズマの発生は直流電界でも高周波電界でも
可能であるが直列の場合は被処理物の極性は目的
によつて吟味する必要がある。
Plasma can be generated using either a direct current electric field or a high frequency electric field, but in the case of a series connection, the polarity of the object to be treated must be carefully considered depending on the purpose.

(ニ) 発明を実施するための最良の形態 実施例 1 材質がSUS316で120φ×500mmHの真空容器の
内部に、SUS316の板材で100φmmの外側電極と
50φmmの内部電極を同一中心軸にして設置した。
容器の外側にはニクロム線をヒーターとする抵抗
加熱炉を設けた。次に内外電極間に電極中心と平
行に6mmφ×300mmのステンレス棒を複数本基板
支持具として設けた。該支持具は真空容器の側壁
でアルミナ絶縁物を介して固定した。この基板支
持具に100×15×1mmのSUS304の板材をボルト
締めし、これを基板として2.5μのAl2O3の蒸着を
行つた。蒸着は、真空容器を排気した後AlCl33
%、CO26%、H291%のガスを700c.c./min.の流
量で導入し、圧力1Torrで内外電極間に
DC750V、2Aの放電を起こし、500℃、2時間の
処理によつて行つた。
(D) Embodiment of the best mode for carrying out the invention 1 Inside a vacuum container made of SUS316 and measuring 120φ x 500mmH, an outer electrode of 100φmm made of SUS316 plate material is installed.
The internal electrodes of 50φmm were installed with the same central axis.
A resistance heating furnace using a nichrome wire as a heater was installed outside the container. Next, a plurality of stainless steel rods of 6 mmφ x 300 mm were provided as substrate supports between the inner and outer electrodes in parallel to the center of the electrodes. The support was fixed to the side wall of the vacuum vessel via an alumina insulator. A SUS304 plate of 100 x 15 x 1 mm was bolted to this substrate support, and 2.5 μm of Al 2 O 3 was vapor-deposited using this as a substrate. Evaporation of AlCl 3 3 after evacuating the vacuum vessel
%, CO 2 6%, H 2 91% gas was introduced at a flow rate of 700 c.c./min. between the inner and outer electrodes at a pressure of 1 Torr.
A discharge of DC750V and 2A was generated, and the treatment was carried out at 500°C for 2 hours.

得られた膜の断面を光学顕微鏡で観察すると基
板の表裏全域にわたり2.3〜2.7μの範囲内の均一
な膜が観察された。
When the cross section of the obtained film was observed under an optical microscope, a uniform film with a thickness of 2.3 to 2.7 μm was observed over the entire surface of the substrate.

実施例 2 材質がSUS316で寸法350φ×700mmHの真空容
器の内部に、SUS316の板材で300φmmの外部電極
と120φmmの内部電極を同一中心軸にて設置した。
容器の外側にはカンタル線をヒーターとする抵抗
加熱炉を設けた、次に、内外電極間に電極中心軸
と平行に、等間隔で支持穴を設けた8mmφ×600
mmのステンレス棒を複数本を基板支持具として設
けた。該支持具は真空容器の側壁でアルミナ絶縁
物を介して固定した。この基板支持具に、基板と
してISO P30の超硬合金チツプ(形状、寸法は
SNGA)を同超硬合金チツプに設けられた穴
(これは使用時のホルダー固定用)と支持具の穴
にボルトを通して固定支持した。蒸着はTiCl42
%、CH418%、H280%のガスを3/minにて導入
し、内外電極間には13.56MHzの高周波電力
(500W)によつて放電を発生させた。圧力
2Torr、温度750℃で1時間処理することにより
3μ厚のTiC膜を得た。本容器中に1800ケの上述超
硬合金チツプを設置したが、そのバラツキは3μ
±0.3μと極めて均一な被覆が行われた。これを基
板として2.5μのAl2O3の蒸着を行つた。蒸着は、
真空容器を排気した後AlCl33%、CO26%、H291
%のガスを700c.c./min.の流量で導入し、圧力
1Torrで内外電極間にDC750V、2Aの放電を起こ
し、500℃、2時間の処理によつて行つた。
Example 2 Inside a vacuum vessel made of SUS316 and having dimensions of 350φ×700mmH, an external electrode of 300φmm and an internal electrode of 120φmm made of SUS316 plate material were installed on the same central axis.
A resistance heating furnace using Kanthal wire as a heater was installed on the outside of the container.Next, support holes were provided at equal intervals between the inner and outer electrodes, parallel to the center axis of the electrodes.
A plurality of mm stainless steel rods were provided as substrate supports. The support was fixed to the side wall of the vacuum vessel via an alumina insulator. An ISO P30 cemented carbide chip (shape and dimensions are
SNGA) was fixed and supported by passing bolts through a hole made in the same cemented carbide chip (this is for fixing the holder during use) and a hole in the support. Vapor deposition is TiCl 4 2
%, CH 4 18%, and H 2 80% gas was introduced at a rate of 3/min, and a discharge was generated between the inner and outer electrodes using high frequency power (500 W) of 13.56 MHz. pressure
By processing for 1 hour at 2Torr and temperature of 750℃
A TiC film with a thickness of 3μ was obtained. 1800 of the above-mentioned cemented carbide chips were installed in this container, but the variation was 3 μm.
Extremely uniform coating was achieved with ±0.3μ. Using this as a substrate, 2.5μ of Al 2 O 3 was deposited. Vapor deposition is
After evacuating the vacuum vessel AlCl3 3%, CO2 6 %, H2 91
% gas was introduced at a flow rate of 700c.c./min., and the pressure
A discharge of DC750V and 2A was generated between the inner and outer electrodes at 1 Torr, and the treatment was carried out at 500°C for 2 hours.

得られた膜の断面を光学顕微鏡で観察すると基
板の表裏全域にわたり2.3〜2.7μの範囲内の均一
な膜が観察された。
When the cross section of the obtained film was observed under an optical microscope, a uniform film with a thickness of 2.3 to 2.7 μm was observed over the entire surface of the substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の蒸着装置の概要を示す断面図で
あり、第2図は本発明の装置の1例を示す断面図
である。 1:基材、2,2′:加熱ヒータ、3:加熱電
源、4:ガス導入孔、5:真空排気孔、6:真空
容器、7:放電電源、8:電極、9,9′:内部
電極、10,10′:外部電極。
FIG. 1 is a sectional view showing an outline of a conventional vapor deposition apparatus, and FIG. 2 is a sectional view showing an example of the apparatus of the present invention. 1: Base material, 2, 2': Heater, 3: Heating power source, 4: Gas introduction hole, 5: Vacuum exhaust hole, 6: Vacuum container, 7: Discharge power source, 8: Electrode, 9, 9': Inside Electrode, 10, 10': external electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 真空容器内に同一中心をもつ直径の異なる2
つの円筒状の電極を有し、この電極に接続する電
源により直流もしくは交流によつてプラズマを内
側と外側の電極間に発生させ、内外電極間に被処
理物を設置する支持装置があり、真空容器の1部
に反応ガス導入孔及び他端に真空排気孔を有し、
反応ガスはプラズマ発生部に導入され、真空容器
の外側から被処理物及び反応ガスを加熱する加熱
装置からなることを特徴とする蒸着装置。
1. Different diameters with the same center in the vacuum container 2.
It has two cylindrical electrodes, a power supply connected to these electrodes generates plasma between the inner and outer electrodes using direct current or alternating current, and there is a support device that places the object to be processed between the inner and outer electrodes. One part of the container has a reaction gas introduction hole and the other end has a vacuum exhaust hole,
A vapor deposition apparatus comprising a heating device that introduces a reactive gas into a plasma generating section and heats the object to be processed and the reactive gas from outside a vacuum container.
JP14736882A 1982-08-24 1982-08-24 Vapor deposition device Granted JPS5935674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14736882A JPS5935674A (en) 1982-08-24 1982-08-24 Vapor deposition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14736882A JPS5935674A (en) 1982-08-24 1982-08-24 Vapor deposition device

Publications (2)

Publication Number Publication Date
JPS5935674A JPS5935674A (en) 1984-02-27
JPS6358226B2 true JPS6358226B2 (en) 1988-11-15

Family

ID=15428638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14736882A Granted JPS5935674A (en) 1982-08-24 1982-08-24 Vapor deposition device

Country Status (1)

Country Link
JP (1) JPS5935674A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2589168B1 (en) * 1985-10-25 1992-07-17 Solems Sa APPARATUS AND METHOD FOR USE THEREOF FOR PLASMA-ASSISTED THIN FILM FORMATION
JPS6328871A (en) * 1986-07-22 1988-02-06 Toshiba Corp Plasma cvd treating device
JPH0811178B2 (en) * 1987-06-24 1996-02-07 日本合成ゴム株式会社 High temperature reaction processor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5391663A (en) * 1977-01-24 1978-08-11 Hitachi Ltd Plasma cvd device
JPS5456366A (en) * 1977-10-14 1979-05-07 Hitachi Ltd Plasma film forming apparatus
JPS565972A (en) * 1979-06-27 1981-01-22 Canon Inc Film forming method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5391663A (en) * 1977-01-24 1978-08-11 Hitachi Ltd Plasma cvd device
JPS5456366A (en) * 1977-10-14 1979-05-07 Hitachi Ltd Plasma film forming apparatus
JPS565972A (en) * 1979-06-27 1981-01-22 Canon Inc Film forming method

Also Published As

Publication number Publication date
JPS5935674A (en) 1984-02-27

Similar Documents

Publication Publication Date Title
US5186973A (en) HFCVD method for producing thick, adherent and coherent polycrystalline diamonds films
JPS61295377A (en) Formation of membrane
JP2004006885A (en) High-frequency type plasma-reinforced chemical vapor deposition reactor, and method using the same
JPS5870833A (en) Apparatus for fusing thin layer in reaction vapor phase
JP2001181846A (en) Cvd system
JPH0377655B2 (en)
JPS6358226B2 (en)
JP3962722B2 (en) Plasma processing equipment
JPS62167294A (en) Production of diamond thin film by vapor phase method
JPH03146489A (en) Coated filament for use in composite material
JPH04180566A (en) Thin film forming device
RU214891U1 (en) DEVICE FOR GAS-JET DEPOSITION OF DIAMOND COATINGS
JPS62210623A (en) Electrode for vapor phase reactor
JPS63256596A (en) Method for synthesizing diamond in vapor phase
JPH05195230A (en) Coating device for long-sized body
JPH06336677A (en) Plasma cvd device
JPS61199068A (en) Method and apparatus for coating cylindrical conductor member with ceramic
JPH04369833A (en) Thin film manufacturing method and device
JPH03138370A (en) Thin film forming device
JPS5943988B2 (en) Ultrafine particle membrane manufacturing method and manufacturing device
JPS58117868A (en) Film forming device
JPS6353271A (en) Method and device for coating thin film
JPS62218576A (en) Plasma cvd method
JPH0215633B2 (en)
JPS58136763A (en) Plasma chemical vapor depositing device