JPH0811178B2 - High temperature reaction processor - Google Patents

High temperature reaction processor

Info

Publication number
JPH0811178B2
JPH0811178B2 JP62155524A JP15552487A JPH0811178B2 JP H0811178 B2 JPH0811178 B2 JP H0811178B2 JP 62155524 A JP62155524 A JP 62155524A JP 15552487 A JP15552487 A JP 15552487A JP H0811178 B2 JPH0811178 B2 JP H0811178B2
Authority
JP
Japan
Prior art keywords
substrate
heating plate
reactive compound
reactor
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62155524A
Other languages
Japanese (ja)
Other versions
JPS644244A (en
Inventor
満信 小柴
洋一 鴨志田
Original Assignee
日本合成ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本合成ゴム株式会社 filed Critical 日本合成ゴム株式会社
Priority to JP62155524A priority Critical patent/JPH0811178B2/en
Publication of JPS644244A publication Critical patent/JPS644244A/en
Publication of JPH0811178B2 publication Critical patent/JPH0811178B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/265Selective reaction with inorganic or organometallic reagents after image-wise exposure, e.g. silylation

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高温反応処理装置に関し、詳しくは、感放射
線性樹脂層のケイ素化合物処理またはアミン化合物処理
用に好適な高温反応処理装置に関する。
TECHNICAL FIELD The present invention relates to a high-temperature reaction treatment apparatus, and more particularly to a high-temperature reaction treatment apparatus suitable for treating a radiation-sensitive resin layer with a silicon compound or an amine compound.

[従来の技術] 従来、IC,LSIなどの半導体素子の製造には、その加工
されるべき基板上にポリイソプレンやポリブタジエンの
環化物にヒスアジドを混合したネガ型ホトレジストやノ
ボラック樹脂にキノンジアジド化合物を混合したポジ型
ホトレジストなどの感放射線性樹脂を塗布した上、水銀
灯のg線(波長436nm)やi線(365nm)を用いて露光
し、現像液にて現像するというホトリソグラフィ法が採
られてきた。
[Prior Art] Conventionally, in the manufacture of semiconductor devices such as ICs and LSIs, a quinonediazide compound is mixed with a negative photoresist or novolak resin in which polyisoprene or polybutadiene cyclized compound is mixed with his azide on a substrate to be processed. A photolithography method has been adopted, in which a radiation-sensitive resin such as a positive photoresist is coated, exposed by using a g-line (wavelength 436 nm) or i-line (365 nm) of a mercury lamp, and developed with a developer. .

しかし、近年ではLSIが更に微細化し、基板上に形成
されるべき回路パターンの最小寸法が1μm以下の領域
に入りつつあり、このような寸法領域では、前記従来の
ホトリソグラフィ法を使用しても、特に段差構造を有す
る基板が使用される場合、露光時の光の反射の影響や露
光系における焦点深度の浅さなどの問題のために十分な
解像ができないという問題が発生する。
However, in recent years, LSIs have been further miniaturized, and the minimum dimension of a circuit pattern to be formed on a substrate is entering a region of 1 μm or less. In such a dimension region, even if the conventional photolithography method is used. In particular, when a substrate having a step structure is used, there is a problem that sufficient resolution cannot be achieved due to the influence of light reflection during exposure and the problem of shallow depth of focus in the exposure system.

このような問題を解決するために、特開昭61-107346
号公報では、従来のホトリソグラフィ法と同様に、水銀
灯のg線やi線を用いたりあるいは遠紫外光を用いて回
路パターンを露光した後に、例えばケイ素化合物による
処理によって露光部または未露光部を選択的にシリル化
した後に反応性プラズマなどを用いて異方性エッチング
を行う方式が提案されている。
In order to solve such a problem, JP-A-61-107346
In the publication, similarly to the conventional photolithography method, after exposing a circuit pattern using g-line or i-line of a mercury lamp or using far-ultraviolet light, the exposed or unexposed part is exposed by, for example, a treatment with a silicon compound. A method has been proposed in which anisotropic etching is performed using reactive plasma or the like after selective silylation.

[発明が解決しようとする問題点] 本発明の目的は、上述の特開昭61-107346号公報に提
案されている方式におけるケイ素化合物による処理に好
適に使用することのできる高温反応処理装置を提供する
ことにある。
[Problems to be Solved by the Invention] An object of the present invention is to provide a high-temperature reaction treatment apparatus which can be suitably used for treatment with a silicon compound in the method proposed in the above-mentioned JP-A-61-107346. To provide.

[問題点を解決するための手段] かかる目的を達成するために、本発明の高温反応処理
装置は、処理の対象となる基板の上方に対向位置し、反
応性化合物のガスを導くための孔径が20μm〜2mmであ
る複数の細孔を前記基板の対向面に有する上部加熱用板
と、前記基板の下方に位置し、該基板を直接若しくは間
接に保持する下部加熱用板とを反応器内に有し、前記上
部加熱用板と前記下部加熱用板との間に真空可能に形成
される密閉空間に前記基板を高温に保持し、前記反応性
化合物のガスが導かれるようにしたことを特徴とするも
のである。
[Means for Solving Problems] In order to achieve such an object, the high temperature reaction processing apparatus of the present invention has a hole diameter for guiding a gas of a reactive compound, which is positioned above a substrate to be processed so as to face the substrate. In the reactor, an upper heating plate having a plurality of pores of 20 μm to 2 mm on the opposite surface of the substrate, and a lower heating plate located below the substrate and directly or indirectly holding the substrate. And holding the substrate at a high temperature in a closed space formed between the upper heating plate and the lower heating plate in a vacuumable manner so that the gas of the reactive compound is introduced. It is a feature.

本発明においては、反応器は密閉状態に保てるもので
あれば特に限定されないが、反応性化合物を迅速に反応
器内に導入するために、減圧できることが好ましい。
In the present invention, the reactor is not particularly limited as long as it can be kept in a sealed state, but it is preferable that the pressure can be reduced in order to rapidly introduce the reactive compound into the reactor.

本発明においては、処理される基板に対して加熱用板
は上下に配置され、下部加熱用板は基板に対して極く接
近、最適には接触されていることが望ましく、一方、上
部加熱用板は反応性化合物が反応器内に均一に導入され
るように、基板上に近接して配置されるのが望ましい。
また、基板と上部加熱用板との間の好ましい距離として
は2mm〜20mmである。
In the present invention, it is desirable that the heating plates are arranged above and below the substrate to be processed, and that the lower heating plate is in close proximity and optimally in contact with the substrate, while the upper heating plate is The plate is preferably placed in close proximity on the substrate so that the reactive compound is uniformly introduced into the reactor.
The preferable distance between the substrate and the upper heating plate is 2 mm to 20 mm.

本発明において、上部および下部加熱用板を形成する
材料としては、例えばアルミニウム,ステンレス鋼,ハ
ステロイなどを挙げることができる。これらの加熱用板
は基板の処理時には、通常50〜250℃、好ましくは70〜2
00℃に加熱される。
In the present invention, examples of materials for forming the upper and lower heating plates include aluminum, stainless steel, and Hastelloy. These heating plates are usually 50 to 250 ° C., preferably 70 to 2 at the time of processing the substrate.
It is heated to 00 ° C.

本発明においては、基板に均一に反応性化合物を接触
させるため、反応性化合物を複数の孔、好ましくは細孔
により反応器内に導入する。この細孔の孔径は通常20μ
m〜2mmである。反応性化合物を基板上に導く複数の孔
は、反応性化合物を均一かつ迅速に基板上に導くことが
できる位置に設置すれば特に制限はないが、上部加熱用
板の基板に対向する面上に設けられることが好ましい。
In the present invention, in order to bring the reactive compound into uniform contact with the substrate, the reactive compound is introduced into the reactor through a plurality of pores, preferably pores. The diameter of this pore is usually 20μ
It is m to 2 mm. The plurality of holes for introducing the reactive compound onto the substrate are not particularly limited as long as they are installed at positions where the reactive compound can be uniformly and quickly introduced onto the substrate, but on the surface of the upper heating plate facing the substrate. Is preferably provided in the.

更に、反応性化合物が均一に基板に作用するように、
例えば上部加熱用板の中心から放射状に配置するように
なし、更に上部加熱用板の外側になるほど反応性化合物
の流量が多くなるように、孔の内径を大きくするかまた
は孔の数を増やすことが好適である。また、上部加熱用
板がメッシュ状であってもよい。
Furthermore, so that the reactive compound acts uniformly on the substrate,
For example, the holes are arranged radially from the center of the upper heating plate, and the inner diameter of the holes is increased or the number of holes is increased so that the flow rate of the reactive compound increases toward the outside of the upper heating plate. Is preferred. Further, the upper heating plate may have a mesh shape.

反応器に反応性化合物を導入するにあたっては、通常
ガス状で導入するが、この場合は反応性化合物のガスを
窒素,アルゴン,ヘリウムなどの不活性キャリヤガスと
ともに導入する。もしくは真空にした反応器に液体とし
て、例えば霧状で直接導入し、反応器内でガス化するこ
ともできる。反応性化合物をガス状で反応器内に導入す
る際のガスの流速は、通常0.01〜10l/minであり、反応
性化合物のガスを基板に接触させる時間は、通常10秒〜
5分間、好ましくは10秒〜3分間である。また、反応性
化合物ガスの反応器内の濃度は、通常1〜50容量%、好
ましくは1〜30容量%である。更に、反応器内の全圧力
は、通常50〜900mmHg、好ましくは200〜760mmHgであ
る。
When the reactive compound is introduced into the reactor, it is usually introduced in a gaseous state. In this case, the reactive compound gas is introduced together with an inert carrier gas such as nitrogen, argon or helium. Alternatively, it may be directly introduced into the vacuumed reactor as a liquid, for example, in the form of a mist, and gasified in the reactor. The flow rate of the gas when introducing the reactive compound in a gaseous state into the reactor is usually 0.01 to 10 l / min, and the time for contacting the gas of the reactive compound with the substrate is usually 10 seconds to
It is 5 minutes, preferably 10 seconds to 3 minutes. The concentration of the reactive compound gas in the reactor is usually 1 to 50% by volume, preferably 1 to 30% by volume. Furthermore, the total pressure in the reactor is usually 50 to 900 mmHg, preferably 200 to 760 mmHg.

上述の本発明の装置で高温反応の処理が適用される基
板としては、感放射線性樹脂層を有するシリコン,ガリ
ウム,ヒ素などの半導体基板,ガラス基板,ダイヤモン
ド基板などを挙げることができる。ここで、前記感放射
線性樹脂としては、ノボラック樹脂やポリヒドロキシス
チレンなどのアルカリ可溶性樹脂とキノンジアジド化合
物やビスアジド化合物などからなる感放射線性樹脂を挙
げることができるが、特に水酸基を有するアルカリ可溶
性樹脂とキノンジアジド化合物の縮合物またはアジド基
を側鎖に有するアルカリ可溶性樹脂を用いることが好ま
しい。
Examples of the substrate to which the high-temperature reaction treatment is applied in the apparatus of the present invention described above include semiconductor substrates having a radiation-sensitive resin layer such as silicon, gallium, and arsenic, glass substrates, and diamond substrates. Here, examples of the radiation-sensitive resin include a radiation-sensitive resin composed of an alkali-soluble resin such as a novolac resin or polyhydroxystyrene and a quinonediazide compound or a bisazide compound, and particularly an alkali-soluble resin having a hydroxyl group. It is preferable to use a condensate of a quinonediazide compound or an alkali-soluble resin having an azide group in its side chain.

また、感放射線性樹脂層を有する基板の感放射線性樹
脂層に接触させる反応性化合物としては、ヘキサメチル
ジシラザン,N−トリメチルシリルアセトアミド,N10−
ビス(トリメチルシリル)アセトアミド,ビニルトリク
ロロシラン,メチルトリクロロシラン,フェニルトリク
ロロシラン,ジフェニルジクロロシラン,メチルフェニ
ルジクロロシランなどのケイ素化合物を挙げることがで
きる。
As the reactive compound is brought into contact with the radiation-sensitive resin layer of a substrate having a radiation-sensitive resin layer, hexamethyldisilazane, N- trimethylsilyl acetamide, N 1 0-
Examples thereof include silicon compounds such as bis (trimethylsilyl) acetamide, vinyltrichlorosilane, methyltrichlorosilane, phenyltrichlorosilane, diphenyldichlorosilane, and methylphenyldichlorosilane.

本発明によれば、加熱された下部加熱用板上に光など
の放射線をパターン状に照射した感放射線性樹脂層を有
する基板を載置し、その基板上に加熱された上部加熱用
板を近接させた状態に保って、孔径が20μm〜2mmの複
数の細孔から反応性化合物であるケイ素化合物を供給す
ることにより、高温反応ガス雰囲気内でシリル化の反応
処理を短時間で実施することができる。
According to the present invention, a substrate having a radiation-sensitive resin layer irradiated with radiation such as light in a pattern is placed on a heated lower heating plate, and the heated upper heating plate is placed on the substrate. To carry out the reaction treatment of silylation in a high temperature reaction gas atmosphere in a short time by supplying silicon compounds that are reactive compounds from a plurality of pores with a pore size of 20 μm to 2 mm while keeping them close to each other. You can

以下に、図面に基づいて本発明の実施態様を詳細かつ
具体的に説明する。
Hereinafter, embodiments of the present invention will be described in detail and specifically with reference to the drawings.

第1図は本発明の一実施態様を示す。ここで、1Aおよ
び1Bは上下に分離可能な反応器1の上部部材および下部
部材であり、下部部材1Bを上方に移動させることにより
反応器1を密閉状態に保つことができる。なお、ここで
は上部部材が固定されているが、下部部材が固定されて
いてもよい。2は上部加熱用板、3は下部加熱用板、4
は反応器下部部材1Bの側に設けられて下部加熱用板3と
接続されることにより高温に保持されるシール部材であ
り、上部部材1Aにより反応室1を密閉状態としたときに
上部加熱用板2との間の空間を気密に保つことができ
る。
FIG. 1 shows an embodiment of the present invention. Here, 1A and 1B are an upper member and a lower member of the reactor 1 which can be separated into upper and lower parts, and the reactor 1 can be kept in a sealed state by moving the lower member 1B upward. Although the upper member is fixed here, the lower member may be fixed. 2 is an upper heating plate, 3 is a lower heating plate, 4
Is a seal member that is provided on the reactor lower member 1B side and is kept at a high temperature by being connected to the lower heating plate 3, and is used for upper heating when the reaction chamber 1 is closed by the upper member 1A. The space between the plate 2 can be kept airtight.

5は下部加熱用板3上に載置され高温反応処理を受け
る基板であり、基板5上には放射線照射処理が施された
感放射線性樹脂層を有し、反応器1を密閉状態に保った
ときに基板5と上部加熱用板2との間には上述したよう
に適切なすき間が保たれるようにする。また、上部加熱
用板2にはその基板5との対向面に第2図に示すように
多数の細孔6が穿設されていて、バブラー7内に貯留さ
れているケイ素化合物からなる反応性化合物のガスを必
要に応じて不活性キャリヤガスと共に、この細孔6を介
して供給することができる。なお、ここで第3図に示す
ように、上部加熱用板が孔径20μm〜2mm程度のメッシ
ュ状になっており、加熱用板と反応性化合物を導入する
細孔を兼ねていてもよい。また、バブラー7には温水供
給系8が設けられてあり、その温水によりバブラー7の
温度を制御し、ケイ素化合物の温度を調整することによ
り、反応器1内の不活性キャリヤガスと共に送られる反
応性化合物ガスの濃度を調節すると共に、不活性キャリ
ヤガスの流量を不図示のマスフローコントローラなどの
流量制御装置により制御し、反応性化合物の供給量を適
切に制御することができる。9は反応性化合物ガスの凝
縮をさけるための加温装置である。
Reference numeral 5 denotes a substrate placed on the lower heating plate 3 and subjected to a high temperature reaction treatment. The substrate 5 has a radiation-sensitive resin layer subjected to a radiation irradiation treatment, and keeps the reactor 1 in a sealed state. At this time, an appropriate gap is maintained between the substrate 5 and the upper heating plate 2 as described above. The upper heating plate 2 has a large number of pores 6 on its surface facing the substrate 5 as shown in FIG. 2, and the reactivity of the silicon compound stored in the bubbler 7 is increased. The compound gas can be fed through this pore 6 together with an inert carrier gas if desired. Here, as shown in FIG. 3, the upper heating plate has a mesh shape with a pore diameter of about 20 μm to 2 mm, and may serve as the heating plate and the pores for introducing the reactive compound. In addition, the bubbler 7 is provided with a hot water supply system 8, and by controlling the temperature of the bubbler 7 with the hot water and adjusting the temperature of the silicon compound, the reaction sent together with the inert carrier gas in the reactor 1 In addition to adjusting the concentration of the reactive compound gas, the flow rate of the inert carrier gas can be controlled by a flow rate control device such as a mass flow controller (not shown) to appropriately control the supply amount of the reactive compound. Reference numeral 9 is a heating device for avoiding the condensation of the reactive compound gas.

また、10は減圧ポンプ、11は凝縮器、12は反応性化合
物ガス用トラップであって、処理が終了すると、高温の
反応性化合物ガスを含む気体は凝縮器11で冷却され、凝
縮された反応性化合物をポンプ10によりトラップ12に導
くことができる。
Further, 10 is a decompression pump, 11 is a condenser, 12 is a trap for the reactive compound gas, and when the treatment is completed, the gas containing the high temperature reactive compound gas is cooled by the condenser 11 and the condensed reaction The volatile compound can be introduced into the trap 12 by the pump 10.

このように構成した高温反応処理装置においては、放
射線照射処理により回路パターンの潜像を形成した後の
基板5を反応器1の下部加熱用板3上に載置し、反応器
下部部材1Bを上昇させることにより反応器1を密閉状態
とする。なお、この場合、上部加熱用板2および下部加
熱用板3は50℃〜250℃に保たれており、また、基板5
の周囲はシール部材4と上部加熱用板2との間で気密に
保たれている。
In the high temperature reaction processing apparatus configured as described above, the substrate 5 after the latent image of the circuit pattern is formed by the radiation irradiation processing is placed on the lower heating plate 3 of the reactor 1, and the reactor lower member 1B is placed. By raising the temperature, the reactor 1 is closed. In this case, the upper heating plate 2 and the lower heating plate 3 are maintained at 50 ° C to 250 ° C, and the substrate 5
The periphery of is sealed airtight between the seal member 4 and the upper heating plate 2.

そこで、減圧ポンプ10により基板5の周囲を真空度10
〜500mmHg程度まで減圧し、次にバブラー7から窒素を
不活性キャリヤガスとして使用して反応性化合物ガスを
上部加熱用板2の細孔6から基板5上に放出する。な
お、このときの反応性化合物ガスの濃度は、上述した方
法により制御されるもので、かくして、基板5は反応性
化合物ガスの雰囲気中に通常10秒〜5分間、好ましくは
10秒〜3分間放置される。
Therefore, the vacuum degree 10 is applied to the periphery of the substrate 5 so that
The pressure is reduced to about 500 mmHg, and then the reactive compound gas is discharged from the bubbler 7 to the substrate 5 through the pores 6 of the upper heating plate 2 using nitrogen as an inert carrier gas. The concentration of the reactive compound gas at this time is controlled by the above-mentioned method, and thus the substrate 5 is usually in the atmosphere of the reactive compound gas for 10 seconds to 5 minutes, preferably
It is left for 10 seconds to 3 minutes.

また、この場合、基板5の周辺は、常時または間欠的
に反応性化合物ガスを流すように制御されてもよい。そ
して、反応が完了した段階でポンプ10により高温の反応
性化合物ガスを凝縮器11に導き、冷却した上、トラップ
12に回収される。
Further, in this case, the periphery of the substrate 5 may be controlled so that the reactive compound gas may flow constantly or intermittently. Then, when the reaction is completed, the high temperature reactive compound gas is guided to the condenser 11 by the pump 10, cooled, and then trapped.
Recovered to 12.

なお、本実施態様では反応器1内に加熱用板2および
3を配設したが、生産性を更に高めるために、基板5を
反応質1に持込む以前に加熱が行われるよう、減圧ある
いは常圧の雰囲気で加熱させる手段を設けるようにして
もよい。
In the present embodiment, the heating plates 2 and 3 are arranged in the reactor 1. However, in order to further improve the productivity, the pressure may be reduced or reduced so that the substrate 5 is heated before being brought into the reactant 1. A means for heating in an atmosphere of normal pressure may be provided.

[実施例] シリコンウエハー上に、6−ジアゾ−5.6−ジヒドロ
−5−オキソ−1−ナフタレンスルホン酸クロリドとノ
ボラック樹脂との部分的エステル化物をスピンコートに
より塗布し、開口係数が0.42のg線ステッパーを用いて
露光した。次にそのシリコンウエハーを50μmの複数の
細孔を有するステンレス製上部加熱用板とステンレス製
下部加熱用板を有する上述の反応器に収容し、ヘキサメ
チルジシラザン(HMDS)(HMDSバブラー温度50℃,N2
量10l/分)を反応器に導入した後、密閉して全圧力760m
mHg,HMDS濃度6.6容量%,140℃で1分間シリル化した。
[Example] A partial esterified product of 6-diazo-5.6-dihydro-5-oxo-1-naphthalenesulfonic acid chloride and a novolac resin was applied onto a silicon wafer by spin coating, and the g-line having an opening coefficient of 0.42. It was exposed using a stepper. Next, the silicon wafer was placed in the above reactor having a stainless steel upper heating plate having a plurality of 50 μm pores and a stainless steel lower heating plate, and hexamethyldisilazane (HMDS) (HMDS bubbler temperature 50 ° C. , N 2 flow rate 10 l / min) was introduced into the reactor, then sealed and the total pressure was 760 m.
Silylation was performed at 140 ° C. for 1 minute with mHg and HMDS concentration of 6.6% by volume.

このウエハーをMRC社製マグネトロン反応性イオンエ
ッチング装置MIE760を用いて酸素エッチングしたとこ
ろ、0.6μmの等間隔ライン・アンド・スペースパター
ンが設計寸法どおり0.7μmの段差をもつアルミ基板上
に形成されていることが判った。
When this wafer was oxygen-etched using MRC magnetron reactive ion etching equipment MIE760, 0.6 μm equally spaced line-and-space patterns were formed on an aluminum substrate with 0.7 μm steps as designed. I knew that.

[発明の効果] 以上説明してきたように、本発明の高温反応処理装置
によれば、処理の対象となる基板の上方に対向位置し、
反応性化合物のガスを導くための複数の細孔を前記基板
の対向面に有する上部加熱用板と、前記基板の下方に位
置し、該基板を直接若しくは間接に保持する下部加熱用
板とを反応器内に有し、前記上部加熱用板と前記下部加
熱用板との間に真空可能に形成される密閉空間に前記基
板を高温に保持し、前記反応性化合物のガスが導かれる
ようにしたので、例えばケイ素化合物からなる反応性化
合物のガスを供給して放射線照射処理した感放射線性樹
脂層を反応処理し、次いで、ドライ現像処理を行うこと
で1.0μm以下の解像度で超微細な加工を高い生産性を
維持しながら短時間に高精密で実施することが可能とな
った。
EFFECTS OF THE INVENTION As described above, according to the high temperature reaction processing apparatus of the present invention, the high temperature reaction processing device is located above the substrate to be processed,
An upper heating plate having a plurality of pores for guiding a gas of a reactive compound on the opposite surface of the substrate, and a lower heating plate positioned below the substrate and directly or indirectly holding the substrate. Hold the substrate at a high temperature in a closed space that is provided in the reactor and is formed between the upper heating plate and the lower heating plate in a vacuumable manner so that the gas of the reactive compound is introduced. Therefore, for example, by supplying a reactive compound gas composed of a silicon compound, the radiation-sensitive radiation-sensitive resin layer is subjected to a reaction treatment, and then a dry development treatment is performed to perform ultrafine processing with a resolution of 1.0 μm or less. It has become possible to carry out with high precision in a short time while maintaining high productivity.

また、アミン化合物からなる反応性化合物のガスを供
給して放射線照射処理した感放射線性樹脂層を反応処理
し、強アルカリ水溶液を用いて現像することにより、微
細な加工を実施できる画像反転プロセスにも好適に用い
ることができる。
Further, by supplying a gas of a reactive compound consisting of an amine compound and subjecting the radiation-sensitive resin layer subjected to radiation irradiation to a reaction treatment and developing with a strong alkaline aqueous solution, an image reversal process capable of carrying out fine processing can be performed. Can also be preferably used.

更に本発明は、放射線照射処理した感放射線性樹脂層
を形成した基板にアミン化合物処理を施し、強アルカリ
水溶液を用いて現像することにより、微細な加工を実施
できる画像反転プロセスにおけるアミン化合物処理にも
好適に用いることができる。ここで、アミン化合物とし
ては、アンモニア,トリメチルアミン,トリエチルアミ
ンなどを例示することができる。
Furthermore, the present invention provides an amine compound treatment in an image reversal process capable of performing fine processing by subjecting a substrate having a radiation-sensitive resin layer subjected to radiation irradiation treatment to an amine compound treatment and developing with a strong alkaline aqueous solution. Can also be preferably used. Here, examples of the amine compound include ammonia, trimethylamine, triethylamine, and the like.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の高温反応処理装置の密閉状態の構成の
一例を示す模式図、 第2図はその上部加熱用板の下面図、 第3図(A)および(B)は上部加熱用板の他の一例を
示す下面図および側面図である。 1……反応器、1A……上部部材、1B……下部部材、2…
…上部加熱用板、3……下部加熱用板、4……シール部
材、5……基板、6……細孔、7……バブラー、10……
減圧ポンプ、11……凝縮器、12……トラップ。
FIG. 1 is a schematic diagram showing an example of the configuration of the high temperature reaction treatment apparatus of the present invention in a sealed state, FIG. 2 is a bottom view of the upper heating plate, and FIGS. 3 (A) and 3 (B) are for upper heating. It is a bottom view and a side view showing another example of a board. 1 ... Reactor, 1A ... Upper member, 1B ... Lower member, 2 ...
... Upper heating plate, 3 ... Lower heating plate, 4 ... Seal member, 5 ... Substrate, 6 ... Pore, 7 ... Bubler, 10 ...
Decompression pump, 11 …… condenser, 12 …… trap.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】処理の対象となる基板の上方に対向位置
し、反応性化合物のガスを導くための孔径が20μm〜2m
mである複数の細孔を前記基板の対向面に有する上部加
熱用板と、 前記基板の下方に位置し、該基板を直接若しくは間接に
保持する下部加熱用板と を反応器内に有し、 前記上部加熱用板と前記下部加熱用板との間に真空可能
に形成される密閉空間に前記基板を高温に保持し、前記
反応性化合物のガスが導かれるようにしたことを特徴と
する高温反応処理装置。
1. A pore size for introducing a gas of a reactive compound is 20 μm to 2 m, which is located above a substrate to be processed so as to face it.
An upper heating plate having a plurality of pores of m on the opposite surface of the substrate, and a lower heating plate located below the substrate and directly or indirectly holding the substrate were provided in the reactor. The substrate is kept at a high temperature in a closed space that can be vacuumed between the upper heating plate and the lower heating plate, and the gas of the reactive compound is introduced. High temperature reaction processing equipment.
JP62155524A 1987-06-24 1987-06-24 High temperature reaction processor Expired - Fee Related JPH0811178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62155524A JPH0811178B2 (en) 1987-06-24 1987-06-24 High temperature reaction processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62155524A JPH0811178B2 (en) 1987-06-24 1987-06-24 High temperature reaction processor

Publications (2)

Publication Number Publication Date
JPS644244A JPS644244A (en) 1989-01-09
JPH0811178B2 true JPH0811178B2 (en) 1996-02-07

Family

ID=15607949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62155524A Expired - Fee Related JPH0811178B2 (en) 1987-06-24 1987-06-24 High temperature reaction processor

Country Status (1)

Country Link
JP (1) JPH0811178B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935674A (en) * 1982-08-24 1984-02-27 Sumitomo Electric Ind Ltd Vapor deposition device
JPS6126775A (en) * 1984-07-16 1986-02-06 Canon Inc Formation of accumulated film

Also Published As

Publication number Publication date
JPS644244A (en) 1989-01-09

Similar Documents

Publication Publication Date Title
US6451512B1 (en) UV-enhanced silylation process to increase etch resistance of ultra thin resists
JP2811124B2 (en) Pattern forming method and photomask manufacturing method
US4957588A (en) Method for high temperature reaction process
KR100515369B1 (en) Apparatus for forming fine patterns of semiconductor wafer by electric field and the method of the same
JPH0811178B2 (en) High temperature reaction processor
JPH09129535A (en) Thermal treatment equipment
JP2000100690A (en) Photolithography equipment using gas-phase pretreatment
JPH04176123A (en) Manufacture of semiconductor device
JP3175276B2 (en) Reaction processing equipment
JPH01142721A (en) Positive type photosensitive pattern forming material and pattern forming method
JPH0943855A (en) Formation of resist pattern
US5085729A (en) Uniformity using stagnant silylation
JPH07161619A (en) Method and apparatus for baking semiconductor wafer
JPH01306583A (en) Reactive ion etching device
JPS61230140A (en) Far ultraviolet sensitive silicone type resist
JP3257126B2 (en) Pattern formation method
JPH02213850A (en) Method for silylating resist film
JPS63249837A (en) Formation of resist mask
JPS6054775B2 (en) Dry development method
JPH02308254A (en) Pattern forming method
JPH05142788A (en) Formation of resist pattern
JPH05100440A (en) Silylation method
JPH03226758A (en) Pattern forming method
JPS60154526A (en) Pattern forming process
JPH02257140A (en) Resist pattern forming method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees