JPH04369833A - Thin film manufacturing method and device - Google Patents

Thin film manufacturing method and device

Info

Publication number
JPH04369833A
JPH04369833A JP14610191A JP14610191A JPH04369833A JP H04369833 A JPH04369833 A JP H04369833A JP 14610191 A JP14610191 A JP 14610191A JP 14610191 A JP14610191 A JP 14610191A JP H04369833 A JPH04369833 A JP H04369833A
Authority
JP
Japan
Prior art keywords
raw material
flow rate
thin film
gas
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14610191A
Other languages
Japanese (ja)
Inventor
Masatoshi Kitagawa
雅俊 北川
Munehiro Shibuya
宗裕 澁谷
Takeshi Kamata
健 鎌田
Takashi Hirao
孝 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14610191A priority Critical patent/JPH04369833A/en
Publication of JPH04369833A publication Critical patent/JPH04369833A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To control the flow rate of a gasified gas for stabilizing the thin film formation by a method wherein, during the chemical deposition process such as CVD, etc., using a liquid or solid material, an ultrasonic oscillator is provided on the outer wall of a vessel containing the material so as to control the power supplied for the oscillator. CONSTITUTION:Within the title thin film manufacturing device, the space between a metallic, e.g. stainless steel etc., container 14 and an electrode plate 18 is impressed with a voltage using an ultrasonic generating piezoelectric ceramic element 17 so that the ultrasonic ware may be propagated in the stainless steel container thereby enabling the flow rate of the gas produced in a flow rate measuring instrument 19 and led-into a reaction vessel 11 to be directly measured while the measured values as control signal power through an amplifier circuit 20 may be supplied for an ultrasonic oscillator so as to be adjusted to the set up flow rate thereby enabling the flow rate to be precisely controlled.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、液体や固体を気化させ
た原料ガスを用いプラズマCVD(化学気相堆積)、熱
CVD、光CVD等の化学気相成長法による薄膜製造方
法及び薄膜製造装置に関する。
[Industrial Application Field] The present invention relates to a thin film manufacturing method and thin film manufacturing method using chemical vapor deposition methods such as plasma CVD (chemical vapor deposition), thermal CVD, and photoCVD using source gases obtained by vaporizing liquids and solids. Regarding equipment.

【0002】0002

【従来の技術】従来、液体原料や固体原料を用い例えば
プラズマCVD等で薄膜形成に使用されるような場合、
そのガス供給装置構成は、一般に図3に示すような構成
を有する。図3において、31が熱・プラズマ・光等の
エネルギーによる原料ガスの分解による化学気相薄膜成
長のための反応容器で、一般に排気孔32より真空に排
気される。33は液体原料や固体原料の容器で、38の
加熱用ヒータにより容器並びに原料34を昇温し気化せ
しめる。例えば、酸化タンタル薄膜を形成する場合には
、TaCl5 、TaF5 等の固体や、Ta(OC2
 H5 )5 、Ta(OCH3 )5 等の液体原料
を容器中に入れておけばよい。その蒸気を真空チャンバ
ー内に直接導入するか、Ar・He等の不活性なキャリ
アガスでバブリングを行ない反応ガスとして用いる。3
5はキャリアガスの容器で、配管を通じて液体もしくは
加熱によって液化した中へ導入され、バブリングにより
気化を促進させる。36の流量制御装置によるキャリア
ガスの流量調節と原料容器加熱の設定により、反応容器
31への原料の導入量を制御していた。37はガス導入
孔で、気化させた原料ガスは配管加熱ヒータ39で保温
され、第2のガス導入孔38からO2 、N2 O等の
酸化用ガスが導入される。これらのガスがプラズマ分解
されて薄膜として基板ホルダー40上の基板41に堆積
形成される。
[Prior Art] Conventionally, when a liquid raw material or a solid raw material is used for forming a thin film by plasma CVD, for example,
The gas supply device generally has a configuration as shown in FIG. In FIG. 3, numeral 31 denotes a reaction vessel for chemical vapor phase thin film growth by decomposing a source gas using energy such as heat, plasma, light, etc., and is generally evacuated to a vacuum through an exhaust hole 32. 33 is a container for liquid raw material or solid raw material, and the container and raw material 34 are heated and vaporized by a heater 38. For example, when forming a tantalum oxide thin film, solids such as TaCl5, TaF5, Ta(OC2
A liquid raw material such as H5)5, Ta(OCH3)5, etc. may be placed in a container. The vapor is used as a reaction gas by directly introducing it into a vacuum chamber or by bubbling it with an inert carrier gas such as Ar or He. 3
Reference numeral 5 denotes a carrier gas container, which is introduced into the liquid or liquefied by heating through piping, and vaporization is promoted by bubbling. The amount of raw material introduced into the reaction vessel 31 was controlled by adjusting the flow rate of the carrier gas and setting the heating of the raw material container using the flow rate control device 36. Reference numeral 37 denotes a gas introduction hole, where the vaporized raw material gas is kept warm by a pipe heater 39, and an oxidizing gas such as O2, N2 O, etc. is introduced through a second gas introduction hole 38. These gases are plasma decomposed and deposited as a thin film on the substrate 41 on the substrate holder 40.

【0003】0003

【発明が解決しようとする課題】しかしながら、このよ
うな従来の装置構成では、流量制御を行なおうとしても
原料ガスが加熱されているため、マスフローコントロー
ラで直接原料ガスを制御できず、キャリアガスの流量調
節と原料容器加熱の設定により、反応炉への原料の導入
量を制御していた。そのため気化器(液体容器)の形状
や容量・原料残量によって流量が変化してしまい、成膜
に再現性がなかった。結果的に超LSIのキャパシタ形
成プロセスには実用化が難しい状態であった。また大面
積基板を処理する要求から、反応容器の大型化やプラズ
マ電極の大口径化から反応領域に均等に気化した原料ガ
スを供給させる必要があった。そのためには、充分な気
化を必要とし、原料容器や配管系の加熱温度をさらに高
温化する必要が生じ流量制御がさらに難しくなり、生産
装置における実用化を妨げていた。
[Problems to be Solved by the Invention] However, in such a conventional device configuration, even if flow rate control is attempted, the raw material gas is heated, so the mass flow controller cannot directly control the raw material gas, and the carrier gas The amount of raw material introduced into the reactor was controlled by adjusting the flow rate and heating the raw material container. Therefore, the flow rate varied depending on the shape and capacity of the vaporizer (liquid container), and the remaining amount of raw material, resulting in a lack of reproducibility in film formation. As a result, it has been difficult to put it into practical use as a process for forming capacitors in VLSIs. In addition, due to the demand for processing large-area substrates, it is necessary to uniformly supply vaporized raw material gas to the reaction region due to the increase in the size of the reaction vessel and the diameter of the plasma electrode. For this purpose, sufficient vaporization is required, and the heating temperature of the raw material container and piping system must be further increased, making flow rate control even more difficult, which has hindered practical application in production equipment.

【0004】本発明は、前記従来技術の課題を解決する
ため、原料ガスの流量を正確に制御し、堆積毎の膜厚分
布を向上させることを目的とする。
SUMMARY OF THE INVENTION In order to solve the problems of the prior art described above, it is an object of the present invention to accurately control the flow rate of source gas and improve the film thickness distribution for each deposition.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
、本発明の薄膜製造方法は、液体または固体原料をガス
化し、このガスにエネルギーを加えて分解しつつ化学気
相堆積させて薄膜を製造する方法において、前記原料を
収納している容器外壁に超音波振動子を設置し、前記原
料の分子が吸収し得る波長の超音波振動を与え、前記振
動子に与える電力を調整することにより、前記ガス化し
た気体の流量を制御することを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the thin film manufacturing method of the present invention gasifies a liquid or solid raw material, applies energy to the gas to decompose it, and performs chemical vapor phase deposition to form a thin film. In the manufacturing method, an ultrasonic vibrator is installed on the outer wall of a container containing the raw material, applying ultrasonic vibration with a wavelength that can be absorbed by the molecules of the raw material, and adjusting the power applied to the vibrator. , the flow rate of the gasified gas is controlled.

【0006】前記構成においては、液体または固体原料
容器に超音波を印加すると同時に、加熱を行ないガス化
した気体の流量を制御することが好ましい。また本発明
の薄膜製造装置は、液体または固体原料をガス化し、こ
のガスにエネルギーを加えて分解しつつ化学気相堆積さ
せて薄膜を製造する装置において、前記原料を収納して
いる容器外壁に、原料をガス化するための超音波振動子
を設置するとともに、前記ガス化する気体の流量を制御
するための振動子に与える電力調整手段を備えたことを
特徴とする。
[0006] In the above configuration, it is preferable to apply ultrasonic waves to the liquid or solid raw material container and simultaneously control the flow rate of the gasified gas by heating. Further, the thin film manufacturing apparatus of the present invention is an apparatus for manufacturing a thin film by gasifying a liquid or solid raw material, applying energy to the gas to decompose it, and depositing it in a chemical vapor phase. The apparatus is characterized in that it is equipped with an ultrasonic vibrator for gasifying the raw material, and also includes power adjustment means for applying power to the vibrator for controlling the flow rate of the gas to be gasified.

【0007】[0007]

【作用】本発明の作用は、次のようなものである。まず
薄膜堆積に用いられる液体もしくは固体原料の気化もし
くは液化を介し、さらに気化したガスの化学気相成長過
程による薄膜の堆積工程において、液体原料容器または
液化原料容器を超音波で励振させことによって原料ガス
の温度を高温に昇温する事なく気化させることが可能で
ある。その結果、原料ガスを安定に流量測定でき、さら
に超音波振動子に供給する電力を制御する事により迅速
に制御可能とするものである。結果的に良質な薄膜を制
御性良く、大面積にかつ安定に形成する方法を実現する
作用をもつものである。
[Function] The function of the present invention is as follows. First, through the vaporization or liquefaction of the liquid or solid raw material used for thin film deposition, and then in the thin film deposition process by the chemical vapor deposition process of the vaporized gas, the raw material is It is possible to vaporize the gas without raising the temperature to a high temperature. As a result, the flow rate of the raw material gas can be measured stably, and furthermore, it can be controlled quickly by controlling the power supplied to the ultrasonic transducer. As a result, it has the effect of realizing a method for stably forming a high-quality thin film over a large area with good controllability.

【0008】[0008]

【実施例】本発明では従来の原料の加熱気化のみ利用し
た薄膜形成装置または方法とは異なり、化学気相成長過
程による薄膜の堆積工程において薄膜堆積に用いられる
液体もしくは固体原料の液化を介した液体を、その容器
に超音波振動子を設置し、いわゆる超音波で励振させる
ことにより、原料液体もしくは固体原料を液化させた液
体の液面において気化を低温で行ない、さらにその気化
の量を超音波振動子へ供給する電力を調節することによ
り制御性良く流量調整するものである。結果的に良質な
薄膜を制御性良く、大面積にかつ安定に形成するための
装置構成と形成方法を提供するものである。
[Example] Unlike the conventional thin film forming apparatus or method that utilizes only heating vaporization of raw materials, the present invention employs a thin film deposition process using chemical vapor deposition through liquefaction of liquid or solid raw materials used for thin film deposition. By installing an ultrasonic vibrator in the container and exciting the liquid with so-called ultrasonic waves, vaporization is performed at low temperatures at the liquid surface of the raw material liquid or the liquid obtained by liquefying the solid material, and the amount of vaporization is further increased. The flow rate can be adjusted with good controllability by adjusting the power supplied to the sonic vibrator. As a result, the present invention provides an apparatus configuration and a forming method for stably forming a high-quality thin film over a large area with good controllability.

【0009】本発明においては、液体ガス化容器と薄膜
形成用容器間のガス導入管に電気的流量測定器を配し、
流量が設定流量に合わせ一定となるよう超音波振動子の
出力を制御するための電気的帰還回路を有し、任意の流
量に制御し得るようにすることが好ましい。
In the present invention, an electric flow rate measuring device is disposed in the gas introduction pipe between the liquid gasification container and the thin film forming container,
It is preferable to have an electrical feedback circuit for controlling the output of the ultrasonic transducer so that the flow rate is constant according to the set flow rate, so that the flow rate can be controlled to any desired flow rate.

【0010】また本発明においては、前記液体容器に印
加する超音波の周波数として10kHz〜1MHzの超
音波振動を与えることが好ましい。以下図面に基づき、
本発明の代表的な一実施例を示す。
Further, in the present invention, it is preferable that the frequency of the ultrasonic waves applied to the liquid container is 10 kHz to 1 MHz of ultrasonic vibration. Based on the drawings below,
1 shows a typical embodiment of the present invention.

【0011】図1は本発明で使用される液体原料ガス化
装置およびそれを用いたガス供給装置と薄膜形成システ
ム構成の概略図である。図1において、11は薄膜形成
を行なうための反応容器で、排気孔12より真空に排気
可能な構造を有している。13は第1のガス導入口で、
本発明の原料供給装置から気化させられた原料ガスを導
入出来るようになっている。14は液体原料や固体原料
の容器で、15の加熱用ヒータにより容器並びに原料1
6を直接は気化させず、流量検出器が検出可能な範囲ま
で昇温する。例えば、酸化タンタル薄膜を形成する場合
には、原料16としてTaCl5 、TaF5 等の固
体を液化する程度の、例えば130℃〜150℃の温度
まで、Ta(OC2 H5 )5 、Ta(OCH3 
)5 等の液体原料の場合は、気化しないが流量検出可
能な温度範囲の150℃程度まで昇温しておけば良い。 17は原料容器に超音波振動を伝えるための超音波発生
のための圧電セラミック素子で、原料容器14をステン
レス等の金属容器としておき、図1のように電極を介し
容器と固定する。ステンレス等の原料容器14と電極板
18との間に電圧を印加することにより超音波が発生し
、ステンレス容器に超音波が伝搬される。電極に与える
電力を調節する事により、発生する超音波の出力は変化
し、それによって液体が気化する量が制御可能である。 19は流量検出器であり、原料容器から発生したガスの
反応容器に導入される流量を直接測定可能である。その
測定値を20の増幅回路を通し制御信号として高周波電
源21を通じ超音波振動子へ電力を与え、設定流量とな
るよう電力調整可能にしておくことにより正確な流量制
御が可能となる。22はN2 O、O2 等やそれらの
混合ガス等のガスが導入される第2のガス導入孔であり
、Ta原料ガスと反応室で混合され、各種の分解反応に
より基板ホルダー23上の基板24薄膜が形成される。
FIG. 1 is a schematic diagram of a liquid raw material gasification apparatus, a gas supply apparatus using the same, and a thin film forming system configuration used in the present invention. In FIG. 1, 11 is a reaction vessel for forming a thin film, and has a structure that can be evacuated to a vacuum through an exhaust hole 12. 13 is the first gas introduction port;
The vaporized raw material gas can be introduced from the raw material supply device of the present invention. 14 is a container for liquid raw materials or solid raw materials, and the container and raw material 1 are heated by the heater 15.
6 is not directly vaporized, but is heated to a range that can be detected by a flow rate detector. For example, when forming a tantalum oxide thin film, Ta(OC2 H5)5, Ta(OCH3
) 5, etc., the temperature may be raised to about 150° C., which is a temperature range that does not vaporize but allows flow rate detection. Reference numeral 17 denotes a piezoelectric ceramic element for generating ultrasonic waves for transmitting ultrasonic vibrations to the raw material container.The raw material container 14 is made of a metal container such as stainless steel, and is fixed to the container via electrodes as shown in FIG. Ultrasonic waves are generated by applying a voltage between the raw material container 14 made of stainless steel or the like and the electrode plate 18, and the ultrasonic waves are propagated to the stainless steel container. By adjusting the power applied to the electrodes, the output of the ultrasonic waves generated can be varied, thereby controlling the amount of liquid vaporized. Reference numeral 19 denotes a flow rate detector, which can directly measure the flow rate of gas generated from the raw material container and introduced into the reaction container. The measured value is passed through the amplifier circuit 20 as a control signal, and power is applied to the ultrasonic transducer through the high-frequency power source 21, and by making the power adjustable so that the set flow rate is achieved, accurate flow rate control becomes possible. Reference numeral 22 denotes a second gas introduction hole through which gas such as N2O, O2, or a mixture thereof is introduced, which is mixed with the Ta raw material gas in the reaction chamber, and caused to decompose the substrate 24 on the substrate holder 23 through various decomposition reactions. A thin film is formed.

【0012】なお、本実施例では酸化タンタルのための
装置構成について述べたが、他の液体原料・液化した固
体原料を使用する薄膜形成のための原料ガス化装置とし
ても同様の効果が得られることは言うまでもない。
[0012] In this embodiment, the apparatus configuration for tantalum oxide was described, but similar effects can be obtained as a raw material gasification apparatus for thin film formation using other liquid raw materials or liquefied solid raw materials. Needless to say.

【0013】前記本実施例の効果は次のようなものであ
る。図2に、原料容器の加熱ヒータ温度を130℃とし
、従来法としてキャリアガスHeを用い、バブリングに
よる原料ガスの供給により酸化タンタル薄膜を形成した
時と、バブリングを行なわず直接原料ガスを測定し制御
しつつ行なった本発明による酸化タンタル薄膜を形成し
た時、複数回異なる基板に同一条件で堆積を行なった場
合の膜厚分布の比較を示す。横軸は堆積回数、縦軸は初
回堆積膜厚で規格化した膜厚値を示している。この図2
から明らかなように、本発明によると堆積毎の膜厚分布
の向上が著しい。
The effects of this embodiment are as follows. Figure 2 shows two cases in which a tantalum oxide thin film was formed by supplying the raw material gas by bubbling, using a carrier gas He as a conventional method, with the heater temperature of the raw material container set at 130°C, and a case in which the raw material gas was directly measured without bubbling. A comparison of the film thickness distribution when a tantalum oxide thin film according to the present invention was formed under controlled conditions and deposited multiple times on different substrates under the same conditions is shown. The horizontal axis shows the number of depositions, and the vertical axis shows the film thickness value normalized by the initial deposited film thickness. This figure 2
As is clear from the above, according to the present invention, the film thickness distribution for each deposition is significantly improved.

【0014】[0014]

【発明の効果】以上説明した通り、本発明によれば、薄
膜堆積に用いられる液体もしくは固体原料の気化もしく
は液化原料を収納している容器外壁に超音波振動子を設
置し、前記液体原料の分子が吸収し得る波長の超音波振
動を与え、前記振動子に与える電力を調整することによ
り、原料ガスの温度を高温に昇温することなく気化させ
ることが可能である。その結果、原料ガスを安定に流量
測定でき、さらに超音波振動子に供給する電力を制御す
ることにより迅速に制御可能とするものである。結果的
に良質な薄膜を制御性良く、大面積にかつ安定に形成す
る方法を実現できる。
As explained above, according to the present invention, an ultrasonic vibrator is installed on the outer wall of a container housing a vaporized or liquefied liquid or solid raw material used for thin film deposition, and By applying ultrasonic vibration with a wavelength that can be absorbed by molecules and adjusting the power applied to the vibrator, it is possible to vaporize the raw material gas without raising the temperature to a high temperature. As a result, the flow rate of the raw material gas can be measured stably, and furthermore, by controlling the power supplied to the ultrasonic transducer, rapid control is possible. As a result, it is possible to realize a method for stably forming a high-quality thin film over a large area with good controllability.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例の液体原料ガス化装置を用い
たガス供給装置概略図である。
FIG. 1 is a schematic diagram of a gas supply device using a liquid raw material gasification device according to an embodiment of the present invention.

【図2】本発明の一実施例の効果を示すために、従来法
による酸化タンタル薄膜を形成した時と本発明による酸
化タンタル薄膜を形成した時の、堆積回数による膜厚変
化分布の比較を示す図である。
FIG. 2 shows a comparison of the film thickness change distribution depending on the number of depositions when a tantalum oxide thin film was formed by the conventional method and when a tantalum oxide thin film was formed by the present invention, in order to show the effect of one embodiment of the present invention. FIG.

【図3】従来の薄膜装置外略図である。FIG. 3 is a schematic external view of a conventional thin film device.

【符号の説明】[Explanation of symbols]

11    真空チャンバー 12    排気孔 13    第1のガス導入孔 14    原料容器 15    加熱ヒータ 16    原料 17    圧電セラミックス素子 18    電極板 19    流量測定器 20    増幅回路 21    高周波電源 22    第2のガス導入孔 23    基板ホルダー 24    基板 11 Vacuum chamber 12 Exhaust hole 13 First gas introduction hole 14 Raw material container 15 Heater 16 Raw materials 17 Piezoelectric ceramic element 18 Electrode plate 19 Flow rate measuring device 20 Amplifier circuit 21 High frequency power supply 22 Second gas introduction hole 23     Substrate holder 24 Board

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  液体または固体原料をガス化し、この
ガスにエネルギーを加えて分解しつつ化学気相堆積させ
て薄膜を製造する方法において、前記原料を収納してい
る容器外壁に超音波振動子を設置し、前記原料の分子が
吸収し得る波長の超音波振動を与え、前記振動子に与え
る電力を調整することにより、前記ガス化した気体の流
量を制御することを特徴とする薄膜製造方法。
1. A method for manufacturing a thin film by gasifying a liquid or solid raw material and applying energy to decompose the gas while depositing it in a chemical vapor phase, in which an ultrasonic vibrator is attached to the outer wall of a container containing the raw material. A thin film manufacturing method characterized in that the flow rate of the gasified gas is controlled by installing an ultrasonic vibration having a wavelength that can be absorbed by the molecules of the raw material and adjusting the electric power applied to the vibrator. .
【請求項2】  液体または固体原料容器に超音波を印
加すると同時に、加熱を行ないガス化した気体の流量を
制御する請求項1に記載の薄膜製造方法。
2. The thin film manufacturing method according to claim 1, wherein the ultrasonic wave is applied to the liquid or solid raw material container, and at the same time, the flow rate of the gasified gas is controlled by heating.
【請求項3】  液体または固体原料をガス化し、この
ガスにエネルギーを加えて分解しつつ化学気相堆積させ
て薄膜を製造する装置において、前記原料を収納してい
る容器外壁に、原料をガス化するための超音波振動子を
設置するとともに、前記ガス化する気体の流量を制御す
るための振動子に与える電力調整手段を備えたことを特
徴とする薄膜製造装置。
3. In an apparatus for manufacturing a thin film by gasifying a liquid or solid raw material, applying energy to the gas to decompose it, and performing chemical vapor deposition, the raw material is deposited on the outer wall of a container containing the raw material. What is claimed is: 1. A thin film manufacturing apparatus comprising: an ultrasonic vibrator for gasifying the gas; and a power adjustment means for controlling the flow rate of the gas to be gasified.
JP14610191A 1991-06-18 1991-06-18 Thin film manufacturing method and device Pending JPH04369833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14610191A JPH04369833A (en) 1991-06-18 1991-06-18 Thin film manufacturing method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14610191A JPH04369833A (en) 1991-06-18 1991-06-18 Thin film manufacturing method and device

Publications (1)

Publication Number Publication Date
JPH04369833A true JPH04369833A (en) 1992-12-22

Family

ID=15400171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14610191A Pending JPH04369833A (en) 1991-06-18 1991-06-18 Thin film manufacturing method and device

Country Status (1)

Country Link
JP (1) JPH04369833A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5795399A (en) * 1994-06-30 1998-08-18 Kabushiki Kaisha Toshiba Semiconductor device manufacturing apparatus, method for removing reaction product, and method of suppressing deposition of reaction product
WO2004019399A1 (en) * 2002-08-23 2004-03-04 Tokyo Electron Limited Gas supply system and treatment system
KR100767296B1 (en) * 2006-01-16 2007-10-17 주식회사 테라세미콘 Source-Powder Compensating Apparatus for Chemical Vapour Deposition System

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5795399A (en) * 1994-06-30 1998-08-18 Kabushiki Kaisha Toshiba Semiconductor device manufacturing apparatus, method for removing reaction product, and method of suppressing deposition of reaction product
WO2004019399A1 (en) * 2002-08-23 2004-03-04 Tokyo Electron Limited Gas supply system and treatment system
US7854962B2 (en) 2002-08-23 2010-12-21 Tokyo Electron Limited Gas supply method using a gas supply system
KR100767296B1 (en) * 2006-01-16 2007-10-17 주식회사 테라세미콘 Source-Powder Compensating Apparatus for Chemical Vapour Deposition System

Similar Documents

Publication Publication Date Title
JP3822055B2 (en) High frequency plasma enhanced chemical vapor deposition reactor and method for implementing the same
JP3468859B2 (en) Gas phase processing apparatus and gas phase processing method
US4935303A (en) Novel diamond-like carbon film and process for the production thereof
JPH0346437B2 (en)
JPH05168802A (en) Liquid material vaporizer and thin film forming device
JPH08232069A (en) Method and apparatus for sublimating solid substance
US6149975A (en) Potassium-containing thin film and process for producing the same
JPH04369833A (en) Thin film manufacturing method and device
JPH0377655B2 (en)
JPS592374B2 (en) Plasma vapor phase growth equipment
JPH0754151A (en) Formation of thin film and forming device therefor
JPH04180566A (en) Thin film forming device
JPH03202467A (en) Device for processing base material by high-frequency plasma
JPH01137621A (en) Vapor growth apparatus
KR100237921B1 (en) Chemical vapor deposition system and method for controlling deposition rate
JPH04362017A (en) Formation of oriented ta2o5 thin film
JP2840750B2 (en) Coating method
JPH02190473A (en) Raw gas feeder for plasma cvd
JP2975145B2 (en) Thermal plasma deposition method
JPH06158323A (en) Method for synthesizing hard carbon coating film in vapor phase
JPH0461336A (en) Film formation method and film formation device
JPH0532489A (en) Synthesis of diamond using plasma
JP2649333B2 (en) Plasma processing equipment
JPH064915B2 (en) Method for synthesizing cubic boron nitride
JPH02197577A (en) Formation of thin film