JPS6353271A - Method and device for coating thin film - Google Patents

Method and device for coating thin film

Info

Publication number
JPS6353271A
JPS6353271A JP19654886A JP19654886A JPS6353271A JP S6353271 A JPS6353271 A JP S6353271A JP 19654886 A JP19654886 A JP 19654886A JP 19654886 A JP19654886 A JP 19654886A JP S6353271 A JPS6353271 A JP S6353271A
Authority
JP
Japan
Prior art keywords
thin film
tube
treated
outer tube
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19654886A
Other languages
Japanese (ja)
Inventor
Takahiro Nakahigashi
孝浩 中東
Yoshitaka Setoguchi
佳孝 瀬戸口
Eiji Kamijo
栄治 上條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP19654886A priority Critical patent/JPS6353271A/en
Publication of JPS6353271A publication Critical patent/JPS6353271A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To simultaneously and uniformly coat a thin film on the inner and outer faces of a material to be treated by heating the tubular material to be treated to a specified temp., and supplying a gaseous reactant onto the inner and outer faces of the material to be treated from the regions which are separated and distributed to grow a thin film. CONSTITUTION:An outer pipe 16 having many dispersedly bored holes 20 on the inner face and an inner pipe 24 having many dispersedly bored holes 26 on the outer face are arranged in the form of a coaxial double pipe in a cylindrical vacuum vessel 12 to be evacuated by an evacuation device 28, and a cylindrical heater 14 is further provided on the outside of the outer pipe 16. The cylindrical material 22 to be treated such as a long-sized pipe is inserted between both pipes 16 and 24, and heated by the heater 14 to a specified temp. The gaseous reactant G is supplied into the cavity 18 of the outer pipe 16 and the inner pipe 24 from the respective gas supply sources 30 and 32, and blown against the inner and outer faces of the material 22 to be treated from the holes 20 and 26. As a result, a thin film is simultaneously and uniformly coated on the inner and outer faces of the material 22 to be treated by a chemical vapor growth method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、化学気相成長法(CVD法)によるもので
あって、例えば長尺パイプのような管状の被処理物の内
外両面に同時にかつ均一に薄膜を被覆できるようにした
薄膜被覆方法およびその装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is based on a chemical vapor deposition method (CVD method), which simultaneously coats both the inner and outer surfaces of a tubular workpiece such as a long pipe. The present invention also relates to a thin film coating method and apparatus that enable uniform thin film coating.

〔従来の技術とその問題点〕[Conventional technology and its problems]

例えば原子力発電所、石油精製プラント等C÷おける熱
交換器用の配管等には、長寿命化等の理由から、内外両
面を耐蝕膜等で被覆された長尺パイプが必要とされてい
る。
For example, piping for heat exchangers in nuclear power plants, petroleum refining plants, etc. requires long pipes whose inner and outer surfaces are coated with corrosion-resistant films, etc., for reasons such as longer life.

ところが、このような長尺パイプの内外面を同時にかつ
均一に耐蝕膜等で被覆できるようなC■D装置はこれま
でに無かった。
However, until now, there has been no CD/D device capable of simultaneously and uniformly coating the inner and outer surfaces of such a long pipe with a corrosion-resistant film or the like.

例えば第4図は従来の熱CVD装置の一例を示すもので
あり、反応室である真空容器2内に反応ガスGを供給す
ると共に被処理物3をヒータ4で高温に加熱することに
よって、被処理物3の表面に薄膜を形成するようにした
ものであるが、被処理物3が長尺パイプの場合には、反
応ガスGの流れが長尺パイプの内外や長さ方向で不均一
になる等の理由から、その内外両面に同時にかつ均一に
薄膜を被覆することは不可能である。
For example, FIG. 4 shows an example of a conventional thermal CVD apparatus, in which a reaction gas G is supplied into a vacuum vessel 2, which is a reaction chamber, and a workpiece 3 is heated to a high temperature by a heater 4. Although a thin film is formed on the surface of the object 3 to be treated, if the object 3 to be treated is a long pipe, the flow of the reaction gas G may be uneven inside and outside the long pipe or in the length direction. For these reasons, it is impossible to uniformly coat both the inner and outer surfaces with a thin film at the same time.

また第5図は従来のBM 導結合形プラズマCVD装置
の一例を示すものであり、石英管等から成る真空容器2
の回りに高周波コイル5を巻いてこれに高周波電源6か
ら高周波電力を供給することによってプラズマ7を発生
させ、それによって被処理物3の表面に薄膜を形成する
ようにしたものであるが、被処理物3が長尺パイプの場
合には、上述のような反応ガスGの流れの不均一性や長
尺パイプの内側の奥の方ではプラズマ7がうまく生成さ
れない等の理由から、その内外両面に同時にかつ均一に
薄膜を被覆することは不可能である。
FIG. 5 shows an example of a conventional BM conductive-coupled plasma CVD apparatus, in which a vacuum vessel 2 made of a quartz tube, etc.
A high-frequency coil 5 is wound around the coil 5, and high-frequency power is supplied from a high-frequency power supply 6 to the high-frequency coil 5 to generate plasma 7, thereby forming a thin film on the surface of the object 3. When the object 3 to be processed is a long pipe, it is difficult to generate the plasma 7 on both the inner and outer surfaces due to the non-uniformity of the flow of the reactant gas G as mentioned above and the fact that the plasma 7 is not generated well in the innermost part of the long pipe. It is not possible to simultaneously and uniformly coat a thin film on both sides.

更に第6図は従来の平行平板形プラズマCVD装置の一
例を示すものであり、真空容器2内に設けられた2枚の
電極8.9に高周波電源6から高周波電力を供給するこ
とによってプラズマ7を発生させ、それによって被処理
物3の表面に薄膜を形成するようにしたものであるが、
被処理物3が長尺パイプの場合には、第5図の装置の場
合とほぼ同様の理由から、その内外両面に同時にかつ均
一に薄膜を被覆することは不可能である。
Furthermore, FIG. 6 shows an example of a conventional parallel plate type plasma CVD apparatus, in which plasma 7 is generated by supplying high frequency power from a high frequency power source 6 to two electrodes 8 and 9 provided in the vacuum vessel 2. is generated, thereby forming a thin film on the surface of the object to be treated 3.
When the object 3 to be treated is a long pipe, it is impossible to uniformly and uniformly coat both the inner and outer surfaces thereof with a thin film for substantially the same reason as in the case of the apparatus shown in FIG.

〔発明の目的〕[Purpose of the invention]

そこでこの発明は、例えば長尺パイプのような管状の被
処理物の内外両面に同時にかつ均一に薄膜を被覆するこ
とができる薄膜被覆方法およびその装置を提供すること
を目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a thin film coating method and an apparatus therefor that can simultaneously and uniformly coat both the inner and outer surfaces of a tubular workpiece such as a long pipe.

〔発明の概要〕[Summary of the invention]

この発明の一つの特徴は、加熱された管状の被処理物の
内面および外面に別々に、しかも分散された複数の領域
から反応ガスを供給することであり、それによれば被処
理物の内外や長さ方向における反応ガスの流れを均一に
することができるので、長尺パイプのような管状の被処
理物の内外両面に同時にかつ均一に薄膜を被覆すること
ができる。
One feature of the present invention is that a reactive gas is supplied to the inner and outer surfaces of a heated tubular workpiece from a plurality of regions that are separately and dispersed. Since the flow of the reaction gas in the length direction can be made uniform, the thin film can be coated simultaneously and uniformly on both the inner and outer surfaces of a tubular workpiece such as a long pipe.

この発明の他の特徴は、被処理物の内面および外面に別
々に、しかも分散された複数の領域から反応ガスを供給
し、かつ被処理物の内側および外側で別々にプラズマを
発生させることであり、それによれば被処理物の内側や
長さ方向における反応ガスの流れやプラズマの分布を均
一にすることができるので、長尺パイプのような管状の
被処理物の内外両面に同時にかつ均一に薄膜を被覆する
ことができる。
Another feature of the present invention is that reactive gases are supplied to the inner and outer surfaces of the workpiece separately from a plurality of dispersed regions, and plasma is generated separately inside and outside the workpiece. According to this method, it is possible to make the flow of reactant gas and the distribution of plasma uniform inside the workpiece and in the length direction, so that it is possible to uniformly distribute the flow of the reactant gas and the plasma on both the inside and outside of the workpiece, such as a long pipe, simultaneously and uniformly. can be coated with a thin film.

〔実施例〕〔Example〕

第1図は、この発明の一実施例に係る薄膜被覆装置を示
す概略断面図である。この装置は、筒状の真空容器12
と、真空容器12内に例えば同軸状に配置された2重管
式のものであって内面に多数の穴20が分散してあけら
れた外管16と、外管16内に例えば同軸状に配置され
ていて外面に多数の穴26が分散してあけられた内管2
4とを備えている。これらの真空容器12、外管16お
よび内管24の長さは、例えば長尺パイプのような管状
の被処理物22の長さと同等以上あり、この外管16と
内管24との間に当該被処理物22を同軸状に収納固定
することができる。また真空容器12、外管16および
内管24の断面形状は、この例では被処理物22のそれ
と同様にそれぞれ円形としている。
FIG. 1 is a schematic sectional view showing a thin film coating apparatus according to an embodiment of the present invention. This device consists of a cylindrical vacuum container 12
, an outer tube 16 of a double tube type arranged coaxially within the vacuum container 12 and having a large number of holes 20 dispersedly drilled on its inner surface; The inner tube 2 has a large number of holes 26 distributed on its outer surface.
4. The lengths of the vacuum container 12, the outer tube 16, and the inner tube 24 are equal to or longer than the length of the tubular object 22, such as a long pipe, and there is a gap between the outer tube 16 and the inner tube 24. The object to be processed 22 can be housed and fixed coaxially. Further, in this example, the cross-sectional shapes of the vacuum container 12, the outer tube 16, and the inner tube 24 are each circular, similar to that of the object to be processed 22.

外管16および内管24の一端はこの例ではそれぞれ閉
じており、他端には、外部から外管16の空洞18内お
よび内管24内に反応ガスGを供給するためのガス供給
源30および32がそれぞれ接続されている。真空容器
12と外管16との間には、被処理物22を加熱するた
めの円筒状のヒータ14が同軸状に設けられている。真
空容器12の端部には、その内部を真空排気するための
真空排気装置28が接続されている。
One end of the outer tube 16 and the inner tube 24 are each closed in this example, and a gas supply source 30 is provided at the other end for supplying the reaction gas G from the outside into the cavity 18 of the outer tube 16 and into the inner tube 24. and 32 are connected to each other. A cylindrical heater 14 for heating the workpiece 22 is coaxially provided between the vacuum container 12 and the outer tube 16. A vacuum evacuation device 28 is connected to the end of the vacuum container 12 to evacuate the inside thereof.

この場合、外管16および内管24における穴20.2
6のあけ方は、被処理物22の内外や長さ方向における
反応ガスGの流れができるだけ均一になるようにするの
が好ましく、そのためには、この例のように反応ガスG
を外管16および内管24の一端側から供給する場合は
、例えば反応ガスGの下流側の穴20.26の数を上流
側のそれよりも多くしたり、あるいは下流側の穴20.
26の直径を上流側のそれより大きくしたり、更には両
者を併用したりしても良い。
In this case, the hole 20.2 in the outer tube 16 and the inner tube 24
6, it is preferable to make the flow of the reaction gas G as uniform as possible inside and outside the object 22 and in the length direction.
When supplying the reaction gas G from one end side of the outer tube 16 and the inner tube 24, for example, the number of holes 20.26 on the downstream side of the reaction gas G is made larger than those on the upstream side, or the number of holes 20.26 on the downstream side of the reaction gas G is increased.
The diameter of 26 may be made larger than that on the upstream side, or both may be used in combination.

また、外管16および内管24には、共通のガス供給源
から反応ガスGを供給するようにしても良いが、この例
のように別々のガス供給源3o、32とすれば、被処理
物22の内外面に同種の反応ガスGを供給することもで
きるし、異種の反応ガスGを供給して被処理物22の内
外面に異種の薄膜を被覆することもできる。
Further, the outer tube 16 and the inner tube 24 may be supplied with the reaction gas G from a common gas supply source, but if they are provided with separate gas supply sources 3o and 32 as in this example, The same type of reaction gas G can be supplied to the inner and outer surfaces of the object 22, or different types of reaction gases G can be supplied to coat the inner and outer surfaces of the object 22 with different types of thin films.

尚、外管16、内管24を水冷して、供給された反応ガ
スGが外管16、内管24内で熱分解して析出しないよ
うにすることもできる。
Note that the outer tube 16 and the inner tube 24 can be water-cooled to prevent the supplied reaction gas G from being thermally decomposed and precipitated within the outer tube 16 and the inner tube 24.

また、ヒータ14は真空容器12の外側に設けても良(
、あるいはそれの代わりに高周波加熱手段(第2図の周
波コイル34および高周波電源36参照)を用いても良
く、更には両者を併用しても良い。
Further, the heater 14 may be provided outside the vacuum container 12 (
Alternatively, a high frequency heating means (see the frequency coil 34 and high frequency power supply 36 in FIG. 2) may be used instead, or both may be used in combination.

また、真空容器12の排気はこの倒板外の位置から行っ
ても良く、更に常圧CVDとするならば、真空容器12
の代わりに通常の反応容器を用い真空排気装置28を省
略しても良い。
In addition, the vacuum chamber 12 may be evacuated from a position outside this folded plate, and furthermore, if atmospheric pressure CVD is used, the vacuum chamber 12
Instead, a normal reaction vessel may be used and the evacuation device 28 may be omitted.

上記装置による処理に際しては、真空容器12内を必要
に応じて排気し、被処理物22を所定の温度にまで加熱
し、外管16および内管24に反応ガスGを供給する。
During processing by the above apparatus, the inside of the vacuum container 12 is evacuated as necessary, the object to be processed 22 is heated to a predetermined temperature, and the reaction gas G is supplied to the outer tube 16 and the inner tube 24.

この反応ガスGは外管16および内管24の多数の穴2
0.26から噴出され、それによって加熱された被処理
物22の内面および外面に別々に、しかも分散された複
数の領域から反応ガスGが供給される。
This reaction gas G is supplied to a large number of holes 2 in the outer tube 16 and the inner tube 24.
The reactant gas G is ejected from the reactor gas G and is supplied to the inner and outer surfaces of the heated object 22 from a plurality of separately distributed regions.

従ってこのようにすれば、従来の場合と違って、被処理
物22の内外や長さ方向における反応ガスGの流れを均
一にすることができるので、被処理物22の内外両面に
同時にかつ均一に薄膜を被覆することができる。従って
例えば、内外両面を均一な耐蝕膜で被覆した耐蝕性に優
れた長尺パイプ等を得ることもできる。しかも上記のよ
うな装置によれば、反応ガスGの供給に多数の穴20.
26が分散してあけられた外管16および内管24を用
いているので、簡単な構成で被処理物22の内外や長さ
方向における反応ガスGの流れを均一にすることができ
る。
Therefore, in this way, unlike the conventional case, it is possible to make the flow of the reaction gas G uniform both inside and outside the object 22 to be treated and in the length direction, so that it is possible to uniformly flow the reaction gas G on both the inside and outside of the object 22 to be treated simultaneously and uniformly. can be coated with a thin film. Therefore, for example, it is possible to obtain a long pipe with excellent corrosion resistance, whose inner and outer surfaces are coated with a uniform corrosion-resistant film. Moreover, according to the above-mentioned apparatus, a large number of holes 20.
Since the outer tube 16 and the inner tube 24 in which the tubes 26 are dispersedly opened are used, the flow of the reactant gas G can be made uniform inside and outside the object 22 to be treated and in the length direction with a simple structure.

尚、上記の場合の膜質や成膜速度等は、反応ガスGの流
量、被処理物22の加熱温度、成膜時の真空度等によっ
て所望のものに制御することができる。
Note that the film quality, film formation rate, etc. in the above case can be controlled to desired values by the flow rate of the reaction gas G, the heating temperature of the object to be processed 22, the degree of vacuum during film formation, etc.

また被覆膜の種類としては、使用する反応ガスGを適宜
選定することにより種々のもの、例えばセラミックス類
やメタル等も可能である。例えば反応ガスGとして、T
 i Cl 4+N H3を用いれば窒化チタン(T 
i N ) 、T i Cl t + CHaを用いれ
ば炭化チタン(TiC) 、BzH6+NH3を用いれ
ば窒化ボロン(BN) 、5iC14+NH:lを用い
れば窒化シリコン(SINX) 、BiI3”CHaを
用いれば炭化ボロン(BC)、5iC14+CH4を用
いれば炭化シリコン(SiC)等のセラミックス類のコ
ーティングが可能である。勿論、前述したように被処理
物22の内外に供給する反応ガスGの種類を異にすれば
、被処理物22の内外に別の薄膜を被覆することもでき
る。
Furthermore, various types of coating film, such as ceramics and metals, can be used by appropriately selecting the reaction gas G used. For example, as the reaction gas G, T
If i Cl 4 + N H 3 is used, titanium nitride (T
i N ), T i Cl t + CHa to produce titanium carbide (TiC), BzH6+NH3 to produce boron nitride (BN), 5iC14+NH:l to produce silicon nitride (SINX), and BiI3"CHa to produce boron carbide ( BC), 5iC14+CH4 can be used to coat ceramics such as silicon carbide (SiC).Of course, as mentioned above, if the types of reaction gas G supplied to the inside and outside of the workpiece 22 are different, the workpiece 22 can be coated. It is also possible to coat the inside and outside of the object 22 with another thin film.

第2図は、この発明の他の実施例に係る薄膜被覆装置を
示す概略断面図である。第1図の実施例との相違点を主
に説明すると、この装置においては、前述した外管16
および内管24に高周波放重用の電極を兼ねさせるため
、両者を導電性材料で形成している。そしてこの外管1
6および内管24に、高周波電力を供給するための高周
波電源42および44を、インピーダンス整合用のマツ
チングボックス38および40を介してそれぞれ接続し
ている。更に被処理物22に、直流負バイアス電圧を印
加するためのバイアス電源46を接続している。
FIG. 2 is a schematic sectional view showing a thin film coating apparatus according to another embodiment of the present invention. Mainly explaining the differences from the embodiment shown in FIG. 1, this device has the above-mentioned outer tube 16.
In order to make the inner tube 24 also serve as an electrode for high frequency radiation, both are made of a conductive material. And this outer tube 1
High frequency power sources 42 and 44 for supplying high frequency power are connected to the inner tube 6 and the inner tube 24 via matching boxes 38 and 40 for impedance matching, respectively. Furthermore, a bias power supply 46 for applying a DC negative bias voltage is connected to the object 22 to be processed.

この場合、外管16および内管24には、共通の高周波
電源から高周波電力を供給するようにしても良いが、こ
の例のように別々の高周波電源42.44とすれば、被
処理物22の内外で高周波電力を任意に変えることがで
きるため、被処理物22の内外面で被覆膜の膜厚や膜質
等の制御を行うことができる。
In this case, high frequency power may be supplied to the outer tube 16 and the inner tube 24 from a common high frequency power source, but if separate high frequency power sources 42 and 44 are used as in this example, Since the high-frequency power can be arbitrarily changed between the inside and outside of the object 22, the thickness, quality, etc. of the coating film can be controlled on the inside and outside surfaces of the object 22.

また、バイアス電源46は必須のものではないが、これ
を設けて被処理物22に印加するバイアス電圧を制御す
れば、被処理物22に被覆する膜の膜質や成膜速度等を
制御することができる。
Although the bias power supply 46 is not essential, if it is provided and the bias voltage applied to the object 22 is controlled, the quality of the film coated on the object 22, the film formation rate, etc. can be controlled. Can be done.

更に、ヒータ14も必ずしも設けなくても良いが、これ
を設けて被処理物22を加熱できるようにすれば、この
装置をプラズマCVD装置としてだけでなく熱CVD装
置としても使用することができ、またプラズマCVD装
置の場合にも被覆膜の密着性等を向上させたりすること
ができる。もっとも、被処理物22の加熱手段としては
、ヒータ14を設ける代わりに、真空容器12を石英管
等で作製してその外側に高周波コイル34を巻き、これ
に高周波型tA36から高周波電力を供給して被処理物
22を誘導加熱するようにしても良い。
Furthermore, although the heater 14 does not necessarily need to be provided, if it is provided so that the workpiece 22 can be heated, this device can be used not only as a plasma CVD device but also as a thermal CVD device. Further, in the case of a plasma CVD apparatus, it is also possible to improve the adhesion of the coating film. However, as a means for heating the object 22, instead of providing the heater 14, the vacuum container 12 is made of a quartz tube or the like, a high frequency coil 34 is wound around the outside of the vacuum container 12, and high frequency power is supplied to this from a high frequency type tA36. The object to be processed 22 may be heated by induction.

その場合、外管16の軸方向に例えば第3図に示すよう
なスリット17を設けておけば、外管16があまり加熱
されることなしに被処理物22の加熱を行うことができ
る。尚、第3図において穴20は図示を省略している。
In that case, if a slit 17 as shown in FIG. 3 is provided in the axial direction of the outer tube 16, the object to be processed 22 can be heated without the outer tube 16 being heated too much. Note that the hole 20 is not shown in FIG. 3.

上記装置においては、■外管16および内管24に高周
波電力を供給してプラズマを発生させる、■外管16お
よび内管24に高周波電力を供給してプラズマを発生さ
せ、かつ被処理物22の加熱も行う、■外管16および
内管24に高周波電力を供給せずに被処理物22の加熱
のみを行う、という3通りの成膜を行うことができる。
In the above apparatus, (1) high-frequency power is supplied to the outer tube 16 and the inner tube 24 to generate plasma; (2) high-frequency power is supplied to the outer tube 16 and the inner tube 24 to generate plasma; Film formation can be performed in three ways: 1. heating the object 22 without supplying high frequency power to the outer tube 16 and the inner tube 24;

上記■は第1図の実施例の場合と同様であるのでここで
はその説明を省略する。
Since the above item (2) is the same as in the embodiment shown in FIG. 1, its explanation will be omitted here.

上記■、■のような処理に際しては、例えば真空容器1
2内をlXl0−5Torr程度以下まで排気した後、
反応ガスGを第1図の場合と同様にして真空容器12内
に数mTorr〜数十Torrまで供給すると共に、被
処理物22を室温〜1500℃程度まで加熱し、外管1
6および内管24に高周波電力を供給する。それによっ
て、被処理物22の内面および外面に別々に、しかも分
散された複数の領域から反応ガスGが供給されると共に
、外管16および内管24を用いた高周波放電によって
プラズマが被処理物22の内側および外側で別々に発生
される。
For example, when performing the treatments described in (1) and (2) above, the vacuum container 1
After exhausting the inside of 2 to below about lXl0-5 Torr,
The reaction gas G is supplied into the vacuum vessel 12 at a temperature of several mTorr to several tens of Torr in the same manner as in the case of FIG.
6 and the inner tube 24 with high frequency power. As a result, the reactant gas G is supplied to the inner and outer surfaces of the workpiece 22 from a plurality of regions that are separately and dispersed, and plasma is applied to the workpiece by high-frequency discharge using the outer tube 16 and the inner tube 24. generated separately inside and outside 22.

従ってこのようにすれば、従来の場合と違って、被処理
物22の内外や長さ方向における反応ガスGの流れおよ
びプラズマの分布を均一にすることができるので、被処
理物22の内外両面に同時にかつ均一に薄膜を被覆する
ことができる。しかもプラズマにより反応ガスGを活性
化するため、第1図の実施例に比べれば、より低温で膜
形成が可能である等の利点がある。しかも上記のような
装置によれば、反応ガスGの供給およびプラズマ発生用
に多数の穴20.26が分散してあけられた導電性材料
から成る外管16および内管24を兼用しているので、
間車な構成で被処理物22の内外や長さ方向における反
応ガスGの流れおよびプラズマの分布を均一にすること
ができる。
Therefore, in this way, unlike the conventional case, it is possible to make the flow of the reactant gas G and the distribution of plasma uniform inside and outside the workpiece 22 and in the length direction, so that both the inside and outside of the workpiece 22 can be uniformly distributed. can be coated with a thin film simultaneously and uniformly. Furthermore, since the reactive gas G is activated by plasma, there are advantages such as film formation being possible at a lower temperature compared to the embodiment shown in FIG. Moreover, according to the above-mentioned device, the outer tube 16 and the inner tube 24 made of a conductive material in which a large number of holes 20, 26 are dispersed and drilled for supplying the reaction gas G and generating plasma are also used. So,
The spacing configuration makes it possible to make the flow of the reactant gas G and the distribution of plasma uniform inside and outside the object 22 to be processed and in the length direction.

尚、上記の場合に被処理物22に被覆できる薄膜の種類
等は第1図の場合とほぼ同様である。また膜質や成膜速
度等は、反応ガスGの流量、被処理物22の加熱温度、
成膜時の真空度、外管16および内管24に供給する高
周波電力、被処理物22に印加するバイアス電圧等によ
って所望のものに制御することができる。
In the above case, the type of thin film that can be coated on the object 22 to be processed is almost the same as in the case of FIG. In addition, the film quality, film formation rate, etc. are determined by the flow rate of the reaction gas G, the heating temperature of the object 22,
It can be controlled to a desired value by adjusting the degree of vacuum during film formation, the high frequency power supplied to the outer tube 16 and the inner tube 24, the bias voltage applied to the object to be processed 22, etc.

最後に、以上はいずれも、直管状の被処理物22を処理
する場合を例示したが、真空容器12、外管16、内管
24等を被処理物22.に対応したものとすれば、曲管
状の被処理物22をも処理することができるのは勿論で
ある。また、被処理物22の断面形状も、必ずしも円形
に限られるものではない。
Finally, although the case where the straight pipe-shaped object to be processed 22 is processed has been described above, the vacuum container 12, the outer tube 16, the inner tube 24, etc. are used as the object to be processed 22. Of course, if it is compatible with this, it is possible to process even a curved tube-shaped object 22. Furthermore, the cross-sectional shape of the object to be processed 22 is not necessarily limited to a circular shape.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明の第1の方法によれば、管状の被
処理物の内外や長さ方向における反応ガスの流れを均一
にすることができるので、例えば長尺パイプのような管
状の被処理物の内外両面に同時にかつ均一に薄膜を被覆
することができる。
As described above, according to the first method of the present invention, it is possible to make the flow of the reaction gas uniform inside and outside the tubular object to be treated and in the length direction. A thin film can be coated simultaneously and uniformly on both the inner and outer surfaces of the treated object.

またこの発明の第2の方法によれば、反応ガスの活性化
にプラズマを用いており、しかも管状の被処理物の内外
や長さ方向における反応ガスの流れおよびプラズマの分
布を均一にすることができるので、第1の方法の場合よ
りも低い温度で、例えば長尺バイブのような管状の被処
理物の内外両面に同時にかつ均一に薄膜を被覆すること
ができる。
Further, according to the second method of the present invention, plasma is used to activate the reaction gas, and the flow of the reaction gas and the distribution of the plasma can be made uniform inside and outside the tubular workpiece and in the length direction. Therefore, the thin film can be simultaneously and uniformly coated on both the inner and outer surfaces of a tubular object such as a long vibrator at a lower temperature than in the first method.

またこの発明の第1の装置によれば、反応ガスの供給に
多数の穴が分散してあけられた外管および内管を用いて
いるので、簡単な構成で管状の被処理物の内外や長さ方
向における反応ガスの流れを均一にすることができる。
Further, according to the first apparatus of the present invention, since the outer tube and the inner tube having a large number of dispersed holes are used for supplying the reaction gas, the structure is simple and the inner and outer tubes of the tubular object to be treated can be controlled. The flow of the reactant gas in the length direction can be made uniform.

更にこの発明の第2の装置によれば、反応ガスの供給お
よびプラズマ発生用に多数の穴が分散してあけられた4
電性材料から成る外管および内管を兼用しているので、
簡単な構成で管状の被処理物の内外や長さ方向における
反応ガスの流れおよびプラズマの分布を均一にすること
ができる。
Furthermore, according to the second device of the present invention, a large number of holes are dispersedly drilled for supplying reaction gas and generating plasma.
Since the outer tube and inner tube are both made of electrically conductive material,
With a simple configuration, the flow of reactant gas and the distribution of plasma can be made uniform inside and outside the tubular object to be processed and in the length direction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の一実施例に係る薄膜被覆装置を示
す概略断面図である。第2図は、この発明の他の実施例
に係る薄膜被覆装置を示す概略断面図である。第3図は
、外管の他の例を示す概略斜視図である。第4図は、従
来の熱CVD装置の一例を示す概略図である。第5図は
、従来の誘導結合形プラズマCVD装置の一例を示す概
略図である。第6図は、従来の平行平板形プラズマCV
D装置の一例を示す概略図である。 12・・・真空容器、14・・・ヒータ、16・・・外
管、20.26・・・穴、22・・・被処理物、24・
・・内管、28・・・真空排気装置、30.32・・・
ガス供給源、42.44・・・高周波電源、G・・・反
応ガス。
FIG. 1 is a schematic sectional view showing a thin film coating apparatus according to an embodiment of the present invention. FIG. 2 is a schematic sectional view showing a thin film coating apparatus according to another embodiment of the present invention. FIG. 3 is a schematic perspective view showing another example of the outer tube. FIG. 4 is a schematic diagram showing an example of a conventional thermal CVD apparatus. FIG. 5 is a schematic diagram showing an example of a conventional inductively coupled plasma CVD apparatus. Figure 6 shows a conventional parallel plate type plasma CV
It is a schematic diagram showing an example of D device. DESCRIPTION OF SYMBOLS 12... Vacuum container, 14... Heater, 16... Outer tube, 20.26... Hole, 22... Processing object, 24...
...Inner tube, 28...Vacuum exhaust device, 30.32...
Gas supply source, 42.44...High frequency power supply, G...Reactive gas.

Claims (4)

【特許請求の範囲】[Claims] (1)化学気相成長法によって管状の被処理物の内外両
面に薄膜を被覆する方法であって、加熱された被処理物
の内面および外面に別々に、しかも分散された複数の領
域から反応ガスを供給することを特徴とする薄膜被覆方
法。
(1) A method in which a thin film is coated on both the inner and outer surfaces of a tubular workpiece by chemical vapor deposition, and reactions occur from multiple regions separately and dispersed on the inner and outer surfaces of the heated workpiece. A thin film coating method characterized by supplying a gas.
(2)化学気相成長法によって管状の被処理物の内外両
面に薄膜を被覆する方法であって、被処理物の内面およ
び外面に別々に、しかも分散された複数の領域から反応
ガスを供給し、かつ被処理物の内側および外側で別々に
プラズマを発生させることを特徴とする薄膜被覆方法。
(2) A method in which a thin film is coated on both the inner and outer surfaces of a tubular workpiece by chemical vapor deposition, and a reactive gas is supplied to the inner and outer surfaces of the workpiece separately from multiple dispersed regions. A thin film coating method characterized in that the plasma is generated separately on the inside and outside of the object to be treated.
(3)化学気相成長法によって管状の被処理物の内外両
面に薄膜を被覆する装置であって、筒状の容器と、容器
内に配置された2重管式のものであって内面に多数の穴
が分散してあけられた外管と、外管内に配置されていて
外面に多数の穴が分散してあけられた内管とを備え、こ
の外管と内管との間に管状の被処理物を同軸状に収納可
能であり、更に、外管および内管に反応ガスを供給する
手段と、被処理物を加熱する手段とを備えることを特徴
とする薄膜被覆装置。
(3) A device that coats a thin film on both the inner and outer surfaces of a tubular workpiece by chemical vapor deposition, which includes a cylindrical container and a double tube type placed inside the container. It has an outer tube in which a large number of holes are drilled in a distributed manner, and an inner tube that is placed inside the outer tube and has a large number of holes in a distributed manner on its outer surface. What is claimed is: 1. A thin film coating apparatus, which is capable of coaxially storing objects to be processed, and further comprising means for supplying a reaction gas to the outer tube and the inner tube, and means for heating the objects to be processed.
(4)化学気相成長法によって管状の被処理物の内外両
面に薄膜を被覆する装置であって、筒状の真空容器と、
真空容器内に配置された導電性材料から成る2重管式の
ものであって内面に多数の穴が分散してあけられた外管
と、外管内に配置された導電性材料から成るものであっ
て外面に多数の穴が分散してあけられた内管とを備え、
この外管と内管との間に管状の被処理物を同軸状に収納
可能であり、更に、真空容器を真空排気する手段と、外
管および内管に反応ガスを供給する手段と、外管および
内管に高周波電力を供給する手段とを備えることを特徴
とする薄膜被覆装置。
(4) An apparatus for coating both the inner and outer surfaces of a tubular workpiece with a thin film using a chemical vapor deposition method, which includes a cylindrical vacuum container;
It is a double-tube type made of conductive material placed inside a vacuum container, and consists of an outer tube with many holes distributed on its inner surface, and a conductive material placed inside the outer tube. It has an inner tube with many holes distributed on its outer surface.
A tubular object to be processed can be coaxially stored between the outer tube and the inner tube, and further includes a means for evacuating the vacuum container, a means for supplying a reaction gas to the outer tube and the inner tube, and a means for evacuating the vacuum container. A thin film coating device comprising: means for supplying high frequency power to a pipe and an inner pipe.
JP19654886A 1986-08-21 1986-08-21 Method and device for coating thin film Pending JPS6353271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19654886A JPS6353271A (en) 1986-08-21 1986-08-21 Method and device for coating thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19654886A JPS6353271A (en) 1986-08-21 1986-08-21 Method and device for coating thin film

Publications (1)

Publication Number Publication Date
JPS6353271A true JPS6353271A (en) 1988-03-07

Family

ID=16359571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19654886A Pending JPS6353271A (en) 1986-08-21 1986-08-21 Method and device for coating thin film

Country Status (1)

Country Link
JP (1) JPS6353271A (en)

Similar Documents

Publication Publication Date Title
US5160544A (en) Hot filament chemical vapor deposition reactor
JPH0346437B2 (en)
JP4195198B2 (en) An apparatus for plasma technical deposition of polycrystalline diamond.
JPH04232274A (en) Coating method of drill with cvd diamond
JP5055834B2 (en) Gas supply pipe for plasma processing
JP2019525001A (en) Method for producing an annular thin film of synthetic material and apparatus for carrying out the method
JPH0377655B2 (en)
JP3803373B2 (en) Diamond phase carbon tube and CVD method for its manufacture
US5698168A (en) Unibody gas plasma source technology
JPS6353271A (en) Method and device for coating thin film
JP3962722B2 (en) Plasma processing equipment
US3432330A (en) Pyrolytic vacuum deposition from gases
JPS6242029B2 (en)
JPS6358226B2 (en)
JPS6168393A (en) Hot wall type epitaxial growth device
JP2004277757A (en) Source gas feed pipe for chemical plasma treatment, and chemical plasma treatment method for inner surface of container
JPS58127331A (en) Plasma chemical vapor growth apparatus
RU2792526C1 (en) Diamond coating device
RU214891U1 (en) DEVICE FOR GAS-JET DEPOSITION OF DIAMOND COATINGS
JPH0633245A (en) Cvd device
JPS60116776A (en) Cvd apparatus
JPH0322524A (en) Vapor growth device
JPS6320300B2 (en)
JP2734212B2 (en) Plasma process equipment
JPS62185879A (en) Formation of amorphous carbon film