JPS6357770A - Method for coating hard carbon film on surface of metallic substrate - Google Patents

Method for coating hard carbon film on surface of metallic substrate

Info

Publication number
JPS6357770A
JPS6357770A JP20128186A JP20128186A JPS6357770A JP S6357770 A JPS6357770 A JP S6357770A JP 20128186 A JP20128186 A JP 20128186A JP 20128186 A JP20128186 A JP 20128186A JP S6357770 A JPS6357770 A JP S6357770A
Authority
JP
Japan
Prior art keywords
metal
chamber
hard carbon
carbon film
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20128186A
Other languages
Japanese (ja)
Inventor
Takanori Minamitani
南谷 孝典
Nobuyuki Yoshino
吉野 信幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP20128186A priority Critical patent/JPS6357770A/en
Publication of JPS6357770A publication Critical patent/JPS6357770A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To form hard carbon films on metallic substrates as a cathode by cracking a gaseous raw material essentially consisting of a hydrocarbon by the plasma generated by a high-frequency excitation method in a metallic chamber as an anode. CONSTITUTION:The cathode 2 is insulated from the metallic chamber 1 and is inserted into the chamber 1. The many metallic substrates 3a, 3b, etc., to be treated are hung by metallic holders 4a, 4b, etc. A high-frequency source is connected to the metallic chamber 1 and the cathode 2 and after the inside of the chamber is evacuated to a reduced pressure, gaseous methane is introduced through a gas introducing port 5 into the chamber and is cracked by the plasma generated between the chamber 1 as the anode and the cathode 2 by the high-frequency excitation method, by which the hard carbon films are formed on the surfaces of the metallic substrates 3a, 3b, etc., which are to be worked.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、金属基体の表面に高周波プラズマCVD法に
より硬質カーボン膜を被覆する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of coating a surface of a metal substrate with a hard carbon film by high frequency plasma CVD.

〔従来技術と問題点〕[Prior art and problems]

炭化水素ガスを主原料とし、これを放電プラズマ中で分
解、堆積して得られる膜がダイアモンドと類似の特性(
耐触性、耐摩耗性、高硬度、潤滑性、高熱伝導性、高絶
縁性など)を有することが判って以来、この技術に関す
る応用化研究は活発化しつつあり作成方法も、PVD法
〔イオンビーム蒸着法(IBD法)、イオンブレーティ
ング法(IP法)〕、CVD法〔常圧及び減圧CVD法
、プラズマCVD法(P−CVD法〕〕などが提案され
ている。PVD法においては、基体上への三次元的被覆
技術は、TiNの時計ケースへの応用などに見られるご
とく一応確立しているが、安価な量産処理方法という観
点からは問題が多い。
Hydrocarbon gas is the main raw material, and the film obtained by decomposing and depositing this in discharge plasma has properties similar to diamond (
Since it was discovered that the technology has properties such as contact resistance, abrasion resistance, high hardness, lubricity, high thermal conductivity, and high insulation properties, research into the application of this technology has become active, and the manufacturing method has also been changed to the PVD method [ion Beam evaporation method (IBD method), ion blating method (IP method)], CVD method [normal pressure and low pressure CVD method, plasma CVD method (P-CVD method]), etc. have been proposed.In the PVD method, The three-dimensional coating technology on a substrate has been established to some extent, as seen in the application of TiN to watch cases, but there are many problems from the perspective of an inexpensive mass production method.

すなわち自公転治具などによる基体回転が必要、蒸発源
が必要(有効プラズマ空間が狭い)、1バツチあたりの
処理個数が少ない。装置本体が高価など必ずしも安価な
処理方法とは言えないのが現状である。一方CVD法は
一般に処理温度が高いため耐熱性の乏し7い大体上・\
の被覆方法とI〜ては不適だが、その中でP−CVD法
は処理温度を下げられるためン千目されている。基体を
カソード電隋上シで設置したP−CVD法;てよれば、
150’C以下の処理温度で高硬度なカーボン膜が得ら
れることが判っており、かつこの方法では蒸発源不要の
ため、将来的には非常に安’tbな処理方法となる可能
性を秘めている3゜ しかしながら現状では、平行平板、タイプによる平面的
な膜形成および評価の、ゐ、で、基体上への三次元的被
覆に関する検討は全くなされていないと℃・うのが現状
である。
That is, the substrate must be rotated using a rotation-revolution jig, an evaporation source is required (the effective plasma space is narrow), and the number of pieces processed per batch is small. The current situation is that the device itself is expensive, so it cannot necessarily be said that it is an inexpensive processing method. On the other hand, the CVD method generally requires high processing temperatures and therefore has poor heat resistance.
Among these coating methods, the P-CVD method is preferred because it can lower the processing temperature. According to the P-CVD method in which the substrate was installed using cathode electrolyte deposition;
It is known that a highly hard carbon film can be obtained at a processing temperature of 150'C or less, and since this method does not require an evaporation source, it has the potential to become a very cheap processing method in the future. 3゜However, at present, the two-dimensional film formation and evaluation using parallel plates and types has not been considered at all, and three-dimensional coating on the substrate has not been considered at all. .

〔発明の目的〕[Purpose of the invention]

本発明は硬質カーボン膜を量産性良く金属基体上に三次
元的に被覆することを目的とする。
The object of the present invention is to three-dimensionally coat a metal substrate with a hard carbon film with good mass productivity.

〔発明の構成〕[Structure of the invention]

このため本発明は炭化水素ガスを主成分とした原料ガス
を用い、高周波励起法により発生したプラズマを用いて
炭化水素ガスを分解(−、カソード電極におかれた基体
上に硬質カーボン、膜ヤ被1没−士るP −CV T)
法に:!6いて、多数の金属基体が金属製ホルダーを介
してカソード電、唖に接続されてす6す、かつ金属チャ
ンバー自身がアノ−ド電極として作用することを特徴と
している。
For this reason, the present invention uses a raw material gas containing hydrocarbon gas as its main component, and decomposes the hydrocarbon gas using plasma generated by a high-frequency excitation method. 1 death - Shiru P -CV T)
To the law:! 6, a large number of metal substrates are connected to a cathode electrode through a metal holder, and the metal chamber itself acts as an anode electrode.

本発明では、金〈基体をカソード電位に保つために、金
属製ホルダーと金属基体とを接続するのに安す4)領域
以外には、金、((基体表面上(て三次元的に硬質カー
ボン膜を被覆することが可能であく)。
In the present invention, in addition to the gold region (which is used to connect the metal holder and the metal substrate in order to maintain the substrate at cathode potential), gold (Possible to coat with carbon film).

また、チャンバー内部にはカッ−ド電極のみが配置され
るため、有効プラズマ空間が拡がり、多数の金属基体の
同時処理が実現できる。
In addition, since only the quad electrodes are arranged inside the chamber, the effective plasma space is expanded and a large number of metal substrates can be processed simultaneously.

〔実施例〕〔Example〕

以下に本発明の実施例を図面;て基づいて説明する。第
1図は金属基体とし℃時計用バンドな用(・、その表面
圧三次元的罠硬質力=−ボン膜を被覆するための装置を
示す模式図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing an apparatus for coating a metal substrate with a carbon film for use as a watch band (.

金属製チャンバー1内には、マツチングボックスを介し
て高周波型ふと接続されているカソード電極2のみが配
置され、接地電位を有する金属性チャンバー1自身がア
ノード電極どして機能する構成をとっているため、従来
のP−CVD装置と異なり、−(j効プラズマ空間が拡
がり立体的なカソード電極形状が可能となっている。時
計用バンドの金属基体(3a、5b、他は省略)はそれ
ぞれ金属製ホルダー (4a、4h、他は省略)を介し
てカソード電極2と接続、保持さねている。
Inside the metal chamber 1, only the cathode electrode 2, which is connected to the high-frequency type via a matching box, is arranged, and the metal chamber 1 itself, which has a ground potential, functions as an anode electrode. Therefore, unlike conventional P-CVD equipment, the -(J effect plasma space is expanded and a three-dimensional cathode electrode shape is possible.The metal bases of the watch band (3a, 5b, others omitted) are It is connected to and held by the cathode electrode 2 via metal holders (4a, 4h, others omitted).

金属製チャンバー1を減圧後、ガス導入口5よりメタン
ガスを導入し、プラズマを発生させた後、以下の条件と
より時計用バンド表面−ヒヘ硬質カーボン嗅を被削した
After reducing the pressure in the metal chamber 1, methane gas was introduced from the gas inlet 5 to generate plasma, and then the hard carbon surface of the watch band was abraded under the following conditions.

硬質カーボン膜形成条件 原料ガス:Cl−14、励起法:高周波(13,56M
 HZ )、高周波型カニ 500 w、ガス圧: 0
. I Torr、堆積速度: 021tml+、処理
時間:10分、処理温度:、<XSO°C1膜硬度:ピ
ノカース硬度 5000に9/雇。
Hard carbon film formation conditions Raw material gas: Cl-14, excitation method: high frequency (13,56M
HZ), high frequency crab 500w, gas pressure: 0
.. I Torr, Deposition rate: 021 tml+, Processing time: 10 minutes, Processing temperature: <

なお、以上の条件でT”Jられた硬質カーボン膜はX線
回折およびr(HE E Dの分析結果からアモルファ
ス構造であり、またFT−Inスペクトル結果から膜中
に少量の水素を含有していることが判った。時計用バン
ドの端部に形成されている穴部を用いて金属製ホルダー
との結合を行ない、」−記条件で処理を行なったところ
、時計用バンド自身は複雑な形状を有しているにもかか
わらず外見上は、場所による色ムラなとは全く観察され
ず、三次元的て均一な硬質カーボン膜被覆が実現できた
The hard carbon film subjected to T''J under the above conditions has an amorphous structure according to the X-ray diffraction and r(HEED) analysis results, and the FT-In spectrum shows that it contains a small amount of hydrogen in the film. It was found that the watch band itself had a complicated shape when it was bonded to a metal holder using the hole formed at the end of the watch band. Despite this, no visible color unevenness was observed depending on the location, and a three-dimensional and uniform hard carbon film coating was achieved.

処理時の放電状態から、時計用バンド周辺にもカソード
電極周辺と同様のイオンシースが形成されていることが
確認され、時計用バンド自身がカソード電(iとして機
能していることが推察されろ。
From the discharge state during the treatment, it was confirmed that an ion sheath similar to that around the cathode electrode was formed around the watch band, suggesting that the watch band itself functions as a cathode electrode (i). .

硬質カーボン膜の形成メカニズムについては、いまだ不
明な点が多いが、我々が検討しているカソード設置のP
−CVD法においては1g下のように考えられる。導入
されたメタンガスは、放電中で分解してCl−I 3+
となりカソード電極周辺に形成されるイオンシースで加
速されカソード電位に保持された金属基体に衝突、反応
し膜を形成する。
Although there are still many unknowns about the formation mechanism of the hard carbon film, the P of the cathode installation we are considering
- In the CVD method, it is considered to be less than 1 g. The introduced methane gas decomposes during the discharge and becomes Cl-I 3+
The ions are accelerated by the ion sheath formed around the cathode electrode, collide with the metal substrate held at the cathode potential, and react to form a film.

この際、金属基体はカソード電位であることθ・ら常:
てスパッタ作用を受けており、結合エネルギ−の小さい
軟らかい膜はスパッタされて再度気相中へ放出され、結
果的に金属基体上には、硬質膜のみが成長する。従来の
P−CVD法においては、基体をアノード設置する場合
がほとんどであり、カソード設置する場合にもカソード
電極が作りだすイオンシース中へ基体を入れて処理をす
る方式のみであり、本実施例にみられるごとく、金属基
体を金属製ホルダーを介してカソード電極と電気的に接
続することにより金属基体自身が作るイオンシースを利
用して被覆する方法とは全く異なった思想によるものと
考えられる。次いで金属基体とカソード電極とを結ぶ金
属製ホルダーについて検討した結果、材質については有
意差は認められなかったが、現状被膜処理条件下では、
金属基体とカソード電極間距離が、10mm以下の場合
に異常放電がおこりやす(なり、その結果として硬質カ
ーボン膜被覆が不均一となることが判った。
At this time, the metal substrate must be at cathode potential.
The soft film with low binding energy is sputtered and released into the gas phase again, and as a result, only a hard film grows on the metal substrate. In the conventional P-CVD method, the substrate is installed as an anode in most cases, and even when installed as a cathode, the only method is to insert the substrate into the ion sheath created by the cathode electrode. As can be seen, this method is considered to be based on a completely different idea from the method of coating the metal substrate using an ion sheath that is created by the metal substrate itself by electrically connecting the metal substrate to the cathode electrode via a metal holder. Next, we investigated the metal holder that connects the metal substrate and the cathode electrode, and found that there was no significant difference in material, but under the current coating treatment conditions,
It has been found that when the distance between the metal substrate and the cathode electrode is 10 mm or less, abnormal discharge tends to occur (as a result, the hard carbon film coating becomes non-uniform).

他方、金属基体とカソード電極間距離が10mm以上と
なるように金属製ホルダーの長さを調整した場合には、
常に均一な硬質カーボン膜被覆が実現できるが、プラズ
マ空間の有効利用を考えると、問題の生じない範囲で短
い方が良く、その距離は10mm以上、望ましくは15
−215−2O程度となるように、金属製ホルダーの形
状を設定することが望ましい。また、同様の関係は金属
基体相互の間隔についても確認されている。
On the other hand, when the length of the metal holder is adjusted so that the distance between the metal base and the cathode electrode is 10 mm or more,
A uniform hard carbon film coating can always be achieved, but considering the effective use of plasma space, it is better to be as short as possible without causing problems, and the distance is preferably 10 mm or more, preferably 15 mm.
It is desirable to set the shape of the metal holder so that it is about -215-2O. A similar relationship has also been confirmed regarding the spacing between metal substrates.

本実施例においては、金属基体として時計用バンドを用
いたが、これに限定されるものでないことは明らかであ
り、他に時計ケース、フレームなどの装飾品を始めとし
て、硬質カーボン膜を三次元的に被覆することにより効
果の生ずるものであればすべて対象内と考えられる。ま
た、本実施例においては、金属基体上へ直接硬質カーボ
ン膜を被覆したが、金属基体と硬質カーボン膜間の密着
性をより確実なものとするために、中間層を導入しても
よく、Ti、 Cr、 Si、Ge、の単層もしくは積
層構造が好ましく、三次元的被覆性を考慮すると、中間
層形成方法としてもP−CVD法が望ましい。
In this example, a watch band was used as the metal base, but it is clear that the metal base is not limited to this.In addition to ornaments such as watch cases and frames, hard carbon films can be used as three-dimensional Anything that can produce an effect by covering it is considered to be within the target range. Furthermore, in this example, the hard carbon film was coated directly onto the metal substrate, but an intermediate layer may be introduced to ensure more reliable adhesion between the metal substrate and the hard carbon film. A single layer or a laminated structure of Ti, Cr, Si, or Ge is preferable, and in consideration of three-dimensional coverage, the P-CVD method is also preferable as a method for forming the intermediate layer.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、金属製チャンバー自身
をアノード電位とすることにより、有効プラズマ空間が
拡がり、カソード電極形状の大型化、立体化とそれに伴
う多数の金属基体の同時処理が可能となった。さらに、
金属基体を金属製ホルダーを介してカソード電極に電気
的に接続する方法により、金属基体が複雑な形状を有す
るにもかかわらず、静止状態のままで、硬質カーボン膜
を三次元的に被覆することが可能となり、非常に量産的
な方法といえる。
As is clear from the above explanation, by setting the metal chamber itself to an anode potential, the effective plasma space expands, making it possible to make the cathode electrode larger and more three-dimensional, and to simultaneously process a large number of metal substrates. Ta. moreover,
By electrically connecting a metal substrate to a cathode electrode via a metal holder, a hard carbon film can be coated three-dimensionally while the metal substrate remains stationary, even though the metal substrate has a complex shape. It can be said that this method is extremely mass-producible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例における金属基体表面上に三次
元的に硬質カーボン膜を被覆するための装置を示す模式
図である。 1・・・・・・金属製チャンバー(アノード電極)、2
・・・・・・カソード電極、 6a、6b・・・・・・金属基体、 4a、4b・・・・・・金属製ホルダー、第1図 排気
FIG. 1 is a schematic diagram showing an apparatus for three-dimensionally coating a hard carbon film on the surface of a metal substrate in an embodiment of the present invention. 1...Metal chamber (anode electrode), 2
...Cathode electrode, 6a, 6b...Metal base, 4a, 4b...Metal holder, Fig. 1 Exhaust

Claims (2)

【特許請求の範囲】[Claims] (1)金属製ホルダーに電気的に接続された状態で保持
されている多数の金属基体を接地電位にある金属製チャ
ンバー内に配置し、炭化水素ガスを主成分とするガス気
流中で金属製ホルダーを介して多数の金属基体に高周波
電圧を印加し、高周波励起により発生したプラズマによ
り前記炭化水素ガスを分解することによる金属基体の表
面に硬質カーボン膜を被覆する方法。
(1) A large number of metal substrates held electrically connected to a metal holder are placed in a metal chamber at ground potential, and the metal substrates are placed in a gas stream containing hydrocarbon gas as the main component. A method of coating a hard carbon film on the surface of a metal substrate by applying a high frequency voltage to a large number of metal substrates via a holder and decomposing the hydrocarbon gas by plasma generated by high frequency excitation.
(2)多数の金属基体相互の間隔および金属基体と金属
製ホルダーとの間隔を10mm以上に保つことを特徴と
する特許請求の範囲第1項に記載の金属基体の表面に硬
質カーボン膜を被覆する方法。
(2) A hard carbon film is coated on the surface of the metal substrate according to claim 1, characterized in that the distance between the plurality of metal substrates and the distance between the metal substrates and the metal holder are maintained at 10 mm or more. how to.
JP20128186A 1986-08-29 1986-08-29 Method for coating hard carbon film on surface of metallic substrate Pending JPS6357770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20128186A JPS6357770A (en) 1986-08-29 1986-08-29 Method for coating hard carbon film on surface of metallic substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20128186A JPS6357770A (en) 1986-08-29 1986-08-29 Method for coating hard carbon film on surface of metallic substrate

Publications (1)

Publication Number Publication Date
JPS6357770A true JPS6357770A (en) 1988-03-12

Family

ID=16438365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20128186A Pending JPS6357770A (en) 1986-08-29 1986-08-29 Method for coating hard carbon film on surface of metallic substrate

Country Status (1)

Country Link
JP (1) JPS6357770A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009179885A (en) * 2003-02-12 2009-08-13 Jtekt Corp Amorphous carbon film forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009179885A (en) * 2003-02-12 2009-08-13 Jtekt Corp Amorphous carbon film forming apparatus

Similar Documents

Publication Publication Date Title
JPS60195094A (en) Production of diamond thin film
JPS61214312A (en) Composite body for electric contact member and making thereof
JPS61201769A (en) Reactive vapor deposition of oxide, nitride and oxide nitride
IL106681A (en) Surface preparation and deposition method for titanium nitride onto carbonaceous materials
JPH0859393A (en) Preparation of synthetic diamond film
EP0068464B1 (en) Method for forming a decorative metallic nitride coating
JPS6357770A (en) Method for coating hard carbon film on surface of metallic substrate
JP2018048393A (en) Method for coating conductive component, and coating for conductive component
US20100155935A1 (en) Protective coating for semiconductor substrates
JPH04103754A (en) Ceramic-coated material and its production
JPH06158331A (en) Coating film forming device
JPH09118977A (en) Method for building up thin film
JPS5915983B2 (en) Formation method of boron film
JP2603919B2 (en) Method for producing boron nitride film containing cubic boron nitride crystal grains
JPH10183335A (en) Manufacture of magnesium oxide film and its manufacturing device
JPS6140770Y2 (en)
JPH0237963A (en) Electrical heating member
JPS58117868A (en) Film forming device
JP2646582B2 (en) Plasma CVD equipment
WO2023079831A1 (en) Laminate, and electrode for electrolysis
JPS63195260A (en) Coating material and its production
JPH06128747A (en) Method and device for forming hard carbonaceous thin film by chemical vapor phase synthesis
JPS58164777A (en) Formation of metallic compound film
JP3224488B2 (en) Method of forming hard carbon film
JPS5836671B2 (en) Surface treatment method