JPS6354769A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6354769A
JPS6354769A JP9324886A JP9324886A JPS6354769A JP S6354769 A JPS6354769 A JP S6354769A JP 9324886 A JP9324886 A JP 9324886A JP 9324886 A JP9324886 A JP 9324886A JP S6354769 A JPS6354769 A JP S6354769A
Authority
JP
Japan
Prior art keywords
film
semiconductor
single crystal
forming
gate oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9324886A
Other languages
Japanese (ja)
Other versions
JPH0588543B2 (en
Inventor
Minoru Takahashi
稔 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP9324886A priority Critical patent/JPS6354769A/en
Publication of JPS6354769A publication Critical patent/JPS6354769A/en
Publication of JPH0588543B2 publication Critical patent/JPH0588543B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Abstract

PURPOSE:To separate a semiconductor element formed on an insulating film without using thermal step of thermally oxidizing and to eliminate the flow of a channel current to the sidewall of an element forming region by forming a conductor film which becomes a gate electrode in advance on the insulating film, and then forming a gate oxide film and a single crystal semiconductor film. CONSTITUTION:After a conductor film 13 which becomes a gate electrode is formed on an insulating film 12 deposited on a semiconductor substrate 11, a gate oxide film 15 is formed on the film 13, and a single crystal semiconductor film 18 is formed on the film 15. Then, the film 18 except an element forming region is removed, the film 13 except the element forming region is selectively etched to form a wiring layer, and diffused layers of source, drain are formed in the film 18 by ion implanting. The step of forming the film 18 includes, for example, deposing an amorphous or polycrystalline semiconductor film on the film 15, and then irradiating a laser beam or a charged beam to melt and recrystallize the semiconductor film.

Description

【発明の詳細な説明】 〔発明の技!li分野〕 本発明は、半導体膜置の製造方法に係わり、特に絶縁膜
上に形成した単結晶半導体膜にM OSトランジスタを
形成するための半導体膜置の製造方法に関する。
[Detailed description of the invention] [Technique of invention! FIELD OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor film device, and more particularly to a method for manufacturing a semiconductor film device for forming a MOS transistor in a single crystal semiconductor film formed on an insulating film.

〔発明の技tji的背貝とその問題点〕近年、半導体基
板上に堆積しt;絶縁膜上に単結晶半導体膜を形成する
技術が開発されている。この単結晶半導体膜は、絶縁膜
上に非晶質若しくは多結晶の半導体薄膜を1「積し、レ
ーザビームや電子ビーム等を用いて該半導体3膜をビー
ムアニールすることにより得られる。そして、絶縁膜上
に形成された単結晶半導体膜に″v10Sトランジスタ
等の半導体素子を形成し、素子を3次元的に形成する、
所謂3次元ICの実現も可能となっている。
[Background of Invention Techniques and Their Problems] In recent years, a technique has been developed for forming a single crystal semiconductor film on an insulating film deposited on a semiconductor substrate. This single crystal semiconductor film is obtained by stacking one amorphous or polycrystalline semiconductor thin film on an insulating film and beam annealing the three semiconductor films using a laser beam, an electron beam, etc. A semiconductor element such as a "v10S transistor is formed on a single crystal semiconductor film formed on an insulating film, and the element is formed three-dimensionally,"
It has also become possible to realize a so-called three-dimensional IC.

しかしながら、この種の方法にあっては次のような問題
があった。即ら、絶縁膜上にMOSトランジスタ等の半
導体素子を形成する際、半導体素子の素子分離は一般に
素子形成領域以外の単結晶半導体膜を熱酸化することに
より得られる。この−、素子分離における熱酸化工程は
、半導体素子形成1jプロセスで最も時間の長い熱工程
であるため、シ・1.[リコン基枳上に既に素子が形成
さ筏ていた場合、□ ”−上記熱工程によりその拡散層が広がる。このため、
下層のシリコン基板にチャネル長の短い素子を形成する
ことは困難であった。
However, this type of method has the following problems. That is, when forming a semiconductor element such as a MOS transistor on an insulating film, element isolation of the semiconductor element is generally obtained by thermally oxidizing the single crystal semiconductor film outside the element forming region. This thermal oxidation step in element isolation is the longest thermal step in the semiconductor element formation process, so [If an element has already been formed on the silicon substrate, the diffusion layer will be expanded by the above thermal process. Therefore,
It has been difficult to form elements with short channel lengths on the underlying silicon substrate.

また、熱酸化を行わずに素子形成領域以外にCVD酸化
膜を埋込む低温プロセス型の素子分離方法も特殊な例と
して′蕊るが、この場合はプロセスが困難であり、更に
素子形成領域の側壁を流れるチャネル電流が発生し易い
。このため、単結晶半導体膜に形成する素子に良好な電
気特性を持たせることは困難であった。
In addition, a special example is a low-temperature process element isolation method in which a CVD oxide film is buried in areas other than the element formation area without performing thermal oxidation, but in this case the process is difficult and the element formation area is Channel current flowing through the sidewalls is likely to occur. For this reason, it has been difficult to provide elements formed in single-crystal semiconductor films with good electrical characteristics.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情を考慮してなされたもので、その目的
とするところは、熱酸化等の熱工程を用いることなく絶
縁膜上に形成する半導体素子の素子分離を行うことが・
でき、素子分離工程の簡略化をはかり得、且つ素子形成
領域の側壁を流れるチャネルリーク電流の発生のない優
れた電気特性を得られる半導体膜置の製造方法を提供す
ることにある。
The present invention has been made in consideration of the above circumstances, and its purpose is to perform element isolation of semiconductor elements formed on an insulating film without using a thermal process such as thermal oxidation.
It is an object of the present invention to provide a method for manufacturing a semiconductor film device, which can simplify the element isolation process, and can obtain excellent electrical characteristics without generating channel leakage current flowing through the sidewalls of the element forming region.

〔発明の霞要〕[Keystones of invention]

本発明の骨子は、絶縁膜上に予めゲート電極となる導体
膜(金屈膜或いは半導体膜)を形成した:1後に、ゲー
ト電極となる導体膜上にゲート酵イ■゛tび単結晶半導
体nI影形成ることにあり、これ−゛により形成された
半導体素子はソース・ドレイン領域間の下にゲート酸化
膜を介してゲート電極が上にMOSトランジスタを製造
する半導体膜置の−製造方沫において、前記絶縁膜上に
ゲート電極となる導体膜を形成したのち、この導体膜上
にゲート酸化膜を形成し、次いでこのゲート酸化膜上に
単結晶半導体膜を形成し、次いで素子形成領域以外の上
記単結晶半導体膜を除去し、次いで素子形成領域以外の
前記導体膜を選択的にエツチングして配線層を形成し、
しかるのちイオン注入により前記単結晶半導体膜中にソ
ース・ドレインとなる拡散層を形成するようにした方法
である。
The gist of the present invention is to form a conductive film (golden film or semiconductor film) that will become a gate electrode on an insulating film in advance; The method of manufacturing a semiconductor film is to form a MOS transistor in which the gate electrode is placed above the source/drain region with a gate oxide film between the source and drain regions. After forming a conductor film to serve as a gate electrode on the insulating film, a gate oxide film is formed on the conductor film, a single crystal semiconductor film is formed on the gate oxide film, and then a region other than the element formation region is formed. removing the single crystal semiconductor film, and then selectively etching the conductor film other than the element forming region to form a wiring layer;
In this method, a diffusion layer that becomes a source/drain is then formed in the single crystal semiconductor film by ion implantation.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、絶縁膜上に形成する半導体素子の素子
分離には一切の熱工程を必要とせず、エツチングのみで
素子分離が達成される。このため、仮に下層のシリコン
基板上に素子が存在する場合においても該素子の拡散層
を広げることがなく、シリコン基板に微細なチャネル長
を有する素子を形成することが可能となる。また、絶!
!膜上の素子のソース・ドレインはゲート電極の上に位
置することになり、ゲート電極は素子形成領域の側壁と
接近することはない。このため、該側壁を流れるチャネ
ル電流が発生することはなく、絶縁膜上に形成する素子
に良好な電気特性を持たせることが可能となる。
According to the present invention, element isolation of semiconductor elements formed on an insulating film does not require any thermal process, and element isolation can be achieved only by etching. Therefore, even if an element exists on the underlying silicon substrate, the diffusion layer of the element is not expanded, and it is possible to form an element with a fine channel length on the silicon substrate. Also, absolutely!
! The source and drain of the element on the film are located above the gate electrode, and the gate electrode does not come close to the sidewalls of the element formation region. Therefore, a channel current flowing through the sidewalls is not generated, and it is possible to provide an element formed on the insulating film with good electrical characteristics.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細を図示の実施例によって説明する。 Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

嚇 第1図<a)〜(h)は本発明の一実施例に係ねる半導
体膜置の製造工程を示す断面図であり、第2図乃至第4
図はそれぞれ第1図(f)〜(h)に相当する斜視図で
ある。
Figures 1A to 4H are cross-sectional views showing the manufacturing process of a semiconductor film device according to an embodiment of the present invention, and Figures 2 to 4
The figures are perspective views corresponding to FIGS. 1(f) to (h), respectively.

まず、第1図(a)に示す如く、面方位(100)、比
抵抗5〜20[0cm Jの単結晶シリコン基板(半導
体基板)11上に第1のCVD酸化模12を1[μm]
の厚さに堆積した。続いて、CVD法を用い、CVD酸
化、摸12上に厚さ5000 [人]のタングステン膜
(導体膜)13及び厚さ250[人]の第1の多結晶シ
リコン膜14を順次堆積した。ここで、タングステン膜
13は最終的にゲート電極及び配線層として用いるもの
である。その後、900[”C]の温度で多結晶シリコ
ン膜14を熱酸化し、第1図(b)に示す如く厚さ50
0[人]のゲート酸化膜15を形成した。
First, as shown in FIG. 1(a), a first CVD oxide pattern 12 is deposited on a single crystal silicon substrate (semiconductor substrate) 11 with a surface orientation (100) and a specific resistance of 5 to 20 [0 cm J].
deposited to a thickness of . Subsequently, a tungsten film (conductor film) 13 with a thickness of 5,000 [layers] and a first polycrystalline silicon film 14 with a thickness of 250[layers] were sequentially deposited on the pattern 12 by CVD oxidation using the CVD method. Here, the tungsten film 13 is ultimately used as a gate electrode and a wiring layer. Thereafter, the polycrystalline silicon film 14 is thermally oxidized at a temperature of 900 ["C] to a thickness of 50" as shown in FIG. 1(b).
A gate oxide film 15 of 0 [people] was formed.

次いで、第1図(C)に示す妃くゲート酸化膜15上に
厚さ5000 [大コの第2の多結晶シリコンI!11
6を堆積し、更にこの上に厚さ5000[大コの第2の
CvD酸化慢17を堆積した。ここで、cvom化躾1
7は、ビームアニール時に多結晶シリコン膜16が蒸発
する現象を抑えるための保護膜となる。続いて、加速電
圧12[KeV]、ビーム電流2[mA]の電子ビーム
を用い、多結晶シリコン膜16をビームアニールして単
結晶化した。
Next, a second polycrystalline silicon I! layer with a thickness of 5000 mm is deposited on the gate oxide film 15 shown in FIG. 1(C). 11
A second CvD oxide film 17 was deposited on top of this to a thickness of 5000 m. Here, cvom training 1
Reference numeral 7 serves as a protective film for suppressing the phenomenon that the polycrystalline silicon film 16 evaporates during beam annealing. Subsequently, the polycrystalline silicon film 16 was beam-annealed to become a single crystal using an electron beam with an acceleration voltage of 12 [KeV] and a beam current of 2 [mA].

次いで、エツチング液としてN84 FF)7液を用い
、第1図(d)に示す如<CVDIf化yA1化合A1
7、多結晶シリコン膜16のビームアニールにより単結
晶化した単結晶シリコン躾18をn出させた。続いて、
加速電圧320 [KeV]、ドーズは1×10工3 
[cm′2]のボロンイオン(B′″)を単結晶シリコ
ン膜18に注入し、該膜18をP−層にした。その後、
第1図(e)に示す如く単結晶シリコン膜18上に第3
のCVDM化膜19を厚さ200OC人]堆積した。
Next, using N84 FF7 solution as an etching solution, as shown in FIG.
7. Single crystal silicon film 18 made into a single crystal by beam annealing of polycrystalline silicon film 16 was exposed. continue,
Accelerating voltage 320 [KeV], dose 1×10 min3
[cm'2] of boron ions (B''') were implanted into the single crystal silicon film 18 to make the film 18 a P- layer.
As shown in FIG. 1(e), a third layer is formed on the single crystal silicon film 18.
A CVDM film 19 was deposited to a thickness of 200 cm.

次いで、第1図(f)及び第2図に示す如く、CVDI
化膜1つ上に厚さ1[μm]のレジストを塗布し、この
レジストをパターニングして第1のレジストパターン2
0を形成した。続いて、リアクティブ・イオン・エツチ
ング法(RIE法)を用い、レジストパターン20をマ
スクとしてCVD1a化膜19及び単結晶シリコンpl
A18を選、率的にエツチング除去した。このとき、ゲ
ート酸化膜15は単結晶シリコン膜18をエツチングす
乞際のストッパーとなる。なお、この工程により、−素
子形成領域以外の部分が除去されたことになる。
Next, as shown in FIG. 1(f) and FIG.
A resist with a thickness of 1 [μm] is applied on one of the chemical films, and this resist is patterned to form a first resist pattern 2.
0 was formed. Subsequently, using a reactive ion etching method (RIE method) and using the resist pattern 20 as a mask, the CVD 1a film 19 and the single crystal silicon PL
A18 was selected and etched away efficiently. At this time, the gate oxide film 15 serves as a stopper when the single crystal silicon film 18 is etched. Note that by this step, the portions other than the negative element formation region were removed.

次いで、レジストパターン20を除去したのち、第1図
(Q)及び第3図に示す如く、新たに第2のレジストパ
ターン21を形成した。そして、レジストパターン21
若しくはcvoa化膜1つで覆われていない部分におい
て、ゲート酸化膜15及びタングステン膜13をRIE
法により除去した。ここで、素子形成領域以外に残った
タングステン膜13は、ゲート電極の引出しgA域、つ
まり配線層となる。
Next, after removing the resist pattern 20, a second resist pattern 21 was newly formed as shown in FIG. 1(Q) and FIG. 3. And resist pattern 21
Alternatively, the gate oxide film 15 and the tungsten film 13 are removed by RIE in the portions not covered with one cvoa film.
removed by method. Here, the tungsten film 13 remaining in areas other than the element formation region becomes a region gA for leading out the gate electrode, that is, a wiring layer.

次いで、第1図(h)及び第4図に示す如く、同じレジ
ストパターン21を用い、このレジストパターン21を
マスクとしてRIE法によりCVDM化摸1化合19し
た。その後、加速電圧50 [KeV] 、 ドーズ巳
1X10”  Ecm4〕のAs“イオンを全面に注入
し、単結晶シリコン膜18にN+をの拡散層を形成した
。この拡散層は、〜10Sトランジスタのソース・ドレ
インをなすものである。
Next, as shown in FIG. 1(h) and FIG. 4, using the same resist pattern 21 and using this resist pattern 21 as a mask, the CVDM compound 19 was formed by the RIE method. Thereafter, As" ions were implanted into the entire surface at an acceleration voltage of 50 KeV and a dose of 1.times.10" Ecm to form an N+ diffusion layer in the single crystal silicon film 18. This diffusion layer forms the source and drain of the ~10S transistor.

これ以降は、レジストパターン21を除去し、図示はし
ていないが全面にCV D rli化膜を堆積し、゛′
通常のコンタクト開口工程及びAQ等からなる配′−形
成工程を順次行うことにより、Nチャネル型゛のMOS
トランジスタが完成することになる。
After this, the resist pattern 21 is removed, and a CV Drli film is deposited on the entire surface (not shown).
By sequentially performing a normal contact opening process and a wiring formation process consisting of AQ, etc., an N-channel type MOS
The transistor will be completed.

かくして本実施例方法によれば、従来必要とされた素子
分離のための熱工程を省略することが可能となり、絶縁
膜12上に形成する半導体素子の素子分離の際に、下層
のシリコン基板11において再拡散が生じるのを未然に
防止することができる。このため、シリコン基板11に
チャネル長の短い素子を形成しておくことができ、高集
積化にも有効である。また、素子形成領域の側壁を流れ
るチャネル電流を抑えることが可能となるので、絶縁膜
12上に形成するMOSトランジスタの素子特性向上を
はかり1qる等の利点がある。
Thus, according to the method of this embodiment, it is possible to omit the conventionally required thermal process for device isolation, and when separating semiconductor devices formed on the insulating film 12, the underlying silicon substrate 11 It is possible to prevent re-diffusion from occurring. Therefore, elements with short channel lengths can be formed on the silicon substrate 11, which is effective for high integration. Furthermore, since it is possible to suppress the channel current flowing through the sidewalls of the element forming region, there are advantages such as improving the element characteristics of the MOS transistor formed on the insulating film 12.

なお、本発明は上述した実施例方法に限定されるもので
はない。例えば、前記ゲート電極となる導体膜はタング
ステンに限るものではなく、抵抗値が但く融点が高いも
のであればよい。一般的には、シート抵抗が50[Ω]
以下のリン拡散型の多結晶シリコン膜や融点が1410
[’C]以上の高融点金属であれば用いることが可能で
ある。また、絶縁膜上に単結晶半導体膜を形成する方法
としては、非晶質若しくは多結晶の半導体薄膜をビ−ム
アニールするのが最も効果的であるが、実施例で説明し
た電子ビームの代りにレーザど−ムやイオンビーム等を
用いることも可能である。また、実施例ではNチャネル
型のMo8 トランジスタの製造方法を示したが、Pチ
ャネル型のMoSトランジスタにも適用できるのは、勿
論のことである。
Note that the present invention is not limited to the method of the embodiment described above. For example, the conductor film serving as the gate electrode is not limited to tungsten, and may be any material as long as it has a high resistance value and a high melting point. Generally, the sheet resistance is 50 [Ω]
The following phosphorus diffusion type polycrystalline silicon films and melting points are 1410
Any metal with a high melting point of ['C] or higher can be used. Furthermore, as a method for forming a single crystal semiconductor film on an insulating film, beam annealing of an amorphous or polycrystalline semiconductor thin film is the most effective method, but instead of using an electron beam as explained in the example, It is also possible to use a laser beam, ion beam, etc. Furthermore, although the method of manufacturing an N-channel type Mo8 transistor is shown in the embodiment, it goes without saying that the present invention can also be applied to a P-channel type MoS transistor.

ざらに、実施例では示していないが、シリコン基板上に
素子が既に形成されている場合においても、河谷問題な
く、絶縁膜上に〜+OS t−ランジスクを形成するこ
とが可能である。また、各層の膜厚。
In general, although not shown in the examples, even when elements are already formed on the silicon substrate, it is possible to form the ~+OS t-range disk on the insulating film without any problem. Also, the thickness of each layer.

エツチング方法等は、仕様に応じて適宜変更可能である
。その他、本発明の要旨を逸脱しない範囲で、種々変形
して実施することができる。
The etching method etc. can be changed as appropriate depending on the specifications. In addition, various modifications can be made without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(h)は本発明の一実施例方法に係わる
半導体膜置の製造工程を示す断面図、第2図乃至第4図
はそれぞれ第1図(f)〜(h)に相当する構造を示す
斜視図である。 11・・・単結晶シリコン基板(半導体基板)、12・
・・第1のCVD酸化膜(絶縁膜)、13・・・タング
ステン膜(導体H>、14・・・第1の多結晶シリコン
膜、15・・・ゲート酸化膜、16・・・第2の多結晶
シリコン膜、17・・・第2のCVD酸化膜(保護膜)
、18・・・単結晶シリコン膜(単結晶半導体膜)、1
9・・・第3のCVD酸化膜、20・・・第1のレジス
トパターン、21・・・第2のレジストパターン。 出願人 工業技ifi院長 等々力 淫Q      
                       リA
o 第3図 第4図 手  続  補  正  書 (方式)%式% 1、事件の表示 特願昭61−93248号 2、発明の名称 半導体膜置の製造方法 3、補正をする者 事件との関係  特許出願人 氏 名 工業技術院 次世代産業技術企画宮家電話 0
3(501>1511内線4601〜54、補正命令の
日付
FIGS. 1(a) to (h) are cross-sectional views showing the manufacturing process of a semiconductor film device according to an embodiment of the present invention, and FIGS. 2 to 4 are FIGS. 1(f) to (h), respectively. It is a perspective view showing the structure corresponding to. 11... Single crystal silicon substrate (semiconductor substrate), 12.
...First CVD oxide film (insulating film), 13...Tungsten film (conductor H>, 14...First polycrystalline silicon film, 15...Gate oxide film, 16...Second polycrystalline silicon film, 17... second CVD oxide film (protective film)
, 18... single crystal silicon film (single crystal semiconductor film), 1
9... Third CVD oxide film, 20... First resist pattern, 21... Second resist pattern. Applicant Industrial Technology ifi Director Todoroki InnoQ
Re A
o Figure 3 Figure 4 Procedures Amendment (Method) % formula % 1, Indication of the case Japanese Patent Application No. 1983-93248 2, Name of the invention Method of manufacturing semiconductor film device 3, Person making the amendment Related Patent Applicant Name Agency of Industrial Science and Technology Next Generation Industrial Technology Planning Miyake Telephone 0
3 (501>1511 extensions 4601-54, date of correction order

Claims (4)

【特許請求の範囲】[Claims] (1)半導体基板上に堆積した絶縁膜上にMOSトラン
ジスタを製造する半導体装置の製造方法において、前記
絶縁膜上にゲート電極となる導体膜を形成する工程と、
次いで上記導体膜上にゲート酸化膜を形成する工程と、
次いで上記ゲート酸化膜上に単結晶半導体膜を形成する
工程と、次いで素子形成領域以外の上記単結晶半導体膜
を除去する工程と、次いで素子形成領域以外の前記導体
膜を選択的にエッチングして配線層を形成する工程と、
次いでイオン注入により前記単結晶半導体膜中にソース
・ドレインとなる拡散層を形成する工程とを含むことを
特徴とする半導体装置の製造方法。
(1) In a method for manufacturing a semiconductor device in which a MOS transistor is manufactured on an insulating film deposited on a semiconductor substrate, a step of forming a conductive film to serve as a gate electrode on the insulating film;
Next, forming a gate oxide film on the conductor film;
Next, a step of forming a single crystal semiconductor film on the gate oxide film, a step of removing the single crystal semiconductor film in areas other than the element formation area, and then selectively etching the conductor film outside the element formation area. a step of forming a wiring layer;
A method of manufacturing a semiconductor device, comprising the step of: forming a diffusion layer to become a source/drain in the single crystal semiconductor film by ion implantation.
(2)前記導体膜として、シート抵抗が50[Ω]以下
の半導体膜或いは融点が1410[℃]以上の高融点金
属膜を用いたことを特徴とする特許請求の範囲第1項記
載の半導体装置の製造方法。
(2) The semiconductor according to claim 1, wherein a semiconductor film having a sheet resistance of 50 [Ω] or less or a high melting point metal film having a melting point of 1410 [°C] or more is used as the conductor film. Method of manufacturing the device.
(3)前記ゲート酸化膜として、膜厚が1000[Å]
以下の熱酸化膜を用いたことを特徴とする特許請求の範
囲第1項記載の半導体装置の製造方法。
(3) The thickness of the gate oxide film is 1000 [Å]
A method of manufacturing a semiconductor device according to claim 1, characterized in that the following thermal oxide film is used.
(4)前記単結晶半導体膜を形成する工程として、前記
ゲート酸化膜上に非晶質若しくは多結晶の半導体膜を堆
積したのち、レーザビーム或いは荷電ビームの照射によ
り該半導体膜を溶融・再結晶化することを特徴とする特
許請求の範囲第1項記載の半導体装置の製造方法。
(4) In the step of forming the single crystal semiconductor film, an amorphous or polycrystalline semiconductor film is deposited on the gate oxide film, and then the semiconductor film is melted and recrystallized by irradiation with a laser beam or a charged beam. 2. A method of manufacturing a semiconductor device according to claim 1, characterized in that:
JP9324886A 1986-04-24 1986-04-24 Manufacture of semiconductor device Granted JPS6354769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9324886A JPS6354769A (en) 1986-04-24 1986-04-24 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9324886A JPS6354769A (en) 1986-04-24 1986-04-24 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS6354769A true JPS6354769A (en) 1988-03-09
JPH0588543B2 JPH0588543B2 (en) 1993-12-22

Family

ID=14077206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9324886A Granted JPS6354769A (en) 1986-04-24 1986-04-24 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6354769A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02224255A (en) * 1989-02-27 1990-09-06 Hitachi Ltd Thin film semiconductor device and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02224255A (en) * 1989-02-27 1990-09-06 Hitachi Ltd Thin film semiconductor device and manufacture thereof

Also Published As

Publication number Publication date
JPH0588543B2 (en) 1993-12-22

Similar Documents

Publication Publication Date Title
JPS59148369A (en) Method of producing mos transistor
JPS61502922A (en) Semiconductor on insulator (SOI) device and SOI IC manufacturing method
US6649455B2 (en) SOI type MOS element and manufacturing method thereof
JPS6354769A (en) Manufacture of semiconductor device
JPS6040702B2 (en) Method for manufacturing semiconductor integrated circuit device
JPH0467336B2 (en)
JPS5856460A (en) Semiconductor device
JPS59224141A (en) Manufacture of semiconductor device
JPH03191529A (en) Manufacture of semiconductor device
JPS59115554A (en) Semiconductor device and manufacture thereof
JPH03175643A (en) Manufacture of vertical field effect transistor
JPS6055658A (en) Manufacture of semiconductor device
JPS58169971A (en) Semiconductor device and manufacture thereof
JPS6286752A (en) Manufacture of semiconductor integrated circuit
JPS59124767A (en) Manufacture of semiconductor-integrated circuit device
JPH01264214A (en) Manufacture of semiconductor device
JPS5856435A (en) Manufacture of semiconductor device
JPS62130523A (en) Manufacture of semiconductor device
JPH0258267A (en) Manufacture of mis type semiconductor integrated circuit device
JPS59135768A (en) Manufacture of semiconductor device
JPH0311731A (en) Manufacture of semiconductor device
JPH03215971A (en) Manufacture of complementary semiconductor device
JPS5848440A (en) Manufacture of semiconductor device
JPH0354823A (en) Manufacture of semiconductor device
JPS61105873A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term