JPS635249A - Method for detecting flaw of planar body - Google Patents

Method for detecting flaw of planar body

Info

Publication number
JPS635249A
JPS635249A JP14863886A JP14863886A JPS635249A JP S635249 A JPS635249 A JP S635249A JP 14863886 A JP14863886 A JP 14863886A JP 14863886 A JP14863886 A JP 14863886A JP S635249 A JPS635249 A JP S635249A
Authority
JP
Japan
Prior art keywords
light
planar body
transmitting member
incident
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14863886A
Other languages
Japanese (ja)
Inventor
Fumihiko Abe
文彦 安倍
Motohiro Yamane
基宏 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP14863886A priority Critical patent/JPS635249A/en
Publication of JPS635249A publication Critical patent/JPS635249A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details

Abstract

PURPOSE:To accurately detect the flaw of a planar body having a large inspection width by a simple means, by positively scattering the reflected or transmitted light from the planar body at the time of optical scanning by a scattering member and allowing the scattering light to be incident to a light transmitting member. CONSTITUTION:The light source 12 of a light irradiating system 11 comprises a laser diode or a light emitting diode and the surface of a planar body 41 is optically scanned by an optical scanner 15 such as a rotary mirror. Corresponding to a reflected or transmitted light receiving region due to the planar body 41, a scattering member 25 and the light incident part of the light transmitting member 21 are relatively arranged on front and rear sides, and the light emitting part of the light transmitting member 21 and a light receiving detection system 31 are preliminarily connected to each other. Then, reflected or transmitted light generated when the surface of the planar body 41 is optically scanned by the light irradiating system 11 is scattered by the scattering member 25 to be incident on the light transmitting member 21 from the light incident part and the incident light is allowed to be incident on the light receiving detection system 31 from the light emitting part and the flaw of the planar body 41 is detected on the basis of the change in a light receiving level.

Description

【発明の詳細な説明】 T産業上の利用分野1 本発明はシート状、フィルム状、板状など、各種面状体
の欠陥を光学的に検出するための方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application 1 The present invention relates to a method for optically detecting defects in various planar objects such as sheets, films, and plates.

r従来の技術」 合成樹脂シート(フィルムも含む)、金属板。rConventional technology Synthetic resin sheets (including films), metal plates.

ガラス板など、これらの面状体を光学的に検査する手段
として、フライング・スポット法が広く採用されている
The flying spot method is widely used as a means for optically inspecting these planar objects such as glass plates.

このフライング・スポット法では、レーザ光源から出射
された平行光をレンズ系で絞り、光走査手段を介してそ
の光ビームを被検体(面状体)の表面に照射かつ走査し
、この際の反射光または透過光を受光掻出系にて検出す
るとともに、その光信号を〈光→゛正気変換して電気的
に処理している。
In this flying spot method, parallel light emitted from a laser light source is focused by a lens system, and the light beam is irradiated and scanned on the surface of the object (planar object) through an optical scanning means. Light or transmitted light is detected by a light receiving and scraping system, and the optical signal is converted from light to light and electrically processed.

かかる方法によるとき1面状体からの反射光または透過
光は、その面状体の正常部と欠陥部とで異なり、受光検
出系へ入射される光量も異なるので、当1核受光検出系
において受光量の変化を検出することにより、面状体の
欠陥の有無、その欠陥部位などが判明する。
When such a method is used, the reflected light or transmitted light from the one-sided object differs between the normal part and the defective part of the one-sided object, and the amount of light incident on the light receiving detection system also differs. By detecting changes in the amount of received light, the presence or absence of a defect in the planar object, the defective location, etc. can be determined.

−般に、フライング・スポット法の受光手段として、光
フアイバ受光法、ミラー集光法、拡散板受光法、コンデ
ンサ・レンズ集光法などが用いられているが、これらの
受光手段は、システムの合理性、経済性などを確保する
上で改善の余地が残されており、そのため、第3図に示
す新規な方法が検討されている。
- In general, optical fiber receiving methods, mirror focusing methods, diffuser plate receiving methods, condenser lens focusing methods, etc. are used as light receiving methods for the flying spot method. There is still room for improvement in terms of ensuring rationality and economy, and therefore a new method shown in Figure 3 is being considered.

以丁、第3図の方法を説明する。The method shown in FIG. 3 will now be explained.

第3図において、光照射系11は、光源12と集光レン
ズ13と光走査手段14とを備え、その光走査手段14
は光走査器15を主体にして構成されている。
In FIG. 3, the light irradiation system 11 includes a light source 12, a condensing lens 13, and a light scanning means 14.
is mainly composed of an optical scanner 15.

透光部材21は、透明体からなり、その長手方向に沿う
一定幅の周面が入光i”[!22となっているとともに
、その長手方向の−・端が出光部23となっている。
The light-transmitting member 21 is made of a transparent body, and the circumferential surface of a constant width along its longitudinal direction serves as a light input i''[!22, and the - end in the longitudinal direction serves as a light output portion 23. .

受光検出系31は、受光器(光検出塁)32と検出装置
33とからなり、その受光器32が前記透光部材21の
出光部23に接続されている。
The light detection system 31 includes a light receiver (light detection base) 32 and a detection device 33, and the light receiver 32 is connected to the light output portion 23 of the light-transmitting member 21.

41は被検体たる面状体である。41 is a planar body which is a subject.

第3図において、面状体41の」二位(下位でもよい)
に配置された光照射系11は、その光走査手段14の光
走査器15を介して面状体41の表面を幅方向に光走査
できるようになっており、これと対応して、透光部材2
1はつぎのように配置される。
In FIG. 3, the second position (lower position is also acceptable) of the planar body 41
The light irradiation system 11 arranged at Part 2
1 is arranged as follows.

すなわち1面状体41が光照射系11からの走査光Ls
を反射させるものであるとき、透光部材21は。
That is, the one-sided body 41 receives the scanning light Ls from the light irradiation system 11.
When the light-transmitting member 21 reflects

第3図実線のごとく、反射光LRを受光する領域に配置
され、面状体41が上記走査光り、を透過させるもので
あるとき、透光部材21は、第3図仮想線のごとく、透
過光Lrを受光する領域に配置され、かくて、透光部材
21の入光部22は、面状体41の幅方向に沿うように
なり、その入光部22から透光部材21内に上記反射光
LRまたは透過光LTが入射され、透光部材21の散乱
光が受光検出系31へ入射されるようになる。
When the planar body 41 is disposed in a region that receives the reflected light LR as shown by the solid line in FIG. The light entering portion 22 of the light transmitting member 21 is disposed in a region that receives the light Lr, and thus the light entering portion 22 of the light transmitting member 21 extends along the width direction of the planar body 41, and the above-mentioned light enters the light transmitting member 21 from the light entering portion 22. The reflected light LR or the transmitted light LT enters, and the scattered light of the light-transmitting member 21 enters the light reception detection system 31.

第3図において、面状体41が同図の矢印方向に移動し
ているとき、光照射系11の光源12から出射され、集
光レンズ13により絞られた光ビームは、光走査手段1
4の光走査器15を介して面状体41の表面に照射され
、その面状体41の幅方向に走査されこの際の面状体4
1が不透明体の場合、走査光Lsが面状体41の表面で
反射し、その反射光LRが透光部材21の入光部22よ
りその内部に入射し、逆に面状体41が透明体の場合、
走査光Lsが面状体41を透過し、その透過光L+か透
光部材21の入光部22よりその内部に入射する。
In FIG. 3, when the planar body 41 is moving in the direction of the arrow in the figure, the light beam emitted from the light source 12 of the light irradiation system 11 and focused by the condensing lens 13 is transmitted to the light scanning means 1.
The surface of the planar body 41 is irradiated through the optical scanner 15 of No. 4, and scanned in the width direction of the planar body 41.
When 1 is an opaque body, the scanning light Ls is reflected on the surface of the planar body 41, and the reflected light LR enters the inside of the transparent member 21 through the light entrance part 22, and conversely, when the planar body 41 is transparent In the case of the body,
The scanning light Ls passes through the planar body 41, and the transmitted light L+ enters the interior of the light-transmitting member 21 through the light entrance portion 22 thereof.

L記反射光’LRあるいは透過光Llが透光部材21内
に入射されたとき、その光の一部は透光部材21を透過
するが、他の一部は透光部材21内で散乱し、その散乱
光が受光検出系31へ入射される。
When reflected light 'LR' or transmitted light Ll enters the light-transmitting member 21, part of the light passes through the light-transmitting member 21, but the other part is scattered within the light-transmitting member 21. , the scattered light is incident on the light receiving and detecting system 31.

この際の光走査において、面状体41のIF常部に走査
光L5が照射されているとき、その反射光LRまたは透
過光Llが定常状態で透光部材21内に入射されるので
、受光検出系31での受光レベルは変化せず、当該受光
検出系31は面状体41に欠陥がないと認識する。
In this optical scanning, when the scanning light L5 is irradiated to the IF normal part of the planar body 41, the reflected light LR or the transmitted light Ll enters into the transparent member 21 in a steady state, so the light is received. The light reception level at the detection system 31 does not change, and the light reception detection system 31 recognizes that the planar body 41 has no defect.

一方、面状体41の欠陥部に走査光t、sが照射された
とき、その欠陥に起因した光の散乱が生じ、IF常部の
場合と異なる光が透光部材21内に入射されるので、受
光検出系31での受光レベルが変化し、その受光レベル
の変化により、当該受光検出系31は面状体41に欠陥
があると認識する。
On the other hand, when the scanning lights t and s are irradiated onto a defective part of the planar body 41, light scattering occurs due to the defect, and light different from that in the IF normal part enters into the transparent member 21. Therefore, the light reception level at the light reception detection system 31 changes, and due to the change in the light reception level, the light reception detection system 31 recognizes that the planar body 41 has a defect.

かくて、面状体41の欠陥が検出される。In this way, defects in the planar body 41 are detected.

r発明が解決しようとする問題点J しかし、上述した第3図の方法には、つぎのような問題
点がある。
Problems to be Solved by the Invention J However, the method shown in FIG. 3 described above has the following problems.

すなわち、第3図の面状体検査において、第4図左側の
ごとく、光照射系11からの光ビームを角度α+α′の
範囲内で光走査し、これを受光器32により受光した場
合、その受光レベルは、第4図右側のようになる。
That is, in the planar object inspection shown in FIG. 3, when the light beam from the light irradiation system 11 is optically scanned within the range of angle α+α′ as shown on the left side of FIG. The received light level is as shown on the right side of FIG.

第4図の右側におけるA−B間の傾き(レベル差)は、
受光器32側からみた場合、透光部材21の内部散乱、
吸収による減衰であり、これは受光器32から遠ざかる
ほど小さくなる。
The slope (level difference) between A and B on the right side of Figure 4 is:
When viewed from the light receiver 32 side, internal scattering of the light-transmitting member 21,
This is attenuation due to absorption, and this decreases as the distance from the light receiver 32 increases.

第4図の右側におけるB−0間のレベル差は、透光部材
21の固有屈折率とその外側部(空気)との屈折率差に
よる全反射が大きく影響している。
The level difference between B-0 on the right side of FIG. 4 is largely influenced by total reflection due to the difference in refractive index between the intrinsic refractive index of the light-transmitting member 21 and its outer part (air).

−・股に、透光部材21における最大伝達角度、すなわ
ち5ine (第5図参照)は、次式により求められる
- The maximum transmission angle in the light-transmitting member 21, ie, 5ine (see FIG. 5), is determined by the following equation.

s:nO=m nI:透過物質(透光部材21) nl:空気(nl>nl) したがって原理的には、入光角度のある部分から急激に
受光レベルが増加するはずであるが、前記内部散乱によ
る入射光の不均一さ、透過物質表面の荒れ(=鏡面状で
ない)等に起因した乱反射による損失から、第4図B−
C間のような受光レベルになる。
s: nO=m nI: Transmissive substance (transparent member 21) nl: Air (nl>nl) Therefore, in principle, the light reception level should increase rapidly from a certain part of the incident angle, but Figure 4B-
The light reception level will be between C and C.

上記で明らかなように、第4図A−C間の光を受光検出
系31へ入射させた場合には、そのB−C間での受光レ
ベルの変動が大きくなるので、面状体41の欠陥を正確
に検出することができない。
As is clear from the above, when the light between A and C in FIG. Defects cannot be detected accurately.

これの対策として、第4図A−B間の光のみを活用する
ことも考えられるが、この場合は1面状体41の検査幅
が半減してしまう。
As a countermeasure for this, it may be possible to utilize only the light between A and B in FIG. 4, but in this case, the inspection width of the one-sided body 41 would be halved.

もちろん、光走査器15と面状体41との距離を火きく
することにより、面状体41の全幅検査が回走となるが
、この場合は、ビーム状の走査光Lsが最適スポット径
よりも大きくなってしまい、検出感度が低下する。
Of course, by widening the distance between the optical scanner 15 and the planar object 41, the full width inspection of the planar object 41 is performed in rotation, but in this case, the beam-shaped scanning light Ls is larger than the optimum spot diameter. This also increases the detection sensitivity.

そのため、光走査器15が回転ミラーの場合は、f−θ
レンズにより、光走査器15が振動ミラーの場合は、 
arc−sin(sini)し7ズにより、それぞれ面
状体表面までの光路長を補正しなければならず、しかも
、検査幅が大きい場合は、大型の上記レンズが要求され
るので、検査システムの経済性が確保できなくる。
Therefore, if the optical scanner 15 is a rotating mirror, f-θ
If the optical scanner 15 is a vibrating mirror due to the lens,
It is necessary to correct the optical path length to the surface of the planar object using arc-sine (sini) and 7 lenses, and if the inspection width is large, a large lens is required, so the inspection system is Economic efficiency cannot be ensured.

本発明は上記の問題点に鑑み、検査幅の大きい面状体の
欠陥が簡易な手段で正確に検出できる方法を提供しよう
とするものである。
In view of the above-mentioned problems, the present invention aims to provide a method for accurately detecting defects in planar bodies having a large inspection width using simple means.

r問題点を解決するための手段1 本発明は所期の目的を達成するため、光走査手段を備え
た光照射系により面状体の表面を光走査して、その走査
光を面状体より反射あるいは透過させるとともに、面状
体の欠陥の有無による上記反射光または透過光の変化を
受光検出系により検知して、面状体の欠陥を検出する方
法において、上記反射光あるいは透過光の受光領域と対
応させて、前側に散乱部材、後側に透光部材の入光部を
相対配置するとともに、その透光部材の出光部と上記受
光検出系とを相互に接続しておき、上記光照射系により
面状体の表面を光走査した際の反射光または透過光を、
散乱部材により散乱させて上記入光部より透光部材内に
入射させ、その入射光を上記出光部より受光検出系へ入
射させることを特徴とする。
Means for Solving Problem 1 In order to achieve the intended purpose, the present invention scans the surface of a planar body with light using a light irradiation system equipped with a light scanning means, and applies the scanning light to the planar body. In a method for detecting a defect in a planar object by reflecting or transmitting the reflected light or transmitting the light by a light receiving detection system, a change in the reflected light or the transmitted light depending on the presence or absence of a defect in the planar object is provided. A scattering member is placed on the front side and a light entrance part of a light transmitting member is placed on the rear side so as to correspond to the light receiving area, and the light outputting part of the light transmitting member and the light receiving detection system are mutually connected. The reflected light or transmitted light when the surface of the planar object is scanned by the light irradiation system,
The light is scattered by a scattering member and enters the light-transmitting member through the light input section, and the incident light is made to enter the light reception and detection system through the light output section.

「作用J 本発明方法の場合、上述のごとく面状体からの反射光ま
たは透過光が、散乱部材により散乱して透光部材内に入
射し、その散乱光の一部が透光部材を介して受光検出系
へ入射する。
Effect J In the case of the method of the present invention, as described above, reflected light or transmitted light from the planar body is scattered by the scattering member and enters the light-transmitting member, and a part of the scattered light is transmitted through the light-transmitting member. The light enters the light receiving and detecting system.

この際の反射光または透過光は面状体の欠陥の有無によ
り変化し、これにともない散乱光も必然的に変化するか
ら、散乱部材、透光部材を経た散乱光の一部を受光検出
系で検知することにより。
At this time, the reflected light or transmitted light changes depending on the presence or absence of defects in the planar body, and the scattered light also inevitably changes accordingly. Therefore, a part of the scattered light that has passed through the scattering member and the transparent member By detecting with.

面状体の欠陥とその欠陥部位などが検出できる。Defects in planar bodies and their defective parts can be detected.

しかも、散乱部材により上記反射光または透過光を積極
的に散乱させて当該散乱光を透光部材へ入射させ、その
−部を検出用の光信号として透光部材から受光検出系へ
入射させる場合、透光部材への光入射位置、透光部材内
での内部散乱等に起因した受光レベルの差が殆ど生じな
くなり、面状体に異常がないかぎり、−定レベルの光量
が受光検出系へ入射されるようになる。
Moreover, in the case where the reflected light or transmitted light is actively scattered by a scattering member, the scattered light is made to enter the light-transmitting member, and the negative part thereof is made to enter the light reception detection system from the light-transmitting member as a detection optical signal. , there is almost no difference in the level of received light due to the position of light incidence on the light-transmitting member, internal scattering within the light-transmitting member, etc., and as long as there is no abnormality in the planar body, a constant level of light is sent to the light receiving detection system. It becomes incident.

したがって、面状体の正常部と欠陥部とで受光レベル差
が生じるとしても、面状体の正常部相互では受光レベル
差が生ぜず、これにより透光部材から受光検出系へ入射
される光信号が安定するので、正確に面状体の欠陥が検
出できる。
Therefore, even if there is a difference in the light reception level between the normal part and the defective part of the planar body, there is no difference in the light reception level between the normal parts of the planar body, and as a result, the light that enters the light reception detection system from the transparent member Since the signal is stable, defects in the planar object can be detected accurately.

もちろん、散乱部材は乱反射を起こさせるものでよく、
透光部材も透明な部材であればよく、その散乱部材を経
て透光部材内に入射した光を光学的、電気的に補正する
必要がないから1面状体からの反射光あるいは透過光を
受けてこれを受光検出系へ伝送する手段が簡易となり、
検査システムの経済性、合理性が確保できる。
Of course, the scattering member may be one that causes diffused reflection.
The light-transmitting member only needs to be a transparent member, and there is no need to optically or electrically correct the light that enters the light-transmitting member through the scattering member. The method for receiving and transmitting this to the light receiving and detecting system is simplified.
The economic efficiency and rationality of the inspection system can be ensured.

1実 施 例1 以下、本発明に係る面状体の欠陥検出力法を、図示の実
施例に基づき説明する。
1 Example 1 Hereinafter, the defect detection method for a planar object according to the present invention will be explained based on the illustrated example.

第1図、第2図に示す本発明方法は、基本的には前記第
3図の方法と同じである。
The method of the present invention shown in FIGS. 1 and 2 is basically the same as the method shown in FIG. 3 above.

したがって、第1図、第2図における各部の構成は、そ
の具体性および第3図との相違点などを主体にして説明
する。
Therefore, the configuration of each part in FIGS. 1 and 2 will be mainly explained with reference to its specificity and differences from FIG. 3.

第1図において、光照射系11の光源12は、気体レー
ザ、固体レーザ等のレーザダイオード(LD)、あるい
は発光ダイオード(LED)からなり、その光走査手段
14は、回転ミラー(ポリゴンミラー)あいろは振動ミ
ラーなどの光走査器15を主体にして構成されている。
In FIG. 1, the light source 12 of the light irradiation system 11 is composed of a laser diode (LD) such as a gas laser or solid-state laser, or a light emitting diode (LED), and the light scanning means 14 is a rotating mirror (polygon mirror) or a light emitting diode (LED). It is mainly composed of an optical scanner 15 such as a vibrating mirror.

第1図、第2図において、透光部材21は、透明なガラ
スロッド(例えば石英系)、あるいは透明なプラスチッ
クロッド(例えばアクリル系、スチレン系、シリコーン
系)等からなり、その断面形状としては、円形、四角形
、入光部22をフラット面にした切り欠き円形などが採
用できる。
In FIGS. 1 and 2, the light-transmitting member 21 is made of a transparent glass rod (for example, quartz-based) or a transparent plastic rod (for example, acrylic-based, styrene-based, silicone-based), etc., and its cross-sectional shape is , a circular shape, a rectangular shape, a notched circular shape with the light entrance portion 22 being a flat surface, etc. can be adopted.

上記透光部材21は、既述の通り、面状体41の幅方向
と対応して所定の受光領域に配置されるが、その面状体
41からの反射光または透過光が一定入射角度で入射さ
れるよう、所定の曲率で弯曲された円弧状のものを採用
することがある。
As described above, the light-transmitting member 21 is arranged in a predetermined light-receiving area corresponding to the width direction of the planar body 41, and the reflected light or transmitted light from the planar body 41 is reflected at a constant angle of incidence. In some cases, an arcuate shape curved with a predetermined curvature is used to allow the light to enter.

さらに透光部材21について、第2図(A)のものは、
その−端が出光部23、その他端が反射部24となって
おり、当該反射部24は、鏡面のごとき反射面を有する
通出な部材を透光部材21の他端に結合することにより
構成されている。
Furthermore, regarding the light-transmitting member 21, the one shown in FIG. 2(A) is as follows.
Its lower end is a light emitting part 23 and the other end is a reflecting part 24, and the reflecting part 24 is constructed by coupling a transparent member having a reflective surface such as a mirror surface to the other end of the transparent member 21. has been done.

一方、第2図(B)の透光部材21は、その両端が出光
部23となっている。
On the other hand, the light transmitting member 21 shown in FIG. 2(B) has light emitting portions 23 at both ends thereof.

かかる透光部材21は、その入光部22が前述した所定
の受光領域、すなわち、面状体41の幅方向にわたって
配置され、その入光部22の前側に散乱部材25が配置
される。
The light-transmitting member 21 has a light entrance portion 22 arranged over the aforementioned predetermined light-receiving region, that is, the width direction of the planar body 41, and a scattering member 25 is arranged in front of the light entrance portion 22.

この散乱部材25は、板状のガラス、プラスチック等か
らなり、例えば、すりガラスのごとく光散乱を生じさせ
るための散乱加工が施されている。
The scattering member 25 is made of plate-shaped glass, plastic, or the like, and has been subjected to a scattering process to cause light scattering, such as frosted glass.

当該散乱部材25も、透光部材21で述べたと同様に弯
曲していてよい。
The scattering member 25 may also be curved in the same manner as described for the light-transmitting member 21.

受光検出系31は、フォトダイオード(叩)、またはア
バランシェフォトダイオード(APD)などの受光器(
光検出器)32と、電気的、電子的な信号処理回路、記
録計などを備えた検出装置33とからなり、その受光器
32が前記透光部材21の出光部23に接続されている
The light reception detection system 31 includes a light receiver (such as a photodiode or an avalanche photodiode (APD)).
The detection device 33 includes a photodetector) 32 and an electric/electronic signal processing circuit, a recorder, etc., and the light receiver 32 is connected to the light output portion 23 of the light-transmitting member 21.

なお、透光部材21の両端に出光部23が設けられてい
る第2図(B)の場合、当該両出光部23が受光検出系
31に接続されるが、かかる具体例での受光検出系31
は1両出光部23から入射される光量を平均して所定の
検出を行なう。
In the case of FIG. 2(B) in which the light emitting parts 23 are provided at both ends of the light-transmitting member 21, both the light emitting parts 23 are connected to the light receiving detection system 31, but the light receiving detecting system in this specific example 31
performs a predetermined detection by averaging the amount of light incident from the two light output sections 23.

面状体41としては1合成樹脂シート、合成樹脂フィル
ム、金属板、ガラス板など、透明、不透明のものがあげ
られる。
The planar body 41 may be transparent or opaque, such as a synthetic resin sheet, a synthetic resin film, a metal plate, or a glass plate.

以下、本発明方法による面状体41の欠陥検出例につい
て説明する。
Hereinafter, an example of defect detection of the planar body 41 by the method of the present invention will be described.

第1図において1面状体41が同図の矢印方向に移動し
ているとき、前述したと同様、光照射系11の光源12
から出射され、集光レンズ13により絞られた光ビーム
は、光走査手段14の光走査器15を介して面状体41
の表面に照射されるとともに、その面状体41の幅方向
に走査される。
In FIG. 1, when the one-sided body 41 is moving in the direction of the arrow in the figure, the light source 12 of the light irradiation system 11
The light beam emitted from the condenser lens 13 is passed through the optical scanner 15 of the optical scanning means 14 to the planar body 41.
The beam is irradiated onto the surface of the planar body 41 and scanned in the width direction of the planar body 41.

この際の面状体41が不透明体の場合、走査光t、sが
面状体41の表面で反射し、逆に面状体41が透明体の
場合、走査光t、sが面状体41を透過し、その反射光
LRまたは透過光L+が散乱部材25により散乱されて
透光部材21の入光部22よりその内部に入射する。
In this case, if the planar body 41 is an opaque body, the scanning lights t and s will be reflected on the surface of the planar body 41, and conversely, if the planar body 41 is a transparent body, the scanning lights t and s will be reflected on the surface of the planar body 41. 41, the reflected light LR or the transmitted light L+ is scattered by the scattering member 25 and enters the inside of the light-transmitting member 21 through the light entrance portion 22 thereof.

上記反射光LRあるいは透過光Lrが透光部材21内に
入射されたとき、その光の一部は透光部材21を透過す
るが、他の一部はその透光部材21から受光検出系31
八入射される。
When the reflected light LR or the transmitted light Lr enters the light transmitting member 21, a part of the light passes through the light transmitting member 21, but the other part passes from the light transmitting member 21 to the light receiving detection system 31.
Eight injections are made.

受光検出系31では、受光器32、検出装置33などを
介してこの際の受光レベルを検出かつ演算処理し、その
受光レベルに基づいて面状体41の欠陥の有無を検出す
る。
In the light reception detection system 31, the light reception level at this time is detected and arithmetic processed through the light receiver 32, the detection device 33, etc., and the presence or absence of a defect in the planar body 41 is detected based on the light reception level.

すなわち上記光走査において、面状体41の正常部に走
査光t、sが照射されているとき、その反射光LRまた
は透過光Llが定常状態で、しかも、散乱部材25によ
り散乱されて透光部材21内に入射されるので、受光検
出系31での受光レベルに変化が生ぜず、受光検出系3
1は面状体41に欠陥がないと認識する。
That is, in the above-mentioned optical scanning, when the normal part of the planar body 41 is irradiated with the scanning lights t and s, the reflected light LR or the transmitted light Ll is in a steady state and moreover is scattered by the scattering member 25 and transmitted. Since the light enters the member 21, there is no change in the level of light received by the light reception detection system 31, and the light reception detection system 3
1 recognizes that the planar body 41 has no defects.

逆に1面状体41に傷、異物混入、汚染などの欠陥部が
あり、これに走査光Lsが照射されると、その欠陥に起
因した光の散乱が生じ、正常部の場合と異なる光が透光
部材21内に入射されるので、受光検出系31での受光
レベルが変化し、その受光レベルの変化により、当該受
光検出系31は面状体41に欠陥があると認識する。
On the other hand, if the one-sided body 41 has a defect such as a scratch, foreign matter, or contamination, and the scanning light Ls is irradiated onto this, the light will be scattered due to the defect, and the light will be different from that in the normal area. enters the light-transmitting member 21, the level of light received by the light reception detection system 31 changes, and the light reception detection system 31 recognizes that the planar body 41 has a defect due to the change in the light reception level.

より具体的には、受光検出系31は、上記欠陥に基づく
光信号を受光器32により光電変換し、その信号を検出
装置33により演算処理して、面状体41の欠陥を認識
するとともに、その欠陥を報知したり、欠陥部位を記録
する。
More specifically, the light reception and detection system 31 photoelectrically converts the optical signal based on the defect by the photoreceiver 32, and the detection device 33 performs arithmetic processing on the signal, thereby recognizing the defect in the planar body 41. Report the defect and record the defective part.

かくて1面状体41の欠陥が検出される。In this way, defects in the one-sided body 41 are detected.

r発明の効果J 以上説明した通り、本発明に係る面状体の欠陥検出方法
によれば、光走査時における面状体からの反射光または
透過光を散乱部材により積極的に散乱させて当該散乱光
を透光部材へ入射させ、その−部を検出用の光信号とし
て透光部材から受光検出系へ入射させるので、受光検出
系の光学的。
r Effects of the Invention J As explained above, according to the method for detecting defects in a planar object according to the present invention, reflected light or transmitted light from the planar object during optical scanning is actively scattered by a scattering member to detect the defect in the planar object. The scattered light is made to enter the light-transmitting member, and the negative part thereof is made to enter the light-receiving and detecting system from the light-transmitting member as an optical signal for detection.

電気的な補正手段を要せずとも、広幅である面状体の欠
陥が簡易な手段で正確に検出でき、かくてこの種の検査
が経済的かつ合理的に行なえる。
Even without the need for electrical correction means, defects in wide planar bodies can be detected accurately with simple means, and this type of inspection can thus be carried out economically and rationally.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の一実施例を略示した斜視図、第2
図(A) (B)は本発明方法の互いに異なる具体例を
略示した側面図、第3図は本発明の先行技術たる方法を
示した説明図、第4図は第3図の方法における受光レベ
ルを示した説明図、第5図は第3図の方法における透光
部材の最大伝達角度を示した説明図である。 11・・・・・・光照射系 12・・・・・・光照射系の光源 13・・・・・・光照射系の集光レンズ14・・・・・
・光照射系の光走査手段15・・・・・・光走査手段の
光走査器21・・・・・・透光部材 22・・・・・・透光部材の入光部 23・・・・・・透光部材の出光部 24・・・・・・透光部材の反射部 25・・・・・・散乱部材 31・・・・・・受光検出系 32・・・・・・受光検出系の受光器 33・・・・・・受光検出系の検出装置41・・・・・
・面状体 Ls・・・・・・走査光 LR・・・・・・反射光 Ll・・・・・・透過光 代理人 弁理士 斎 藤 義 雄 第1図 第 291
FIG. 1 is a perspective view schematically showing an embodiment of the method of the present invention, and FIG.
Figures (A) and (B) are side views schematically showing different specific examples of the method of the present invention, FIG. FIG. 5 is an explanatory diagram showing the light reception level, and FIG. 5 is an explanatory diagram showing the maximum transmission angle of the light-transmitting member in the method of FIG. 3. 11...Light irradiation system 12...Light source 13 of the light irradiation system...Condensing lens 14 of the light irradiation system...
・Light scanning means 15 of the light irradiation system...Light scanner 21 of the light scanning means...Light-transmitting member 22...Light entrance part 23 of the light-transmitting member... ... Light emitting part 24 of the light-transmitting member ... Reflection part 25 of the light-transmitting member ... Scattering member 31 ... Light reception detection system 32 ... Light reception detection Light receiver 33 of the system...Detection device 41 of the light reception detection system...
- Planar body Ls...Scanning light LR...Reflected light Ll...Transmitted light Agent Patent attorney Yoshio Saito Figure 1 291

Claims (1)

【特許請求の範囲】[Claims] 光走査手段を備えた光照射系により面状体の表面を光走
査して、その走査光を面状体より反射あるいは透過させ
るとともに、面状体の欠陥の有無による上記反射光また
は透過光の変化を受光検出系により検知して、面状体の
欠陥を検出する方法において、上記反射光あるいは透過
光の受光領域と対応させて、前側に散乱部材、後側に透
光部材の入光部を相対配置するとともに、その透光部材
の出光部と上記受光検出系とを相互に接続しておき、上
記光照射系により面状体の表面を光走査した際の反射光
または透過光を、散乱部材により散乱させて上記入光部
より透光部材内に入射させ、その入射光を上記出光部よ
り受光検出系へ入射させることを特徴とする面状体の欠
陥検出方法。
A light irradiation system equipped with a light scanning means scans the surface of the planar object, and the scanning light is reflected or transmitted from the planar object. In a method of detecting a defect in a planar object by detecting a change using a light receiving detection system, a light incident part of a scattering member on the front side and a light transmitting member on the rear side corresponds to the light receiving area of the reflected light or transmitted light. are arranged relative to each other, and the light emitting part of the light transmitting member and the light reception detection system are connected to each other, and the reflected light or transmitted light when the surface of the planar body is scanned by the light irradiation system is 1. A method for detecting defects in a planar object, characterized in that the incident light is scattered by a scattering member and enters a light-transmitting member through the light input section, and the incident light is made to enter a light reception detection system through the light output section.
JP14863886A 1986-06-25 1986-06-25 Method for detecting flaw of planar body Pending JPS635249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14863886A JPS635249A (en) 1986-06-25 1986-06-25 Method for detecting flaw of planar body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14863886A JPS635249A (en) 1986-06-25 1986-06-25 Method for detecting flaw of planar body

Publications (1)

Publication Number Publication Date
JPS635249A true JPS635249A (en) 1988-01-11

Family

ID=15457267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14863886A Pending JPS635249A (en) 1986-06-25 1986-06-25 Method for detecting flaw of planar body

Country Status (1)

Country Link
JP (1) JPS635249A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02221846A (en) * 1989-02-22 1990-09-04 Konica Corp Method of inspecting surface of sheet body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02221846A (en) * 1989-02-22 1990-09-04 Konica Corp Method of inspecting surface of sheet body

Similar Documents

Publication Publication Date Title
JP2009042220A (en) Optical sensor device
JP3036733B2 (en) Defect detection device for transparent objects
KR960701358A (en) Particle Detection System with Reflective Line-to-Spot Collector (PARTICLE DETECTION SYSTEM WITH REFLECTIVE LINE-TO-SPOT COLLECTOR)
JP2010112803A5 (en)
JP2002062267A (en) Device for inspecting defect
US4099051A (en) Inspection apparatus employing a circular scan
JPH102868A (en) Method and apparatus for optical inspection of defect in translucent sheet-like material
JPS6273143A (en) Optical type web monitor device
JPH0833354B2 (en) Defect inspection equipment
JP2002534662A (en) Detector for detecting dirt on the transparent plate surface
JPS635249A (en) Method for detecting flaw of planar body
JP6671938B2 (en) Surface shape measuring device, defect determination device, and surface shape measuring method
JP4060483B2 (en) Radiation detector
US5706081A (en) Apparatus for inspecting surface defects with regularly reflected light and peripherally scattered light
JPS63173940A (en) Optical type defect detector
JP2002181695A (en) Leak sensor
JP2017125805A (en) Flaw defect checking device for sheet
JPS62280643A (en) Defect defecting method for planar body
JP3256383B2 (en) Surface inspection equipment
JP2002286844A (en) Distance measuring equipment
JPS62280644A (en) Defect detecting method for planar body
JPH1068601A (en) Detector for hidden mark on glass lens
CN216560302U (en) Contact image sensor
JP2003083902A (en) Method and device for inspecting specimen
JPH09329669A (en) Optical detecting method, photodetector, and photoreceptor for transparent object, and method for pouring liquid into transparent container by using the method or devices