JP2017125805A - Flaw defect checking device for sheet - Google Patents

Flaw defect checking device for sheet Download PDF

Info

Publication number
JP2017125805A
JP2017125805A JP2016006128A JP2016006128A JP2017125805A JP 2017125805 A JP2017125805 A JP 2017125805A JP 2016006128 A JP2016006128 A JP 2016006128A JP 2016006128 A JP2016006128 A JP 2016006128A JP 2017125805 A JP2017125805 A JP 2017125805A
Authority
JP
Japan
Prior art keywords
light
sheet
irradiation
illumination
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016006128A
Other languages
Japanese (ja)
Other versions
JP6679942B2 (en
Inventor
和史 石丸
Kazufumi Ishimaru
和史 石丸
杉原 洋樹
Hiroki Sugihara
洋樹 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2016006128A priority Critical patent/JP6679942B2/en
Publication of JP2017125805A publication Critical patent/JP2017125805A/en
Application granted granted Critical
Publication of JP6679942B2 publication Critical patent/JP6679942B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a flaw defect checking device for detecting flaw defects in all directions that may be generated on a continuously traveled sheet surface such as a film in accordance with a fixed reference.SOLUTION: The present invention relates to a flaw defect checking device comprising multiple linear illuminations 3, 4 and 5. The flaw defect checking device comprises: a first linear illumination 3 including multiple array bodies of which the radiation light axis is tilted relatively to a vertical plane in a width direction of a continuously traveled sheet 1 in such a manner that radiation light is directed from one face side to the other face side, and the second and third linear illuminations 4 and 5 which are installed at front and rear sides in a direction of travel of the sheet with the first linear illumination 3 interposed therebetween and of which the distribution of the quantity of light in a length direction is uniform. The linear illuminations are disposed in such a manner that the radiation light axes cross one another on the surface of the sheet 1, such that flaw defects at all angles that may be generated on the continuously conveyed sheet 1 can be detected in accordance with a fixed reference.SELECTED DRAWING: Figure 1

Description

本発明は、フィルムなどのシートに発生する全ての方向のキズ欠点を検出するための検査装置に関する。   The present invention relates to an inspection apparatus for detecting scratch defects in all directions generated on a sheet such as a film.

フィルムなどのシートを連続的に製造する工程において、シートにキズ欠点が発生する場合があり問題となっている。   In the process of continuously producing sheets such as films, scratch defects may occur in the sheets, which is a problem.

このキズ欠点の発生メカニズムとして、搬送ロールに異物が付着し、フィルム表面に異物が押し付けられることによりキズ欠点が発生する場合と、フィルムにかかる張力やフィルムの走行速度が一定ではなく、フィルムと搬送ロールが擦れることによりキズ欠点が発生する場合が考えられる。   As a mechanism for the generation of the scratch defect, when a foreign object adheres to the transport roll and the foreign object is pressed against the film surface, the scratch defect occurs, and the tension applied to the film and the running speed of the film are not constant. There may be a case where a scratch defect is generated by rubbing the roll.

そのため、キズ欠点の形状として、前者の場合は、点状あるいはフィルム走行方向に長い形状であるのに対し、後者の場合は、フィルムと搬送ロールが擦れる方向により、フィルムの走行方向に対して、あらゆる方向に長い形状のキズ欠点が発生する。   Therefore, as the shape of the scratch defect, in the former case, it is a dot shape or a shape that is long in the film running direction, whereas in the latter case, the film and the transport roll rub against the running direction of the film, Scratches with long shapes occur in all directions.

このように、キズ欠点はフィルムの走行状態により、あらゆる角度に発生することが知られている。   As described above, it is known that scratch defects occur at all angles depending on the running state of the film.

このキズ欠点はユーザーの加工工程で問題となるために、キズ欠点を持つフィルムが製品として出荷されることを避けなければならない。   Since this scratch defect becomes a problem in the user's processing process, it must be avoided that a film having a scratch defect is shipped as a product.

従来、このようなキズ欠点の検査を行う場合、走行しているフィルムに対して、照明装置で光を照射し、フィルムにキズ欠点が存在する場合には、キズ欠点によって乱反射される散乱光をCCDカメラ等で撮像し、撮像された画像を画像処理することによって、キズ欠点を検出していた。   Conventionally, when such a defect is inspected, the traveling film is irradiated with light by an illuminating device, and if there is a defect on the film, scattered light that is irregularly reflected by the defect is detected. A flaw defect has been detected by capturing an image with a CCD camera or the like and processing the captured image.

ここで、特許文献1にはフィルムに発生するキズ欠点をCCDカメラにて自動で検査する装置が開示されている。   Here, Patent Document 1 discloses an apparatus for automatically inspecting a scratch defect generated on a film with a CCD camera.

特許文献1の欠点検査装置は、図2に示すように、フィルム21の表面に照明光L1を照射する照明光源24と、前記フィルム21の表面に照射された照明光L1による反射光を検出するCCDカメラ25とから構成されており、前記照明光源24の照明光L1は前記フィルム21の表面に対して入射角度15°〜45°で照射され、前記CCDカメラ25は前記フィルム21での反射光L2のうち、前記フィルム21に対して垂直方向に反射する反射光L3のみを検出することによって、前記フィルム21に発生するキズ欠点22を高感度に検出することができる。   As shown in FIG. 2, the defect inspection apparatus of Patent Document 1 detects an illumination light source 24 that irradiates the surface of the film 21 with illumination light L <b> 1 and reflected light from the illumination light L <b> 1 that is irradiated on the surface of the film 21. The illumination light L1 of the illumination light source 24 is irradiated at an incident angle of 15 ° to 45 ° with respect to the surface of the film 21, and the CCD camera 25 reflects the light reflected by the film 21. By detecting only the reflected light L3 reflected in the direction perpendicular to the film 21 among the L2, it is possible to detect the flaw defect 22 generated in the film 21 with high sensitivity.

特許文献2には、連続的に走行するシートに発生する前記シートに平行な角度のキズ欠点を高精度に検査できる検査装置が開示されている。   Patent Document 2 discloses an inspection apparatus capable of inspecting a scratch defect at an angle parallel to the sheet generated in a continuously traveling sheet with high accuracy.

特許文献2の欠点検査装置は、図3および図4に示すように、ライン状光源装置32として複数の発光ダイオードを光軸が互いに平行になるように直線状に配列してなる発光ダイオード配列体を複数段に配設し、異なる角度にした前記発光ダイオード配列体から検査対象物31の走行方向に平行なキズ欠点に対して光を照射することで、キズ欠点の長手方向の側面部で光が散乱することで前記キズ欠点を高感度に検出することができる。   As shown in FIGS. 3 and 4, the defect inspection apparatus of Patent Document 2 is a light emitting diode array in which a plurality of light emitting diodes are linearly arranged as line light source devices 32 so that their optical axes are parallel to each other. Are arranged in a plurality of stages, and light is emitted from the light emitting diode array having different angles to the flaw defect parallel to the traveling direction of the inspection object 31, so that light is emitted from the side surface in the longitudinal direction of the flaw defect. Scatter defects can be detected with high sensitivity.

さらに、特許文献3の欠点検査装置は、ライン状光源装置とライン状受光センサーを組合せることにより、シートに発生する前記シートの長手方向に平行な角度のキズ欠点をさらに高感度に検査できる検査装置が開示されている。   Further, the defect inspection apparatus disclosed in Patent Document 3 is an inspection that can inspect a defect with an angle parallel to the longitudinal direction of the sheet generated on the sheet with higher sensitivity by combining a line light source device and a line light receiving sensor. An apparatus is disclosed.

ライン状光照射手段から照射される光の光軸とライン状受光センサーであるライン状撮像手段の撮像軸とがなす角度によって、キズ欠点の検出感度は変化する。そのため、前記角度を最適な角度とすることで検出感度は大きく変化する。   The detection sensitivity of the flaw defect varies depending on the angle formed by the optical axis of the light emitted from the line-shaped light irradiating means and the imaging axis of the line-shaped imaging means that is a line-shaped light receiving sensor. Therefore, the detection sensitivity changes greatly by setting the angle to an optimum angle.

特許文献3の欠点検査装置は、図5に示すように、複数の点光源が一列に並んだライン状光照射手段43からシート41の幅方向に傾いた光が照射され、前記シート41に発生したキズ欠点により散乱した光をライン状撮像手段44で受光することにより、キズ欠点を検出することができる。ここで、撮像手段として、一般的なラインセンサカメラではなくライン状受光センサーを用いることで、ライン状光照射手段43から照射される光の光軸と前記ライン状受光センサーであるライン状撮像手段44の撮像軸とがなす角度を全幅に亘り一定とすることが可能となる。そのため、シート41の全幅に亘り、前記シート41に発生する前記シートの長手方向に平行なキズ欠点を高感度に検出することが可能となる。   As shown in FIG. 5, the defect inspection apparatus of Patent Document 3 is irradiated with light inclined in the width direction of the sheet 41 from a line-shaped light irradiation unit 43 in which a plurality of point light sources are arranged in a line, and is generated on the sheet 41. By receiving the light scattered by the scratch defect by the line-shaped imaging means 44, the scratch defect can be detected. Here, by using a line-shaped light receiving sensor instead of a general line sensor camera as the image pickup means, the optical axis of the light emitted from the line-shaped light irradiation means 43 and the line-shaped imaging means which is the line-shaped light receiving sensor. The angle formed by the 44 imaging axes can be made constant over the entire width. Therefore, it is possible to detect a scratch defect generated in the sheet 41 parallel to the longitudinal direction of the sheet 41 with high sensitivity over the entire width of the sheet 41.

特開2008−8819号公報JP 2008-8819 A 特開2009−139275号公報JP 2009-139275 A 特開2015−68670号公報Japanese Patent Laying-Open No. 2015-68670

しかしながら、特許文献1の技術は照明光源24の長手方向に対して平行な方向に発生したキズ欠点に対しては高感度な検出が可能だが、それ以外の方向のキズ欠点に関しては、検出感度が低下する。   However, although the technique of Patent Document 1 can detect defects with high sensitivity for defects generated in a direction parallel to the longitudinal direction of the illumination light source 24, the detection sensitivity for defects in other directions is low. descend.

つまり、キズ欠点における照明光源24から照射させた光の散乱光は、フィルム21表面のキズ欠点の角度によって異なり、フィルム21表面においてキズ欠点の長手方向に垂直な方向に散乱光が最も発生する。   That is, the scattered light of the light emitted from the illumination light source 24 at the scratch defect varies depending on the angle of the scratch defect on the surface of the film 21, and the scattered light is most generated in the direction perpendicular to the longitudinal direction of the scratch defect on the film 21 surface.

すなわち、特許文献1の方法では、CCDカメラ25が受光する散乱光は、キズ欠点の角度によって異なり、キズ欠点の角度が照明光源24の長手方向と直角の方向に近づくほど少なくなる。   That is, in the method of Patent Document 1, the scattered light received by the CCD camera 25 varies depending on the angle of the scratch defect, and decreases as the scratch defect angle approaches the direction perpendicular to the longitudinal direction of the illumination light source 24.

また、特許文献2の技術は、ライン状光源装置32の長手方向と直角な方向のキズ欠点に対しては高感度な検出が可能だが、それ以外の方向のキズ欠点に関しては検出感度が低下する。   In addition, the technique of Patent Document 2 enables highly sensitive detection for a defect in a direction perpendicular to the longitudinal direction of the line light source device 32, but the detection sensitivity decreases for a defect in the other direction. .

ライン状光源装置32は図4に示すように、発光ダイオードの配列体3A、3Bから光が発せられ、検査対象物31の幅方向に対して、斜めから、光軸がクロスするように照射される。そのため、前記キズ欠点の長手方向の削れた斜面に光が照射されることにより、散乱光が発生し、前記キズ欠点を検出することができる。   As shown in FIG. 4, the line light source device 32 emits light from the light emitting diode arrays 3 </ b> A and 3 </ b> B, and is irradiated obliquely with respect to the width direction of the inspection object 31 so that the optical axes cross. The For this reason, when light is irradiated onto the inclined surface of the scratch defect in the longitudinal direction, scattered light is generated and the scratch defect can be detected.

しかし一方で、ライン状光源装置32の長手方向と平行な方向のキズ欠点に関しては、前記発光ダイオード3A、3Bから照射された光軸に対しては散乱光の発生が少なく、前記キズ欠点を検出することができない。   However, on the other hand, with respect to scratch defects in the direction parallel to the longitudinal direction of the line light source device 32, the generation of scattered light is small with respect to the optical axis irradiated from the light emitting diodes 3A and 3B, and the scratch defects are detected. Can not do it.

また、特許文献3の技術は、図5に示すように、受光装置としてライン状光撮像手段44を用いることにより、特許文献2での課題である検査対象物であるシート41の中央と端部の感度差を無くすことができている。   Further, as shown in FIG. 5, the technique of Patent Document 3 uses a line-shaped optical imaging unit 44 as a light receiving device, so that the center and end portions of a sheet 41 that is an inspection object which is a problem in Patent Document 2 are used. The difference in sensitivity can be eliminated.

しかし、ライン状光照射手段43から発せられる斜光照明では、ライン状照射手段43の長手方向に直角な方向のキズ欠点に対しては高感度に検出可能であるが、それ以外の方向のキズ欠点に関しては検出感度が低下する。   However, the oblique illumination emitted from the line-shaped light irradiating means 43 can detect with high sensitivity the flaw defect in the direction perpendicular to the longitudinal direction of the line-shaped irradiating means 43, but the flaw defect in the other direction. As for, the detection sensitivity decreases.

このように、フィルムなどのシートに発生するキズ欠点を検出するための従来の検査装置では、キズ欠点の角度によって検出感度が変化し、一定基準で検査ができない。   Thus, in the conventional inspection apparatus for detecting a flaw defect generated on a sheet such as a film, the detection sensitivity changes depending on the angle of the flaw defect, and the inspection cannot be performed on a constant basis.

本発明は、前記従来の課題を解決するもので、連続走行するシート表面に発生する全ての方向のキズ欠点を一定基準で検出するためのキズ欠点検査装置を提供する。   The present invention solves the above-described conventional problems, and provides a defect inspection apparatus for detecting defect defects in all directions generated on the surface of a continuously running sheet on a constant basis.

上記課題を解決する本発明のキズ欠点検査装置は、連続搬送されるシートのキズ欠点を検査するシートのキズ欠点検査装置であって、
前記シートの一方の面側から光を照射する長尺の光照射手段と、
前記シートの前記光照射手段が設置された面側に設置され、光照射手段から照射されて前記シートで反射された照射光を受光する受光手段、もしくは前記シートの前記光照射手段が設置された面側とは反対の面側に設置され、光照射手段から照射されて前記シートを透過した照射光を受光する受光手段と、
前記受光手段が受光した照射光の強度に応じた信号値から前記シートの表面に発生したキズ欠点部分を検出する画像処理手段と、を備え、
前記光照射手段は、第一のライン状照明と、第一のライン状照明を挟んで、第一のライン状照明の長手方向と平行に配置された第二および第三のライン状照明とで構成されており、
前記第一のライン状照明は、複数の点光源が直線状に配列された配列体が複数平行に並んで構成され、1つの配列体を構成する複数の点光源は、それぞれの照射光軸が互いに平行になるように配列されており、
前記複数の配列体には、前記第一のライン状照明の長手方向に垂直な平面に対し、照射光がこの平面の一方の面側から他方の面側へ向かうように照射光軸が傾いた第一の配列体と、照射光が前記平面の前記他方の面側から前記一方の面側へ向かうように照射光軸が傾いた第二の配列体の2つが少なくとも有り、
前記第二のライン状照明は、その長手方向の光量分布が均一な直線状の照射光を照射し、
前記第三のライン状照明は、その長手方向の光量分布が均一な直線状の照射光を照射し、
前記光照射手段の長手方向から見て、前記第一の配列体、第二の配列体、第二のライン状照明および前記第三のライン状照明のそれぞれの照射光軸は、前記シート面で交差している。
The scratch defect inspection apparatus of the present invention that solves the above-mentioned problems is a scratch defect inspection apparatus for sheets that inspects scratch defects of continuously conveyed sheets,
A long light irradiation means for irradiating light from one side of the sheet;
A light receiving unit that is installed on the surface side of the sheet where the light irradiation unit is installed and receives irradiation light irradiated from the light irradiation unit and reflected by the sheet, or the light irradiation unit of the sheet is installed. A light receiving unit that is installed on the surface side opposite to the surface side, receives the irradiation light irradiated from the light irradiation unit and transmitted through the sheet;
Image processing means for detecting a flaw defect portion generated on the surface of the sheet from a signal value corresponding to the intensity of irradiation light received by the light receiving means, and
The light irradiating means includes a first linear illumination and second and third linear illuminations arranged in parallel with the longitudinal direction of the first linear illumination across the first linear illumination. Configured,
The first line-shaped illumination is composed of a plurality of array elements in which a plurality of point light sources are arranged in a straight line, and the plurality of point light sources constituting one array body have their respective irradiation optical axes. Arranged in parallel to each other,
In the plurality of arrays, the irradiation optical axis is inclined with respect to a plane perpendicular to the longitudinal direction of the first linear illumination so that the irradiation light is directed from one surface side to the other surface side of the plane. There are at least two of the first array and the second array whose irradiation optical axis is inclined so that the irradiation light is directed from the other surface side of the plane to the one surface side,
The second linear illumination irradiates linear irradiation light with a uniform light amount distribution in the longitudinal direction,
The third line illumination irradiates linear irradiation light with a uniform light amount distribution in the longitudinal direction,
When viewed from the longitudinal direction of the light irradiation means, the irradiation optical axes of the first array, the second array, the second line illumination, and the third line illumination are respectively on the sheet surface. Crossed.

本発明の検査装置では、連続走行するシート表面に発生する全ての方向のキズ欠点を一定基準で検出することができる。   In the inspection apparatus of the present invention, it is possible to detect scratch defects in all directions generated on the surface of a continuously running sheet on a constant basis.

図1は、本発明の実施形態の一例を示す概略図である。FIG. 1 is a schematic diagram illustrating an example of an embodiment of the present invention. 図2は、特許文献1の技術を説明する概略図である。FIG. 2 is a schematic diagram for explaining the technique of Patent Document 1. In FIG. 図3は、特許文献2の技術を説明する概略図である。FIG. 3 is a schematic diagram for explaining the technique of Patent Document 2. In FIG. 図4は、特許文献2のライン状光源装置の詳細を説明する概略図である。FIG. 4 is a schematic diagram illustrating details of the line light source device disclosed in Patent Document 2. 図5は、特許文献3の技術を説明する概略図である。FIG. 5 is a schematic diagram for explaining the technique of Patent Document 3. As shown in FIG. 図6は、本発明の実施形態の上面図である。FIG. 6 is a top view of an embodiment of the present invention. 図7は、本発明の実施形態の側面図である。FIG. 7 is a side view of an embodiment of the present invention. 図8は、シートの長手方向に平行なキズ欠点の散乱光の説明図である。FIG. 8 is an explanatory diagram of scattered light having a flaw defect parallel to the longitudinal direction of the sheet. 図9は、シートの長手方向に垂直なキズ欠点の散乱光の説明図である。FIG. 9 is an explanatory diagram of scattered light having a scratch defect perpendicular to the longitudinal direction of the sheet. 図10は、キズ欠点の角度による検出感度の違いを説明する概略図である。FIG. 10 is a schematic diagram for explaining the difference in detection sensitivity depending on the angle of the scratch defect. 図11は、本発明のシートの長手方向に平行なキズ欠点の検出説明図である。FIG. 11 is an explanatory view of detection of a flaw defect parallel to the longitudinal direction of the sheet of the present invention. 図12は、本発明のシートの長手方向に垂直なキズ欠点の検出説明図である。FIG. 12 is an explanatory diagram of detection of a flaw defect perpendicular to the longitudinal direction of the sheet of the present invention. 図13は、本発明のシートの長手方向に対して斜めのキズ欠点の検出説明図である。FIG. 13 is an explanatory view of detection of a flaw defect oblique to the longitudinal direction of the sheet of the present invention. 図14は、実施例と比較例のそれぞれについて、検出したキズ欠点の角度による検出感度差を示す図である。FIG. 14 is a diagram showing a difference in detection sensitivity depending on the angle of the detected defect defect for each of the example and the comparative example.

以下、本発明の実施の形態について図面を参照しながら説明する。なお、本発明はこの実施の形態によって限定はされない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited by this embodiment.

図1は本発明の実施の形態を示す図である。図1において、1は被検査体である連続的に搬送されるシート、2は光照射手段、3は前記光照射手段2内の第一のライン状照明、4は前記光照射手段2内の第二のライン状照明、5は前記光照射手段2内の第三のライン状照明、6は受光手段、7は画像処理手段である。   FIG. 1 is a diagram showing an embodiment of the present invention. In FIG. 1, 1 is a continuously conveyed sheet that is an object to be inspected, 2 is a light irradiation means, 3 is a first line-shaped illumination in the light irradiation means 2, and 4 is in the light irradiation means 2. The second line illumination 5 is a third line illumination in the light irradiation means 2, 6 is a light receiving means, and 7 is an image processing means.

シート1としては、連続的に搬送され、光を透過もしくは反射するフィルム等であれば特に限定されない。例えばポリエチレンテレフタレートフィルム等のポリエステルフィルムなどのような無色透明なフィルムが好適に用いられる。   The sheet 1 is not particularly limited as long as it is a film that is continuously conveyed and transmits or reflects light. For example, a colorless and transparent film such as a polyester film such as a polyethylene terephthalate film is preferably used.

光照射手段2はシート1の一方の面側に配設され、シート1に対して光を照射する。光照射手段は、図6に示すように、第一のライン状照明3、第二のライン状照明4、第三のライン状照明5の3つのライン状照明から構成されている。   The light irradiation means 2 is disposed on one side of the sheet 1 and irradiates the sheet 1 with light. As shown in FIG. 6, the light irradiating means is composed of three line-shaped illuminations of a first line-shaped illumination 3, a second line-shaped illumination 4, and a third line-shaped illumination 5.

第一のライン状照明3は、光ファイバの出射端をライン状に配列して、その出射角度を幅方向に一定に調整したもので、斜め方向への照射が可能となっている。また、このライン状に配列された光ファイバの配列体が少なくとも2列ある。そして、配列体の1つは、第一のライン状照明の長手方向に垂直な平面に対し、照射光がこの平面の一方の面側から他方の面側へ向かうように照射光軸が傾いた第一の配列体8であり、配列体のもう1つは、第一のライン状照明の長手方向に垂直な同じ平面に対し、照射光がこの平面の前記他方の面側から前記一方の面側へ向かうように照射光軸が傾いた第二の配列体9である。第一のライン状照明3としては、例えば、発光部から発光した光を各配列体に光ファイバで導くことで実現可能である。また、各配列体に発光ダイオードを設置すること、ライン状LED照明の前方に遮光部材を配設することでも実現可能である。   The first line-shaped illumination 3 is configured such that the emission ends of the optical fibers are arranged in a line and the emission angle is adjusted to be constant in the width direction, and irradiation in an oblique direction is possible. In addition, there are at least two rows of optical fiber arrays arranged in a line. One of the arrays is inclined with respect to a plane perpendicular to the longitudinal direction of the first linear illumination so that the irradiation light axis is directed from one surface side to the other surface side of the plane. The other one of the arrays is the first plane 8 with respect to the same plane perpendicular to the longitudinal direction of the first line-shaped illumination, and the irradiated light is transmitted from the other plane side of the plane to the one plane. It is the 2nd array body 9 in which the irradiation optical axis inclined so that it might go to the side. The first line-shaped illumination 3 can be realized, for example, by guiding the light emitted from the light emitting unit to each array with an optical fiber. It can also be realized by installing a light emitting diode in each array, and disposing a light blocking member in front of the line LED illumination.

第二のライン状照明4は、前記シート1の走行方向に対して第一のライン状照明3の下流側に設置されており、前記シート1の幅方向に平行な線状の照明であり、幅方向に均一な指向性の高い光を前記シート1の幅に対して照射する。   The second line-shaped illumination 4 is installed on the downstream side of the first line-shaped illumination 3 with respect to the traveling direction of the sheet 1, and is a linear illumination parallel to the width direction of the sheet 1, Light with high directivity that is uniform in the width direction is applied to the width of the sheet 1.

第三のライン状照明5は、前記シート1の走行方向に対して第一のライン状照明3の上流側に設置されており、前記第二のライン状照明4と同様に、前記シート1の幅方向に平行な線状の照明であり、幅方向に均一な指向性の高い光を前記シート1の幅に対して照射する。   The third line-shaped illumination 5 is installed on the upstream side of the first line-shaped illumination 3 with respect to the traveling direction of the sheet 1, and similarly to the second line-shaped illumination 4, It is linear illumination parallel to the width direction, and irradiates light with high directivity uniform in the width direction to the width of the sheet 1.

第二のライン状照明4および第三のライン状照明5としては、LEDや蛍光灯、ハロゲンやメタルハライド照明を伝送ロッドや光ファイバから照射するものなどを用いることができる。   As the second line illumination 4 and the third line illumination 5, it is possible to use an LED, a fluorescent lamp, a lamp that irradiates a halogen or metal halide illumination from a transmission rod or an optical fiber, and the like.

また、図7に示すように、第一のライン状照明3の第一の配列体8、第二の配列体9、第二のライン状照明4および第三のライン状照明5のそれぞれの照射光軸は、前記シート1面上で交差する必要がある。   Moreover, as shown in FIG. 7, each irradiation of the 1st array 8 of the 1st line-shaped illumination 3, the 2nd array 9, the 2nd line-shaped illumination 4, and the 3rd line-shaped illumination 5 The optical axes need to intersect on the sheet 1 surface.

さらに、前記光照射手段2の長手方向に垂直かつ前記シート1面に平行な方向から見た、前記第一のライン状照明3の第一の配列体8の各点光源の照射光軸と前記シート1面の垂線とのなす角度(鋭角)θ11、および前記第二の配列体9の各点光源の照射光軸と前記シート1面の垂線とのなす角度(鋭角)θ12、ならびに、前記光照射手段2の長手方向から見た、前記第二のライン状照明4の照射光軸と前記シート1面の垂線とのなす角度(鋭角)θ2、および前記第三のライン状照明5の照射光軸と前記シート1面の垂線とのなす角度(鋭角)θ3が、θ11=θ12=θ2=θ3を満たすことが好ましい。   Furthermore, the irradiation optical axis of each point light source of the first array 8 of the first line-shaped illumination 3 as seen from the direction perpendicular to the longitudinal direction of the light irradiation means 2 and parallel to the surface of the sheet 1 An angle (acute angle) θ11 formed with a perpendicular to the sheet 1 surface, an angle (acute angle) θ12 formed between an irradiation optical axis of each point light source of the second array 9 and a perpendicular to the surface of the sheet 1, and the light The angle (acute angle) θ2 formed between the irradiation optical axis of the second linear illumination 4 and the perpendicular of the surface of the sheet 1 and the irradiation light of the third linear illumination 5 as seen from the longitudinal direction of the irradiation means 2 It is preferable that an angle (acute angle) θ3 formed by the axis and the perpendicular of the surface of the sheet 1 satisfies θ11 = θ12 = θ2 = θ3.

受光手段6は、シート1に発生したキズ欠点による散乱光を受光するように配設されることが好ましいのであり、光照射手段2から照射されシート1で直接透過もしくは正反射された光を受光することは好ましくない。ここで、シート1に発生したキズ欠点によって散乱された光を受光するためには、光照射手段2と受光手段6の位置関係が重要である。   The light receiving means 6 is preferably arranged so as to receive scattered light due to scratch defects generated in the sheet 1, and receives light emitted from the light irradiating means 2 and directly transmitted or specularly reflected by the sheet 1. It is not preferable to do. Here, in order to receive the light scattered by the flaw defect generated in the sheet 1, the positional relationship between the light irradiation means 2 and the light receiving means 6 is important.

この位置関係について図8、図9を用いて説明する。図8はシート1の走行方向側から見た概略図を示しており、図9はシート1の幅方向側から見た概略図を示している。また、図8、図9はそれぞれ、(A)にキズ欠点が発生していない場合の光軸の概略図を示しており、(B)にキズ欠点が発生した場合の散乱光の概略図を示している。   This positional relationship will be described with reference to FIGS. FIG. 8 shows a schematic view seen from the traveling direction side of the seat 1, and FIG. 9 shows a schematic view seen from the width direction side of the seat 1. FIG. 8 and FIG. 9 show schematic views of the optical axis when no flaw defect occurs in (A), and (B) shows a schematic diagram of scattered light when a flaw defect occurs. Show.

図8(A)に示すように、受光手段6は第一のライン状照明3から照射され、シート1を透過した光を受光しないように配設することが重要であり、第一のライン状照明3からの光軸の角度θ11、θ12より受光手段6の画角の半値角の値を小さくすることで実現できる。また同様に、図9(A)に示すように、受光手段6は第二のライン状照明4の光軸の角度θ2、第三のライン状照明5の光軸の角度θ3より受光手段6の画角の半値角の値を小さくすることで実現できる。   As shown in FIG. 8A, it is important that the light receiving means 6 is disposed so as not to receive the light irradiated from the first line-shaped illumination 3 and transmitted through the sheet 1. This can be realized by making the half-value angle of the angle of view of the light receiving means 6 smaller than the angles θ11 and θ12 of the optical axis from the illumination 3. Similarly, as shown in FIG. 9 (A), the light receiving means 6 has an optical axis angle θ 2 of the second linear illumination 4 and an optical axis angle θ 3 of the third linear illumination 5. This can be realized by reducing the half-value angle of the angle of view.

前記シート1にキズ欠点が発生した場合は、図8(B)、図9(B)に示すように、前記キズ欠点に光照射手段2から光を照射した場合、散乱光が発生し、受光手段6で散乱光を受光することにより、キズ欠点を明欠点として検出することができる。   When a scratch defect is generated in the sheet 1, as shown in FIGS. 8B and 9B, when the scratch defect is irradiated with light from the light irradiation means 2, scattered light is generated and received. By receiving the scattered light with the means 6, it is possible to detect a flaw defect as a bright defect.

また、反射光学系の場合は、図9において受光手段6をシート1面において光照射手段2と同じ面側に設置し、第一のライン状照明3と第二のライン状照明4の間で第一のライン状照明3の近傍に配設、もしくは第一のライン状照明3と第三のライン状照明5の間で第一のライン状照明3の近傍に配設することで実現することができる。   In the case of a reflective optical system, in FIG. 9, the light receiving means 6 is installed on the same surface side as the light irradiating means 2 on the sheet 1 surface, and between the first line-shaped illumination 3 and the second line-shaped illumination 4. Realizing by arranging in the vicinity of the first line-shaped illumination 3 or by arranging in the vicinity of the first line-shaped illumination 3 between the first line-shaped illumination 3 and the third line-shaped illumination 5. Can do.

受光手段6として、連続走行するシート1を検査する場合、ラインセンサカメラを用いることが好ましいが、受光素子を二次元に配列したエリアセンサカメラや光電子増倍管などを用いてもよい。しかし、ラインセンサカメラやエリアセンサカメラを用いる場合は、検査視野の中央と端部での受光軸の角度が異なるために、視野位置によって、キズ欠点の検出感度が異なるという問題が発生する。そのため、これらカメラを用いる場合は、視野中央部のみを検査範囲として用いることが必要である。また、全視野範囲の検出感度を同じとするために、受光手段6として、複数の受光素子と結合用のレンズとが等間隔に連続的に並べられており、結合用のレンズが、等倍で受光手段の受光素子に結合を行うレンズを持つライン状のイメージセンサ(密着イメージセンサや近接イメージセンサとも呼ばれる)を用いることが好ましい。   When inspecting the continuously traveling sheet 1 as the light receiving means 6, it is preferable to use a line sensor camera, but an area sensor camera or a photomultiplier tube in which light receiving elements are arranged two-dimensionally may be used. However, when a line sensor camera or an area sensor camera is used, the angle of the light receiving axis at the center and the end of the inspection visual field is different, so that there is a problem that the detection sensitivity of the defect defect differs depending on the visual field position. Therefore, when using these cameras, it is necessary to use only the center of the visual field as the inspection range. Further, in order to make the detection sensitivity in the entire visual field range the same, as the light receiving means 6, a plurality of light receiving elements and coupling lenses are continuously arranged at equal intervals. It is preferable to use a line-shaped image sensor (also referred to as a contact image sensor or a proximity image sensor) having a lens that is coupled to the light receiving element of the light receiving means.

画像処理手段7は、受光手段6の出力信号を受信し、受光手段6が受光した光量の変化を検出することで、シート1表面のキズ欠点の有無を検査する。受光手段6からは、受光手段6が受光した光量に応じたアナログまたはデジタル信号が出力される。アナログ信号が出力される場合は、画像処理手段7内でデジタル信号に変換される。画像処理手段7はデジタル信号を検出して平均化処理、微分処理などの画像処理を実行し、所定のしきい値を超えるものをシート1の表面のキズ欠点として抽出する。このキズ欠点の抽出は画像処理ボードなどのハードで実行するものと、パソコンなどのソフトで実行するものがあるが、ハードでの処理のほうが高速で処理できるため、好ましい。   The image processing unit 7 receives the output signal of the light receiving unit 6 and detects a change in the amount of light received by the light receiving unit 6 to inspect the surface of the sheet 1 for scratch defects. The light receiving means 6 outputs an analog or digital signal corresponding to the amount of light received by the light receiving means 6. When an analog signal is output, it is converted into a digital signal in the image processing means 7. The image processing means 7 detects a digital signal, executes image processing such as averaging processing and differentiation processing, and extracts those exceeding a predetermined threshold as scratch defects on the surface of the sheet 1. This defect defect extraction can be performed by hardware such as an image processing board or by software such as a personal computer. However, hardware processing is preferable because it can be processed at high speed.

次に、本発明によってシート1の同じ幅方向位置に周期的に発生するキズ欠点を検出する原理について説明する。   Next, the principle of detecting flaw defects periodically generated at the same position in the width direction of the sheet 1 according to the present invention will be described.

光照射手段2が照射する光をシート1に照射させ、シート1を透過もしくは反射した光のうち、受光手段6は直接透過光もしくは正反射光を受光せず、キズ欠点による散乱光のみを受光することにより、キズ欠点部の光量は正常部より多くなり、画像処理手段7では明部となる。そして、この明部を2値化することにより、明欠点として検出される。   Of the light transmitted through or reflected by the sheet 1, the light receiving means 6 does not receive the directly transmitted light or specularly reflected light, but only the scattered light due to the flaw defect. As a result, the amount of light at the scratch defect portion becomes larger than that at the normal portion, and the image processing means 7 becomes a bright portion. Then, by binarizing this bright part, it is detected as a bright defect.

また、キズ欠点は、その発生原因のほとんどが搬送ロールであるため、搬送ロールの一部に異物が付着した際に、搬送ロールに付着した異物の幅方向位置と、同じ位置にキズ欠点が発生し、搬送ロールが回転していることにより、搬送ロール周期で継続的に発生するという特徴がある。また、シート1が延伸される工程やシート1の走行の蛇行によって、様々な角度のキズ欠点が発生するという特徴がある。   Also, scratch defects are mostly caused by the transport roll, so when a foreign object adheres to a part of the transport roll, the scratch defect occurs at the same position as the width direction position of the foreign object attached to the transport roll. However, since the transport roll is rotating, it is generated continuously in the transport roll cycle. Further, there is a feature that scratch defects at various angles are generated by the process of stretching the sheet 1 and the meandering of the traveling of the sheet 1.

ここで、キズ欠点の角度による検出感度の違いについて図10を用いて説明する。   Here, the difference in detection sensitivity depending on the angle of the scratch defect will be described with reference to FIG.

図10はシート1の走行方向に対するキズ欠点10の角度が0°と90°の時に第二のライン状照明に相当する光照射手段4を用いてシート1に光を照射し、その透過光のうち受光手段6に受光される散乱光量の違いを示す図である。   FIG. 10 shows that when the scratch defect 10 has an angle of 0 ° and 90 ° with respect to the traveling direction of the sheet 1, the sheet 1 is irradiated with light using the light irradiation means 4 corresponding to the second line-shaped illumination, and the transmitted light is It is a figure which shows the difference in the amount of scattered light received among the light-receiving means 6.

キズ欠点10による散乱光は、シート1面において、キズ欠点10の長手方向に対して垂直な方向に散乱光が多く発生する。   Scattered light due to the scratch defect 10 generates a lot of scattered light in the direction perpendicular to the longitudinal direction of the scratch defect 10 on the surface of the sheet 1.

そのため、図10(A)に示すシート1の走行方向に対するキズ欠点10の角度が0°の場合、受光手段6の受光軸はキズ欠点10による散乱光と直角の角度となるため、受光手段6で受光される光量は最も小さくなる。   Therefore, when the angle of the scratch defect 10 with respect to the traveling direction of the sheet 1 shown in FIG. 10A is 0 °, the light receiving axis of the light receiving means 6 is at an angle perpendicular to the scattered light due to the scratch defect 10. The amount of light received at is the smallest.

また、図10(B)に示すシート1の走行方向に対するキズ欠点10の角度が90°の場合、受光手段6の受光軸はキズ欠点10による散乱光と平行の角度となるため、受光手段6で受光される光量は最も大きくなる。   Further, when the angle of the scratch defect 10 with respect to the traveling direction of the sheet 1 shown in FIG. 10B is 90 °, the light receiving axis of the light receiving means 6 is an angle parallel to the scattered light due to the scratch defect 10. The amount of light received at is the largest.

このように、シート1の走行方向に対するキズ欠点10の角度によって、検出感度は大きく異なる。   Thus, the detection sensitivity varies greatly depending on the angle of the scratch defect 10 with respect to the traveling direction of the seat 1.

そのため、本装置では、前記のように、光照射手段2の構成として、第一のライン状照明と第二のライン状照明、第三のライン状照明を組み合わせることによって、キズ欠点の角度によらず一定の基準で検出することができる。   Therefore, in the present apparatus, as described above, the light irradiation means 2 is configured by combining the first line-shaped illumination, the second line-shaped illumination, and the third line-shaped illumination, so as to depend on the angle of the scratch defect. Therefore, it can be detected on a constant basis.

この方法について図11、図12、図13を用いて説明する。ここで、シート1の走行方向に対するキズ欠点の角度をθ、第一のライン状照明3、第二のライン状照明4および第三のライン状照明5のそれぞれにおいてキズ欠点で発生した散乱光量の合計をxとする。   This method will be described with reference to FIG. 11, FIG. 12, and FIG. Here, the angle of the scratch defect with respect to the traveling direction of the sheet 1 is θ, the amount of scattered light generated by the scratch defect in each of the first line-shaped illumination 3, the second line-shaped illumination 4, and the third line-shaped illumination 5. Let the total be x.

図11は、シート1の走行方向に平行な方向に発生したキズ欠点に対して、第一のライン状照明3、第二のライン状照明4および第三のライン状照明5のそれぞれから光を照射した場合に発生する散乱光と、それらを足し合わせた光を受光する受光手段6の受光量を示している。   FIG. 11 shows light from each of the first line-shaped illumination 3, the second line-shaped illumination 4, and the third line-shaped illumination 5 with respect to a scratch defect generated in a direction parallel to the traveling direction of the seat 1. The amount of light received by the light receiving means 6 that receives the scattered light generated when irradiated and the light obtained by adding them is shown.

シート1の走行方向に平行な方向に発生したキズ欠点に対して、第一のライン状照明3の光を照射した場合、キズ欠点の長手方向の削れた斜面に対して光が照射されるため、多くの散乱光が発生する。しかし、一方で、第二のライン状照明4と第三のライン状照明5から光を照射した場合は、キズ欠点の長手方向の斜面に対して照射される光が少ないため、散乱光は少なくなる。受光手段6で受光される散乱光は、前記第一のライン状照明3によるキズ欠点での散乱光と、前記第二のライン状照明4と前記第三のライン状照明5によるキズ欠点での散乱光とが足し合わされた光量となる。   When the light of the first line-shaped illumination 3 is applied to the scratch defect generated in the direction parallel to the traveling direction of the sheet 1, the light is irradiated to the sloped surface of the scratch defect in the longitudinal direction. A lot of scattered light is generated. However, on the other hand, when light is emitted from the second line-shaped illumination 4 and the third line-shaped illumination 5, the amount of scattered light is small because the amount of light emitted to the longitudinal slope of the scratch defect is small. Become. Scattered light received by the light receiving means 6 is scattered light due to scratch defects caused by the first line-shaped illumination 3 and scratch defects caused by the second line-shaped illumination 4 and the third line-shaped illumination 5. The amount of light is the sum of the scattered light.

また、図12は、シート1の走行方向に垂直な方向に発生したキズ欠点に対して、第一のライン状照明3、第二のライン状照明4および第三のライン状照明5のそれぞれから光を照射した場合に発生する散乱光と、それらを足し合わせた光を受光する受光手段6の受光量を示している。
シート1の走行方向に垂直な方向に発生したキズ欠点に対して、第一のライン状照明3の光を照射した場合、キズ欠点の長手方向の削れた斜面に対して照射される光が少ないため、散乱光は少なくなる。しかし、一方で、第二のライン状照明4と第三のライン状照明5から光を照射した場合は、キズ欠点の長手方向の斜面に対して、光が照射されるため多くの散乱光が発生する。前記の通り、受光手段6で受光される散乱光は、前記第一のライン状照明3によるキズ欠点での散乱光と、前記第二のライン状照明4と前記第三のライン状照明5によるキズ欠点での散乱光とが足し合わされた光量となる。
Moreover, FIG. 12 shows from each of the 1st line-shaped illumination 3, the 2nd line-shaped illumination 4, and the 3rd line-shaped illumination 5 with respect to the crack defect which generate | occur | produced in the direction perpendicular | vertical to the running direction of the sheet | seat 1. The amount of light received by the light receiving means 6 that receives the scattered light generated when light is irradiated and the light obtained by adding them is shown.
When the light of the first line-shaped illumination 3 is applied to the scratch defect generated in the direction perpendicular to the traveling direction of the sheet 1, the amount of light irradiated to the longitudinally cut slope of the scratch defect is small. Therefore, the scattered light is reduced. However, on the other hand, when light is irradiated from the second line-shaped illumination 4 and the third line-shaped illumination 5, a large amount of scattered light is generated because the light is irradiated to the slope in the longitudinal direction of the scratch defect. Occur. As described above, the scattered light received by the light receiving means 6 is scattered by the flaw defect caused by the first line-shaped illumination 3, the second line-shaped illumination 4, and the third line-shaped illumination 5. The amount of light is the sum of the scattered light at the scratch defect.

さらに、図13は、シート1の走行方向に対して斜め方向に発生したキズ欠点に対して、第一のライン状照明3、第二のライン状照明4および第三のライン状照明5のそれぞれから光を照射した場合に発生する散乱光と、それらを足し合わせた光を受光する受光手段6の受光量を示している。   Furthermore, FIG. 13 shows each of the first line-shaped illumination 3, the second line-shaped illumination 4, and the third line-shaped illumination 5 with respect to a scratch defect generated in an oblique direction with respect to the traveling direction of the seat 1. 2 shows the amount of light received by the light receiving means 6 that receives the scattered light generated when the light is irradiated from and the light obtained by adding them.

シート1の走行方向に対して斜め方向に発生したキズ欠点に対して、第一のライン状照明3の光を照射した場合、キズ欠点の長手方向の削れた斜面に対して光が照射されるため、散乱光が発生する。しかし、図11に示すシート1の走行方向に平行な方向に発生したキズ欠点と比較すると、キズ欠点の長手方向の削れた斜面に対して照射される光は少ないため、発生する散乱光はx(cos2θ)となる。また、第二のライン状照明4と第三のライン状照明5から光を照射した場合も、キズ欠点の長手方向の削れた斜面に対して光が照射されるため、散乱光が発生する。しかし、図12に示すシート1の走行方向に対して垂直な方向に発生したキズ欠点と比較すると、キズ欠点の長手方向の削れた斜面に対して照射される光は少ないため、発生する散乱光はx(sin2θ)となる。そのため、受光手段6で受光される散乱光は、前記第一のライン状照明3によるキズ欠点での散乱光と前記第二のライン状照明4と前記第三のライン状照明5によるキズ欠点での散乱光とが足し合わされた光量xとなり、これらは図11と図12の場合とほぼ同じ量の散乱光となる。 When the light from the first line-shaped illumination 3 is applied to the scratch defect generated in the oblique direction with respect to the traveling direction of the sheet 1, the light is irradiated to the slope of the scratch defect in the longitudinal direction. Therefore, scattered light is generated. However, compared with the scratch defect generated in the direction parallel to the traveling direction of the sheet 1 shown in FIG. (cos 2 θ). Also, when light is irradiated from the second line illumination 4 and the third line illumination 5, the light is irradiated to the long-sided slope of the scratch defect, and thus scattered light is generated. However, compared with the scratch defect generated in the direction perpendicular to the traveling direction of the sheet 1 shown in FIG. 12, the scattered light is generated because less light is irradiated on the sloped surface of the scratch defect in the longitudinal direction. Is x (sin 2 θ). Therefore, the scattered light received by the light receiving means 6 is scattered light due to the scratch defect due to the first line-shaped illumination 3 and the scratch defect due to the second line-shaped illumination 4 and the third line-shaped illumination 5. The amount of scattered light and the amount of scattered light x are approximately the same amount of scattered light as in FIGS.

上記のように、本発明のキズ欠点検査装置では、シート1に発生するキズ欠点10の角度によらず、ほぼ同じ量の散乱光が受光手段6で受光され、キズ欠点の角度によらず一定の基準で検出することができる。   As described above, in the scratch defect inspection apparatus of the present invention, almost the same amount of scattered light is received by the light receiving means 6 regardless of the angle of the scratch defect 10 generated in the sheet 1 and is constant regardless of the angle of the scratch defect. It is possible to detect on the basis of

[実施例]
図1の配置に従った装置を用いてキズ欠点の検査を実施した。フィルムとして、幅1000mm、厚み50μmのPETフィルムを用い、同じ周期で発生したキズ欠点を15度ずつ回転させ、PETフィルムに貼り付け、フィルム搬送装置を用いて、10m/minでフィルムを走行させた。さらに光照射手段として、第一のライン状照明には光の出射角度θ11が30°の光ファイバを並べた配列体1と第一のライン状照明の長手方向に垂直な面に対して対称な角度となるように配設した配列体2を持つクロス斜光照明を用い、第二のライン状照明、第三のライン状照明として、白色の光を照射する直線型LED照明を用い、それぞれの光軸の角度θ2、θ3を30°となるように設置した。また、第一のライン状照明の光軸と第二、第三のライン状照明の光軸は、フィルム面で交差するように設置し、フィルム面と光照射手段との距離を150mmに設置した。
[Example]
Scratch defects were inspected using an apparatus according to the arrangement of FIG. As a film, a PET film having a width of 1000 mm and a thickness of 50 μm was used. Scratch defects generated at the same cycle were rotated by 15 degrees, adhered to the PET film, and the film was run at 10 m / min using a film transport device. . Further, as the light irradiating means, the first linear illumination is symmetrical with respect to the array 1 in which optical fibers having a light emission angle θ11 of 30 ° are arranged and a plane perpendicular to the longitudinal direction of the first linear illumination. Using the cross oblique illumination having the array 2 arranged at an angle, and using the linear LED illumination that emits white light as the second line illumination and the third line illumination, the respective lights The shaft angles θ2 and θ3 were set to be 30 °. Further, the optical axis of the first line illumination and the optical axis of the second and third line illuminations are installed so as to intersect each other on the film surface, and the distance between the film surface and the light irradiation means is set to 150 mm. .

撮像手段として、密着イメージセンサを用い、フィルムを挟んで、光照射手段の反対面に配設した。このとき、フィルム面と密着イメージセンサの受光軸のなす角度を90°とし、フィルム面と密着イメージセンサの距離を15mmに設置した。   A contact image sensor was used as the imaging means, and was disposed on the opposite surface of the light irradiation means with a film interposed therebetween. At this time, the angle between the film surface and the light receiving axis of the contact image sensor was 90 °, and the distance between the film surface and the contact image sensor was set to 15 mm.

[比較例]
光照射手段として第一のライン状照明のみを用いた以外は実施例と同じ構成の装置でキズ欠点の検査を実施した。
[Comparative example]
Scratch defects were inspected using an apparatus having the same configuration as that of the example except that only the first linear illumination was used as the light irradiation means.

[実施例と比較例の対比]
図14に、キズ欠点の角度による密着イメージセンサの受光量を示すレーダーチャートを示す。
第一のライン状照明、第二のライン状照明および第三のライン状照明を組み合わせた光照射手段を用いた実施例では、密着イメージセンサの受光量は、キズ欠点の角度によらずほぼ一定であることが確認できた。このように、実施例では連続走行するフィルムに発生する全ての方向のキズ欠点を一定基準で検出することができることが確認できた。
[Contrast between Example and Comparative Example]
FIG. 14 shows a radar chart showing the amount of light received by the contact image sensor according to the angle of the scratch defect.
In the embodiment using the light irradiation means combining the first line-shaped illumination, the second line-shaped illumination, and the third line-shaped illumination, the amount of light received by the contact image sensor is almost constant regardless of the angle of the scratch defect. It was confirmed that. Thus, it was confirmed in the Examples that scratch defects in all directions generated in a continuously running film can be detected on a constant basis.

クロス斜光照明のみの光照射手段を用いた比較例では、フィルムの走行方向に平行なキズ欠点の受光量は多いが、フィルムの走行方向に垂直なキズ欠点の受光量は少なくなっており、同じキズ欠点であっても発生する角度によって検出感度に差があることが確認できた。   In the comparative example using light irradiation means with only cross oblique illumination, the amount of received flaw defects parallel to the film traveling direction is large, but the amount of received flaw defects perpendicular to the film traveling direction is small, the same. It was confirmed that there was a difference in detection sensitivity depending on the generated angle even if it was a scratch defect.

1 :連続的走行するシート
2 :光照射手段
3 :第一のライン状照明
4 :第二のライン状照明
5 :第三のライン状照明
6 :受光手段
7 :画像処理手段
8 :光ファイバの第一の配列体
9 :光ファイバの第二の配列体
10:キズ欠点
11:受光手段の視野範囲
θ11:第一のライン状照明の第一の配列体の光軸の出射角度
θ12:第一のライン状照明の第二の配列体の光軸の出射角度
θ2:第二のライン状照明の光軸の出射角度
θ3:第三のライン状照明の光軸の出射角度
θ :シートの走行方向に対するキズ欠点の角度
x :キズ欠点で発生する散乱光量
21:フィルム
22:キズ欠点
23:検査台
24:照明光源
25:CCDカメラ
L1:照明光
L2:反射光
L3:垂直反射光
31:検査対象物
32:ライン状光源装置
33:発光ダイオード駆動装置
34:モニタカメラ
35:パーソナルコンピュータ
3A、3B:発光ダイオードの配列体
3C:発光ダイオードの光軸
41:シート
42:直流電源
43:ライン状光照射手段
44:ライン状光撮像手段
45:パーソナルコンピュータ
1: Continuously traveling sheet 2: Light irradiation means 3: First line illumination 4: Second line illumination 5: Third line illumination 6: Light receiving means 7: Image processing means 8: Optical fiber First array 9: Second optical fiber array 10: Scratch defect 11: Field of view range of light receiving means θ11: Optical axis emission angle θ12 of first array of first linear illumination θ12: First The output angle θ2 of the optical axis of the second array of linear illuminations: The output angle θ3 of the optical axis of the second linear illuminations θ3: The output angle θ of the optical axis of the third linear illuminations: The traveling direction of the sheet Angle of scratches against
x: Amount of scattered light generated due to flaws 21: Film 22: Scratches flaw 23: Inspection table 24: Illumination light source 25: CCD camera L1: Illumination light L2: Reflected light L3: Vertical reflected light 31: Inspection object 32: Line shape Light source device 33: Light-emitting diode drive device 34: Monitor camera 35: Personal computer 3A, 3B: Light-emitting diode array 3C: Light-emitting diode optical axis 41: Sheet 42: DC power supply 43: Line-shaped light irradiation means 44: Line-shaped Optical imaging means 45: personal computer

Claims (3)

連続搬送されるシートのキズ欠点を検査するシートのキズ欠点検査装置であって、
前記シートの一方の面側から光を照射する長尺の光照射手段と、
前記シートの前記光照射手段が設置された面側に設置され、光照射手段から照射されて前記シートで反射された照射光を受光する受光手段、もしくは前記シートの前記光照射手段が設置された面側とは反対の面側に設置され、光照射手段から照射されて前記シートを透過した照射光を受光する受光手段と、
前記受光手段が受光した照射光の強度に応じた信号値から前記シートの表面に発生したキズ欠点部分を検出する画像処理手段と、を備え、
前記光照射手段は、第一のライン状照明と、第一のライン状照明を挟んで、第一のライン状照明の長手方向と平行に配置された第二および第三のライン状照明とで構成されており、
前記第一のライン状照明は、複数の点光源が直線状に配列された配列体が複数平行に並んで構成され、1つの配列体を構成する複数の点光源は、それぞれの照射光軸が互いに平行になるように配列されており、
前記複数の配列体には、前記第一のライン状照明の長手方向に垂直な平面に対し、照射光がこの平面の一方の面側から他方の面側へ向かうように照射光軸が傾いた第一の配列体と、照射光が前記平面の前記他方の面側から前記一方の面側へ向かうように照射光軸が傾いた第二の配列体の2つが少なくとも有り、
前記第二のライン状照明は、その長手方向の光量分布が均一な直線状の照射光を照射し、
前記第三のライン状照明は、その長手方向の光量分布が均一な直線状の照射光を照射し、
前記光照射手段の長手方向から見て、前記第一の配列体、第二の配列体、第二のライン状照明および前記第三のライン状照明のそれぞれの照射光軸は、前記シート面で交差する、シートのキズ欠点検査装置。
It is a sheet defect inspection apparatus for inspecting a defect defect of a continuously conveyed sheet,
A long light irradiation means for irradiating light from one side of the sheet;
A light receiving unit that is installed on the surface side of the sheet where the light irradiation unit is installed and receives irradiation light irradiated from the light irradiation unit and reflected by the sheet, or the light irradiation unit of the sheet is installed. A light receiving unit that is installed on the surface side opposite to the surface side, receives the irradiation light irradiated from the light irradiation unit and transmitted through the sheet;
Image processing means for detecting a flaw defect portion generated on the surface of the sheet from a signal value corresponding to the intensity of irradiation light received by the light receiving means, and
The light irradiating means includes a first linear illumination and second and third linear illuminations arranged in parallel with the longitudinal direction of the first linear illumination across the first linear illumination. Configured,
The first line-shaped illumination is composed of a plurality of array elements in which a plurality of point light sources are arranged in a straight line, and the plurality of point light sources constituting one array body have their respective irradiation optical axes. Arranged in parallel to each other,
In the plurality of arrays, the irradiation optical axis is inclined with respect to a plane perpendicular to the longitudinal direction of the first linear illumination so that the irradiation light is directed from one surface side to the other surface side of the plane. There are at least two of the first array and the second array whose irradiation optical axis is inclined so that the irradiation light is directed from the other surface side of the plane to the one surface side,
The second linear illumination irradiates linear irradiation light with a uniform light amount distribution in the longitudinal direction,
The third line illumination irradiates linear irradiation light with a uniform light amount distribution in the longitudinal direction,
When viewed from the longitudinal direction of the light irradiation means, the irradiation optical axes of the first array, the second array, the second line illumination, and the third line illumination are respectively on the sheet surface. Crossing defect inspection device for sheets.
前記受光手段は、複数の受光素子と結合用のレンズとが等間隔に連続的に並べられており、前記結合用のレンズが、等倍で前記受光手段の受光素子に結合を行うレンズである、請求項1のシートのキズ欠点検査装置。   The light receiving means is a lens in which a plurality of light receiving elements and coupling lenses are continuously arranged at equal intervals, and the coupling lens is coupled to the light receiving elements of the light receiving means at an equal magnification. A scratch defect inspection apparatus for a sheet according to claim 1. 前記光照射手段の長手方向に垂直かつ前記シート面に平行な方向から見た、前記第一の配列体の各点光源の照射光軸と前記シート面の垂線とのなす角度(鋭角)θ11、および前記第二の配列体の各点光源の照射光軸と前記シート面の垂線とのなす角度(鋭角)θ12、
ならびに、前記光照射手段の長手方向から見た、前記第二のライン状照明の照射光軸と前記シート面の垂線とのなす角度(鋭角)θ2、および前記第三のライン状照明の照射光軸と前記シート面の垂線とのなす角度(鋭角)θ3が、
θ11=θ12=θ2=θ3を満たす、請求項1または2のシートのキズ欠点検査装置。
An angle (acute angle) θ11 formed between an irradiation optical axis of each point light source of the first array and a perpendicular of the sheet surface, as viewed from a direction perpendicular to the longitudinal direction of the light irradiation means and parallel to the sheet surface; And an angle (acute angle) θ12 formed by the irradiation optical axis of each point light source of the second array and the perpendicular of the sheet surface,
And the angle (acute angle) θ2 formed between the irradiation optical axis of the second linear illumination and the perpendicular of the sheet surface, as viewed from the longitudinal direction of the light irradiation means, and the irradiation light of the third linear illumination The angle (acute angle) θ3 formed by the axis and the perpendicular of the sheet surface is
The scratch defect inspection apparatus for a sheet according to claim 1 or 2, wherein θ11 = θ12 = θ2 = θ3 is satisfied.
JP2016006128A 2016-01-15 2016-01-15 Sheet defect inspection device Expired - Fee Related JP6679942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016006128A JP6679942B2 (en) 2016-01-15 2016-01-15 Sheet defect inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016006128A JP6679942B2 (en) 2016-01-15 2016-01-15 Sheet defect inspection device

Publications (2)

Publication Number Publication Date
JP2017125805A true JP2017125805A (en) 2017-07-20
JP6679942B2 JP6679942B2 (en) 2020-04-15

Family

ID=59365136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016006128A Expired - Fee Related JP6679942B2 (en) 2016-01-15 2016-01-15 Sheet defect inspection device

Country Status (1)

Country Link
JP (1) JP6679942B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020059426A1 (en) * 2018-09-21 2020-03-26 東レ株式会社 Sheet-like object defect inspection lighting, sheet-like object defect inspection device and sheet-like object defect inspection method
US20220373476A1 (en) * 2019-10-09 2022-11-24 Omron Corporation Sheet inspection device
US11959863B2 (en) * 2019-10-09 2024-04-16 Omron Corporation Sheet inspection device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002214158A (en) * 2001-01-19 2002-07-31 Central Glass Co Ltd Defect detecting method and detecting device for transparent plate-like body
JP2004309287A (en) * 2003-04-07 2004-11-04 Nippon Sheet Glass Co Ltd Defect detection device and defect detection method
JP2015068670A (en) * 2013-09-27 2015-04-13 東レ株式会社 Device and method for inspecting defect of sheet-like matter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002214158A (en) * 2001-01-19 2002-07-31 Central Glass Co Ltd Defect detecting method and detecting device for transparent plate-like body
JP2004309287A (en) * 2003-04-07 2004-11-04 Nippon Sheet Glass Co Ltd Defect detection device and defect detection method
JP2015068670A (en) * 2013-09-27 2015-04-13 東レ株式会社 Device and method for inspecting defect of sheet-like matter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020059426A1 (en) * 2018-09-21 2020-03-26 東レ株式会社 Sheet-like object defect inspection lighting, sheet-like object defect inspection device and sheet-like object defect inspection method
US11341630B2 (en) 2018-09-21 2022-05-24 Toray Industries, Inc. Lighting for defect inspection of sheet-shaped objects, defect inspection apparatus for sheet-shaped objects, and method of defect inspection of sheet-shaped objects
JP7392470B2 (en) 2018-09-21 2023-12-06 東レ株式会社 Lighting for inspecting defects in sheet-like objects and defect inspection device for sheet-like objects
US20220373476A1 (en) * 2019-10-09 2022-11-24 Omron Corporation Sheet inspection device
US11959863B2 (en) * 2019-10-09 2024-04-16 Omron Corporation Sheet inspection device

Also Published As

Publication number Publication date
JP6679942B2 (en) 2020-04-15

Similar Documents

Publication Publication Date Title
JP4511978B2 (en) Surface flaw inspection device
JP5521377B2 (en) Glass plate defect identification method and apparatus
US7957636B2 (en) Illumination apparatus and appearance inspection apparatus including the same
CA2842544C (en) Apparatus and method for inspecting matter and use thereof for sorting recyclable matter
JPWO2003005007A1 (en) Method and apparatus for inspecting defects in sheet-like transparent body
WO2010137431A1 (en) Polycrystalline wafer inspection method
JP2015040835A (en) Defect inspection device and defect inspection method for transparent tabular body
JP2011145182A (en) Inspection device of screw thread
JP2015068670A (en) Device and method for inspecting defect of sheet-like matter
JPH102868A (en) Method and apparatus for optical inspection of defect in translucent sheet-like material
JP2013246059A (en) Defect inspection apparatus and defect inspection method
JP6679942B2 (en) Sheet defect inspection device
JP4630945B1 (en) Defect inspection equipment
JP2013205332A (en) Defect inspection device and defect inspection method
JP7392470B2 (en) Lighting for inspecting defects in sheet-like objects and defect inspection device for sheet-like objects
JP2006242814A (en) Surface inspection device
JP6671938B2 (en) Surface shape measuring device, defect determination device, and surface shape measuring method
JP2009025269A (en) Defect inspection apparatus and defect inspection method of optically-transparent sheet
JP6409606B2 (en) Scratch defect inspection device and scratch defect inspection method
CN215179724U (en) Optical detection system and detection device
JP7448808B2 (en) Surface inspection device and surface inspection method
JP5935266B2 (en) Scratch defect inspection method and sheet manufacturing method
JP2006098198A (en) Defect inspection device of transparent member
JPS6353537A (en) Lighting device
JP2005147817A (en) Surface light source device for surface inspection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200302

R151 Written notification of patent or utility model registration

Ref document number: 6679942

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees