JP6679942B2 - Sheet defect inspection device - Google Patents

Sheet defect inspection device Download PDF

Info

Publication number
JP6679942B2
JP6679942B2 JP2016006128A JP2016006128A JP6679942B2 JP 6679942 B2 JP6679942 B2 JP 6679942B2 JP 2016006128 A JP2016006128 A JP 2016006128A JP 2016006128 A JP2016006128 A JP 2016006128A JP 6679942 B2 JP6679942 B2 JP 6679942B2
Authority
JP
Japan
Prior art keywords
light
sheet
irradiation
linear illumination
illumination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016006128A
Other languages
Japanese (ja)
Other versions
JP2017125805A (en
Inventor
和史 石丸
和史 石丸
杉原 洋樹
洋樹 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2016006128A priority Critical patent/JP6679942B2/en
Publication of JP2017125805A publication Critical patent/JP2017125805A/en
Application granted granted Critical
Publication of JP6679942B2 publication Critical patent/JP6679942B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

本発明は、フィルムなどのシートに発生する全ての方向のキズ欠点を検出するための検査装置に関する。   The present invention relates to an inspection device for detecting flaw defects in all directions that occur on a sheet such as a film.

フィルムなどのシートを連続的に製造する工程において、シートにキズ欠点が発生する場合があり問題となっている。   In the process of continuously producing a sheet such as a film, a flaw may occur on the sheet, which is a problem.

このキズ欠点の発生メカニズムとして、搬送ロールに異物が付着し、フィルム表面に異物が押し付けられることによりキズ欠点が発生する場合と、フィルムにかかる張力やフィルムの走行速度が一定ではなく、フィルムと搬送ロールが擦れることによりキズ欠点が発生する場合が考えられる。   As a mechanism of occurrence of this flaw defect, when a foreign matter adheres to the transport roll and the foreign matter is pressed against the film surface, a flaw defect occurs, and the tension applied to the film and the traveling speed of the film are not constant, and It is conceivable that scratch defects may occur due to the rubbing of the roll.

そのため、キズ欠点の形状として、前者の場合は、点状あるいはフィルム走行方向に長い形状であるのに対し、後者の場合は、フィルムと搬送ロールが擦れる方向により、フィルムの走行方向に対して、あらゆる方向に長い形状のキズ欠点が発生する。   Therefore, as the shape of the scratch defect, in the former case, it is a dot shape or a shape long in the film running direction, whereas in the latter case, depending on the direction in which the film and the transport roll rub, with respect to the running direction of the film, A flaw defect of a long shape occurs in all directions.

このように、キズ欠点はフィルムの走行状態により、あらゆる角度に発生することが知られている。   As described above, it is known that scratch defects occur at various angles depending on the running state of the film.

このキズ欠点はユーザーの加工工程で問題となるために、キズ欠点を持つフィルムが製品として出荷されることを避けなければならない。   Since the flaw defect becomes a problem in the processing process of the user, it is necessary to avoid shipping the film having the flaw defect as a product.

従来、このようなキズ欠点の検査を行う場合、走行しているフィルムに対して、照明装置で光を照射し、フィルムにキズ欠点が存在する場合には、キズ欠点によって乱反射される散乱光をCCDカメラ等で撮像し、撮像された画像を画像処理することによって、キズ欠点を検出していた。   Conventionally, when such a flaw defect is inspected, the running film is irradiated with light by a lighting device, and when the film has a flaw defect, scattered light diffusely reflected by the flaw defect is generated. A flaw defect is detected by capturing an image with a CCD camera or the like and performing image processing on the captured image.

ここで、特許文献1にはフィルムに発生するキズ欠点をCCDカメラにて自動で検査する装置が開示されている。   Here, Patent Document 1 discloses an apparatus for automatically inspecting a flaw defect occurring in a film with a CCD camera.

特許文献1の欠点検査装置は、図2に示すように、フィルム21の表面に照明光L1を照射する照明光源24と、前記フィルム21の表面に照射された照明光L1による反射光を検出するCCDカメラ25とから構成されており、前記照明光源24の照明光L1は前記フィルム21の表面に対して入射角度15°〜45°で照射され、前記CCDカメラ25は前記フィルム21での反射光L2のうち、前記フィルム21に対して垂直方向に反射する反射光L3のみを検出することによって、前記フィルム21に発生するキズ欠点22を高感度に検出することができる。   As shown in FIG. 2, the defect inspection device of Patent Document 1 detects an illumination light source 24 that irradiates the surface of the film 21 with the illumination light L1 and a reflected light of the illumination light L1 that is irradiated onto the surface of the film 21. It is composed of a CCD camera 25, and the illumination light L1 of the illumination light source 24 is applied to the surface of the film 21 at an incident angle of 15 ° to 45 °, and the CCD camera 25 reflects the light reflected by the film 21. By detecting only the reflected light L3 reflected in the direction perpendicular to the film 21 among L2, the flaw defect 22 generated in the film 21 can be detected with high sensitivity.

特許文献2には、連続的に走行するシートに発生する前記シートに平行な角度のキズ欠点を高精度に検査できる検査装置が開示されている。   Patent Document 2 discloses an inspection device capable of highly accurately inspecting a flaw defect having an angle parallel to the sheet, which occurs in a continuously traveling sheet.

特許文献2の欠点検査装置は、図3および図4に示すように、ライン状光源装置32として複数の発光ダイオードを光軸が互いに平行になるように直線状に配列してなる発光ダイオード配列体を複数段に配設し、異なる角度にした前記発光ダイオード配列体から検査対象物31の走行方向に平行なキズ欠点に対して光を照射することで、キズ欠点の長手方向の側面部で光が散乱することで前記キズ欠点を高感度に検出することができる。   As shown in FIGS. 3 and 4, the defect inspection apparatus of Patent Document 2 is a light emitting diode array in which a plurality of light emitting diodes are linearly arranged as a linear light source device 32 so that their optical axes are parallel to each other. Are arranged in a plurality of stages, and light is emitted from the light emitting diode array at different angles to a flaw defect parallel to the traveling direction of the inspection object 31, so that light is emitted from the side surface portion in the longitudinal direction of the flaw defect. Can be detected with high sensitivity by scattering of.

さらに、特許文献3の欠点検査装置は、ライン状光源装置とライン状受光センサーを組合せることにより、シートに発生する前記シートの長手方向に平行な角度のキズ欠点をさらに高感度に検査できる検査装置が開示されている。   Further, the defect inspection apparatus of Patent Document 3 is an inspection capable of inspecting a defect in a defect of an angle parallel to the longitudinal direction of the sheet, which occurs on the sheet, with higher sensitivity by combining the line light source device and the line light receiving sensor. A device is disclosed.

ライン状光照射手段から照射される光の光軸とライン状受光センサーであるライン状撮像手段の撮像軸とがなす角度によって、キズ欠点の検出感度は変化する。そのため、前記角度を最適な角度とすることで検出感度は大きく変化する。   The detection sensitivity of the flaw defect changes depending on the angle formed by the optical axis of the light emitted from the linear light irradiation means and the imaging axis of the linear imaging means which is the linear light receiving sensor. Therefore, the detection sensitivity greatly changes when the angle is set to the optimum angle.

特許文献3の欠点検査装置は、図5に示すように、複数の点光源が一列に並んだライン状光照射手段43からシート41の幅方向に傾いた光が照射され、前記シート41に発生したキズ欠点により散乱した光をライン状撮像手段44で受光することにより、キズ欠点を検出することができる。ここで、撮像手段として、一般的なラインセンサカメラではなくライン状受光センサーを用いることで、ライン状光照射手段43から照射される光の光軸と前記ライン状受光センサーであるライン状撮像手段44の撮像軸とがなす角度を全幅に亘り一定とすることが可能となる。そのため、シート41の全幅に亘り、前記シート41に発生する前記シートの長手方向に平行なキズ欠点を高感度に検出することが可能となる。   In the defect inspection apparatus of Patent Document 3, as shown in FIG. 5, the line-shaped light irradiation means 43 in which a plurality of point light sources are arranged in a line is irradiated with light inclined in the width direction of the sheet 41, and is generated on the sheet 41. By receiving the light scattered by the scratch defect by the line-shaped image pickup means 44, the scratch defect can be detected. Here, by using a line-shaped light receiving sensor instead of a general line sensor camera as the image capturing means, the optical axis of the light emitted from the line light emitting means 43 and the line image capturing means which is the line light receiving sensor. It is possible to make the angle formed by the imaging axis of 44 constant over the entire width. Therefore, over the entire width of the sheet 41, it is possible to detect with high sensitivity a flaw defect that occurs in the sheet 41 and is parallel to the longitudinal direction of the sheet.

特開2008−8819号公報JP, 2008-8819, A 特開2009−139275号公報JP, 2009-139275, A 特開2015−68670号公報JP, 2005-68670, A

しかしながら、特許文献1の技術は照明光源24の長手方向に対して平行な方向に発生したキズ欠点に対しては高感度な検出が可能だが、それ以外の方向のキズ欠点に関しては、検出感度が低下する。   However, the technique of Patent Document 1 is capable of detecting with high sensitivity a flaw defect generated in a direction parallel to the longitudinal direction of the illumination light source 24, but has a low detection sensitivity with respect to a flaw defect in other directions. descend.

つまり、キズ欠点における照明光源24から照射させた光の散乱光は、フィルム21表面のキズ欠点の角度によって異なり、フィルム21表面においてキズ欠点の長手方向に垂直な方向に散乱光が最も発生する。   That is, the scattered light of the light emitted from the illumination light source 24 in the scratch defect differs depending on the angle of the scratch defect on the surface of the film 21, and the scattered light is most generated on the surface of the film 21 in the direction perpendicular to the longitudinal direction of the scratch defect.

すなわち、特許文献1の方法では、CCDカメラ25が受光する散乱光は、キズ欠点の角度によって異なり、キズ欠点の角度が照明光源24の長手方向と直角の方向に近づくほど少なくなる。   That is, in the method of Patent Document 1, the scattered light received by the CCD camera 25 varies depending on the angle of the flaw defect, and becomes smaller as the angle of the flaw defect approaches the direction perpendicular to the longitudinal direction of the illumination light source 24.

また、特許文献2の技術は、ライン状光源装置32の長手方向と直角な方向のキズ欠点に対しては高感度な検出が可能だが、それ以外の方向のキズ欠点に関しては検出感度が低下する。   Further, the technique of Patent Document 2 can detect with high sensitivity a flaw defect in a direction perpendicular to the longitudinal direction of the linear light source device 32, but the detection sensitivity with respect to a flaw defect in any other direction is lowered. .

ライン状光源装置32は図4に示すように、発光ダイオードの配列体3A、3Bから光が発せられ、検査対象物31の幅方向に対して、斜めから、光軸がクロスするように照射される。そのため、前記キズ欠点の長手方向の削れた斜面に光が照射されることにより、散乱光が発生し、前記キズ欠点を検出することができる。   As shown in FIG. 4, the line-shaped light source device 32 emits light from the light-emitting diode arrays 3A and 3B, and is irradiated obliquely with respect to the width direction of the inspection object 31 so that the optical axes cross each other. It Therefore, by irradiating the scratched surface of the scratch defect in the longitudinal direction with light, scattered light is generated, and the scratch defect can be detected.

しかし一方で、ライン状光源装置32の長手方向と平行な方向のキズ欠点に関しては、前記発光ダイオード3A、3Bから照射された光軸に対しては散乱光の発生が少なく、前記キズ欠点を検出することができない。   However, on the other hand, regarding a flaw defect in a direction parallel to the longitudinal direction of the line-shaped light source device 32, scattered light is less generated on the optical axis emitted from the light emitting diodes 3A and 3B, and the flaw defect is detected. Can not do it.

また、特許文献3の技術は、図5に示すように、受光装置としてライン状光撮像手段44を用いることにより、特許文献2での課題である検査対象物であるシート41の中央と端部の感度差を無くすことができている。   Further, in the technique of Patent Document 3, as shown in FIG. 5, by using the line-shaped optical imaging means 44 as a light receiving device, the center and the end portion of the sheet 41, which is the object of inspection in Patent Document 2, is the inspection object. It is possible to eliminate the difference in sensitivity.

しかし、ライン状光照射手段43から発せられる斜光照明では、ライン状照射手段43の長手方向に直角な方向のキズ欠点に対しては高感度に検出可能であるが、それ以外の方向のキズ欠点に関しては検出感度が低下する。   However, the oblique illumination emitted from the linear light irradiating means 43 can detect a flaw defect in a direction perpendicular to the longitudinal direction of the linear illuminating means 43 with high sensitivity, but a flaw defect in other directions. As for, the detection sensitivity decreases.

このように、フィルムなどのシートに発生するキズ欠点を検出するための従来の検査装置では、キズ欠点の角度によって検出感度が変化し、一定基準で検査ができない。   As described above, in the conventional inspection device for detecting a flaw defect generated on a sheet such as a film, the detection sensitivity changes depending on the angle of the flaw defect, and the inspection cannot be performed on a fixed basis.

本発明は、前記従来の課題を解決するもので、連続走行するシート表面に発生する全ての方向のキズ欠点を一定基準で検出するためのキズ欠点検査装置を提供する。   The present invention solves the above-mentioned conventional problems, and provides a flaw defect inspection apparatus for detecting a flaw defect in all directions generated on the surface of a continuously running sheet on a constant basis.

上記課題を解決する本発明のキズ欠点検査装置は、連続搬送されるシートのキズ欠点を検査するシートのキズ欠点検査装置であって、
前記シートの一方の面側から光を照射する長尺の光照射手段と、
前記シートの前記光照射手段が設置された面側に設置され、光照射手段から照射されて前記シートで反射された照射光を受光する受光手段、もしくは前記シートの前記光照射手段が設置された面側とは反対の面側に設置され、光照射手段から照射されて前記シートを透過した照射光を受光する受光手段と、
前記受光手段が受光した照射光の強度に応じた信号値から前記シートの表面に発生したキズ欠点部分を検出する画像処理手段と、を備え、
前記光照射手段は、第一のライン状照明と、第一のライン状照明を挟んで、第一のライン状照明の長手方向と平行に配置された第二および第三のライン状照明とで構成されており、
前記第一のライン状照明は、複数の点光源が直線状に配列された配列体が複数平行に並んで構成され、1つの配列体を構成する複数の点光源は、それぞれの照射光軸が互いに平行になるように配列されており、
前記複数の配列体には、前記第一のライン状照明の長手方向に垂直な平面に対し、照射光がこの平面の一方の面側から他方の面側へ向かうように照射光軸が傾いた第一の配列体と、照射光が前記平面の前記他方の面側から前記一方の面側へ向かうように照射光軸が傾いた第二の配列体の2つが少なくとも有り、
前記第二のライン状照明は、その長手方向の光量分布が均一な直線状の照射光を照射し、
前記第三のライン状照明は、その長手方向の光量分布が均一な直線状の照射光を照射し、
前記光照射手段の長手方向から見て、前記第一の配列体、第二の配列体、第二のライン状照明および前記第三のライン状照明のそれぞれの照射光軸は、前記シート面で交差している。


The flaw defect inspection apparatus of the present invention for solving the above-mentioned problems is a sheet flaw defect inspection apparatus for inspecting a flaw defect of continuously conveyed sheets,
A long light irradiation means for irradiating light from one surface side of the sheet,
The light receiving means is installed on the surface side of the sheet on which the light emitting means is installed, and the light receiving means for receiving the irradiation light emitted from the light emitting means and reflected by the sheet, or the light emitting means of the sheet is installed. A light receiving unit that is installed on the surface side opposite to the surface side and that receives the irradiation light that has been irradiated from the light irradiation unit and transmitted through the sheet,
Image processing means for detecting a flaw defect portion generated on the surface of the sheet from a signal value corresponding to the intensity of irradiation light received by the light receiving means,
The light irradiation means includes a first linear illumination and second and third linear illuminations arranged in parallel with the longitudinal direction of the first linear illumination with the first linear illumination interposed therebetween. Is configured,
The first linear illumination is configured by arranging a plurality of array bodies in which a plurality of point light sources are linearly arranged side by side in parallel, and the plurality of point light sources forming one array body have respective irradiation optical axes. Arranged in parallel to each other,
With respect to the plurality of arrays, the irradiation optical axis is inclined with respect to a plane perpendicular to the longitudinal direction of the first linear illumination so that the irradiation light goes from one surface side of this plane to the other surface side. There are at least two of a first array and a second array in which the irradiation light axis is inclined so that the irradiation light is directed from the other surface side of the plane toward the one surface side,
The second linear illumination irradiates a linear irradiation light with a uniform light amount distribution in the longitudinal direction,
The third linear illumination irradiates a linear irradiation light with a uniform light amount distribution in the longitudinal direction,
When viewed from the longitudinal direction of the light irradiation means, the irradiation optical axes of the first array, the second array, the second linear illumination and the third linear illumination are the planes of the sheet . Cross at.


本発明の検査装置では、連続走行するシート表面に発生する全ての方向のキズ欠点を一定基準で検出することができる。   With the inspection device of the present invention, it is possible to detect flaw defects in all directions that occur on the surface of a continuously running sheet on a fixed basis.

図1は、本発明の実施形態の一例を示す概略図である。FIG. 1 is a schematic diagram showing an example of an embodiment of the present invention. 図2は、特許文献1の技術を説明する概略図である。FIG. 2 is a schematic diagram illustrating the technique of Patent Document 1. 図3は、特許文献2の技術を説明する概略図である。FIG. 3 is a schematic diagram illustrating the technique of Patent Document 2. 図4は、特許文献2のライン状光源装置の詳細を説明する概略図である。FIG. 4 is a schematic diagram illustrating details of the linear light source device of Patent Document 2. 図5は、特許文献3の技術を説明する概略図である。FIG. 5 is a schematic diagram illustrating the technique of Patent Document 3. 図6は、本発明の実施形態の上面図である。FIG. 6 is a top view of an embodiment of the present invention. 図7は、本発明の実施形態の側面図である。FIG. 7 is a side view of an embodiment of the present invention. 図8は、シートの長手方向に平行なキズ欠点の散乱光の説明図である。FIG. 8 is an explanatory diagram of scattered light of a flaw defect parallel to the longitudinal direction of the sheet. 図9は、シートの長手方向に垂直なキズ欠点の散乱光の説明図である。FIG. 9 is an explanatory diagram of scattered light of a flaw defect perpendicular to the longitudinal direction of the sheet. 図10は、キズ欠点の角度による検出感度の違いを説明する概略図である。FIG. 10 is a schematic diagram illustrating the difference in detection sensitivity depending on the angle of the flaw defect. 図11は、本発明のシートの長手方向に平行なキズ欠点の検出説明図である。FIG. 11 is an explanatory diagram for detecting a flaw defect parallel to the longitudinal direction of the sheet of the present invention. 図12は、本発明のシートの長手方向に垂直なキズ欠点の検出説明図である。FIG. 12 is an explanatory diagram for detecting a flaw defect perpendicular to the longitudinal direction of the sheet of the present invention. 図13は、本発明のシートの長手方向に対して斜めのキズ欠点の検出説明図である。FIG. 13 is an explanatory diagram for detecting a flaw defect oblique to the longitudinal direction of the sheet of the present invention. 図14は、実施例と比較例のそれぞれについて、検出したキズ欠点の角度による検出感度差を示す図である。FIG. 14 is a diagram showing the detection sensitivity difference depending on the angle of the detected flaw defect for each of the example and the comparative example.

以下、本発明の実施の形態について図面を参照しながら説明する。なお、本発明はこの実施の形態によって限定はされない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to this embodiment.

図1は本発明の実施の形態を示す図である。図1において、1は被検査体である連続的に搬送されるシート、2は光照射手段、3は前記光照射手段2内の第一のライン状照明、4は前記光照射手段2内の第二のライン状照明、5は前記光照射手段2内の第三のライン状照明、6は受光手段、7は画像処理手段である。   FIG. 1 is a diagram showing an embodiment of the present invention. In FIG. 1, 1 is an inspected sheet which is continuously conveyed, 2 is a light irradiation unit, 3 is a first linear illumination in the light irradiation unit 2, and 4 is a light in the light irradiation unit 2. The second linear illumination, 5 is the third linear illumination in the light irradiation means 2, 6 is the light receiving means, and 7 is the image processing means.

シート1としては、連続的に搬送され、光を透過もしくは反射するフィルム等であれば特に限定されない。例えばポリエチレンテレフタレートフィルム等のポリエステルフィルムなどのような無色透明なフィルムが好適に用いられる。   The sheet 1 is not particularly limited as long as it is a film or the like that is continuously conveyed and transmits or reflects light. For example, a colorless and transparent film such as a polyester film such as a polyethylene terephthalate film is preferably used.

光照射手段2はシート1の一方の面側に配設され、シート1に対して光を照射する。光照射手段は、図6に示すように、第一のライン状照明3、第二のライン状照明4、第三のライン状照明5の3つのライン状照明から構成されている。   The light irradiation means 2 is arranged on one surface side of the sheet 1 and irradiates the sheet 1 with light. As shown in FIG. 6, the light irradiation means is composed of three line-shaped illuminations of a first line-shaped illumination 3, a second line-shaped illumination 4, and a third line-shaped illumination 5.

第一のライン状照明3は、光ファイバの出射端をライン状に配列して、その出射角度を幅方向に一定に調整したもので、斜め方向への照射が可能となっている。また、このライン状に配列された光ファイバの配列体が少なくとも2列ある。そして、配列体の1つは、第一のライン状照明の長手方向に垂直な平面に対し、照射光がこの平面の一方の面側から他方の面側へ向かうように照射光軸が傾いた第一の配列体8であり、配列体のもう1つは、第一のライン状照明の長手方向に垂直な同じ平面に対し、照射光がこの平面の前記他方の面側から前記一方の面側へ向かうように照射光軸が傾いた第二の配列体9である。第一のライン状照明3としては、例えば、発光部から発光した光を各配列体に光ファイバで導くことで実現可能である。また、各配列体に発光ダイオードを設置すること、ライン状LED照明の前方に遮光部材を配設することでも実現可能である。   The first linear illumination 3 is one in which the emission ends of the optical fibers are arranged in a line and the emission angle thereof is adjusted to be constant in the width direction, and irradiation in an oblique direction is possible. In addition, there are at least two rows of array bodies of the optical fibers arranged in a line. Then, in one of the arrays, the irradiation optical axis is tilted with respect to a plane perpendicular to the longitudinal direction of the first linear illumination so that the irradiation light goes from one surface side of this plane to the other surface side. The first array 8 is the other array, in which the irradiation light is applied to the same plane perpendicular to the longitudinal direction of the first linear illumination from the other surface side of the plane to the one surface. It is the second array 9 in which the irradiation optical axis is inclined toward the side. The first linear illumination 3 can be realized, for example, by guiding the light emitted from the light emitting section to each array by an optical fiber. It can also be realized by installing a light emitting diode in each array and disposing a light shielding member in front of the linear LED illumination.

第二のライン状照明4は、前記シート1の走行方向に対して第一のライン状照明3の下流側に設置されており、前記シート1の幅方向に平行な線状の照明であり、幅方向に均一な指向性の高い光を前記シート1の幅に対して照射する。   The second linear illumination 4 is installed on the downstream side of the first linear illumination 3 with respect to the traveling direction of the sheet 1, and is linear illumination parallel to the width direction of the sheet 1. Light having high directivity that is uniform in the width direction is applied to the width of the sheet 1.

第三のライン状照明5は、前記シート1の走行方向に対して第一のライン状照明3の上流側に設置されており、前記第二のライン状照明4と同様に、前記シート1の幅方向に平行な線状の照明であり、幅方向に均一な指向性の高い光を前記シート1の幅に対して照射する。   The third line-shaped illumination 5 is installed on the upstream side of the first line-shaped illumination 3 in the traveling direction of the sheet 1, and like the second line-shaped illumination 4, the third line-shaped illumination 5 of the sheet 1 is provided. It is a linear illumination parallel to the width direction, and irradiates the width of the sheet 1 with light having high directivity that is uniform in the width direction.

第二のライン状照明4および第三のライン状照明5としては、LEDや蛍光灯、ハロゲンやメタルハライド照明を伝送ロッドや光ファイバから照射するものなどを用いることができる。   As the second line-shaped illumination 4 and the third line-shaped illumination 5, an LED, a fluorescent lamp, a halogen or a metal halide illumination that irradiates from a transmission rod or an optical fiber, or the like can be used.

また、図7に示すように、第一のライン状照明3の第一の配列体8、第二の配列体9、第二のライン状照明4および第三のライン状照明5のそれぞれの照射光軸は、前記シート1面上で交差する必要がある。   Further, as shown in FIG. 7, irradiation of each of the first array 8, the second array 9, the second linear illumination 4 and the third linear illumination 5 of the first linear illumination 3 is performed. The optical axes need to intersect on the surface of the sheet 1.

さらに、前記光照射手段2の長手方向に垂直かつ前記シート1面に平行な方向から見た、前記第一のライン状照明3の第一の配列体8の各点光源の照射光軸と前記シート1面の垂線とのなす角度(鋭角)θ11、および前記第二の配列体9の各点光源の照射光軸と前記シート1面の垂線とのなす角度(鋭角)θ12、ならびに、前記光照射手段2の長手方向から見た、前記第二のライン状照明4の照射光軸と前記シート1面の垂線とのなす角度(鋭角)θ2、および前記第三のライン状照明5の照射光軸と前記シート1面の垂線とのなす角度(鋭角)θ3が、θ11=θ12=θ2=θ3を満たすことが好ましい。   Further, the irradiation optical axis of each point light source of the first array 8 of the first linear illumination 3 and the irradiation optical axis as viewed from a direction perpendicular to the longitudinal direction of the light irradiation means 2 and parallel to the surface of the sheet 1. An angle (acute angle) θ11 formed by a perpendicular line of the sheet 1 surface, an angle (acute angle) θ12 formed by an irradiation optical axis of each point light source of the second array 9 and a perpendicular line of the sheet 1 surface, and the light The angle (acute angle) θ2 formed by the irradiation optical axis of the second linear illumination 4 and the perpendicular to the surface of the sheet 1 as viewed in the longitudinal direction of the irradiation means 2, and the irradiation light of the third linear illumination 5. It is preferable that the angle (acute angle) θ3 formed by the axis and the perpendicular of the surface of the sheet 1 satisfies θ11 = θ12 = θ2 = θ3.

受光手段6は、シート1に発生したキズ欠点による散乱光を受光するように配設されることが好ましいのであり、光照射手段2から照射されシート1で直接透過もしくは正反射された光を受光することは好ましくない。ここで、シート1に発生したキズ欠点によって散乱された光を受光するためには、光照射手段2と受光手段6の位置関係が重要である。   It is preferable that the light receiving means 6 is arranged so as to receive the scattered light due to the flaw defect generated on the sheet 1, and receives the light emitted from the light emitting means 2 and directly transmitted or specularly reflected by the sheet 1. Doing so is not preferable. Here, in order to receive the light scattered by the flaw defect generated in the sheet 1, the positional relationship between the light irradiation means 2 and the light receiving means 6 is important.

この位置関係について図8、図9を用いて説明する。図8はシート1の走行方向側から見た概略図を示しており、図9はシート1の幅方向側から見た概略図を示している。また、図8、図9はそれぞれ、(A)にキズ欠点が発生していない場合の光軸の概略図を示しており、(B)にキズ欠点が発生した場合の散乱光の概略図を示している。   This positional relationship will be described with reference to FIGS. 8 and 9. FIG. 8 shows a schematic view seen from the running direction side of the seat 1, and FIG. 9 shows a schematic view seen from the width direction side of the seat 1. Further, FIGS. 8 and 9 respectively show a schematic view of the optical axis in the case where no flaw defect occurs in (A), and a schematic diagram of scattered light in the case where a flaw defect occurs in (B). Shows.

図8(A)に示すように、受光手段6は第一のライン状照明3から照射され、シート1を透過した光を受光しないように配設することが重要であり、第一のライン状照明3からの光軸の角度θ11、θ12より受光手段6の画角の半値角の値を小さくすることで実現できる。また同様に、図9(A)に示すように、受光手段6は第二のライン状照明4の光軸の角度θ2、第三のライン状照明5の光軸の角度θ3より受光手段6の画角の半値角の値を小さくすることで実現できる。   As shown in FIG. 8A, it is important that the light receiving means 6 is arranged so as not to receive the light emitted from the first linear illumination 3 and transmitted through the sheet 1. This can be realized by making the half-value angle of the angle of view of the light receiving means 6 smaller than the angles θ11 and θ12 of the optical axis from the illumination 3. Similarly, as shown in FIG. 9 (A), the light receiving means 6 detects the light receiving means 6 from the angle θ2 of the optical axis of the second linear illumination 4 and the angle θ3 of the optical axis of the third linear illumination 5. This can be realized by reducing the half-value angle of view.

前記シート1にキズ欠点が発生した場合は、図8(B)、図9(B)に示すように、前記キズ欠点に光照射手段2から光を照射した場合、散乱光が発生し、受光手段6で散乱光を受光することにより、キズ欠点を明欠点として検出することができる。   When a flaw defect is generated on the sheet 1, as shown in FIGS. 8 (B) and 9 (B), when the flaw defect is irradiated with light from the light irradiation means 2, scattered light is generated and received. By receiving the scattered light by the means 6, the flaw defect can be detected as a bright defect.

また、反射光学系の場合は、図9において受光手段6をシート1面において光照射手段2と同じ面側に設置し、第一のライン状照明3と第二のライン状照明4の間で第一のライン状照明3の近傍に配設、もしくは第一のライン状照明3と第三のライン状照明5の間で第一のライン状照明3の近傍に配設することで実現することができる。   In the case of a reflective optical system, in FIG. 9, the light receiving means 6 is installed on the surface of the sheet 1 on the same side as the light irradiating means 2, and between the first linear illumination 3 and the second linear illumination 4. Realization by arranging in the vicinity of the first linear illumination 3 or in the vicinity of the first linear illumination 3 between the first linear illumination 3 and the third linear illumination 5. You can

受光手段6として、連続走行するシート1を検査する場合、ラインセンサカメラを用いることが好ましいが、受光素子を二次元に配列したエリアセンサカメラや光電子増倍管などを用いてもよい。しかし、ラインセンサカメラやエリアセンサカメラを用いる場合は、検査視野の中央と端部での受光軸の角度が異なるために、視野位置によって、キズ欠点の検出感度が異なるという問題が発生する。そのため、これらカメラを用いる場合は、視野中央部のみを検査範囲として用いることが必要である。また、全視野範囲の検出感度を同じとするために、受光手段6として、複数の受光素子と結合用のレンズとが等間隔に連続的に並べられており、結合用のレンズが、等倍で受光手段の受光素子に結合を行うレンズを持つライン状のイメージセンサ(密着イメージセンサや近接イメージセンサとも呼ばれる)を用いることが好ましい。   When the continuously traveling sheet 1 is inspected as the light receiving means 6, it is preferable to use a line sensor camera, but an area sensor camera in which light receiving elements are two-dimensionally arranged, a photomultiplier tube, or the like may be used. However, when a line sensor camera or an area sensor camera is used, the angle of the light-receiving axis at the center and the edge of the inspection visual field are different, so that there is a problem that the detection sensitivity of the flaw defect is different depending on the visual field position. Therefore, when using these cameras, it is necessary to use only the central part of the visual field as the inspection range. Further, in order to make the detection sensitivity in the entire visual field range the same, as the light receiving means 6, a plurality of light receiving elements and a coupling lens are continuously arranged at equal intervals, and the coupling lens has the same magnification. It is preferable to use a line-shaped image sensor (also called a contact image sensor or a proximity image sensor) having a lens for coupling to the light receiving element of the light receiving means.

画像処理手段7は、受光手段6の出力信号を受信し、受光手段6が受光した光量の変化を検出することで、シート1表面のキズ欠点の有無を検査する。受光手段6からは、受光手段6が受光した光量に応じたアナログまたはデジタル信号が出力される。アナログ信号が出力される場合は、画像処理手段7内でデジタル信号に変換される。画像処理手段7はデジタル信号を検出して平均化処理、微分処理などの画像処理を実行し、所定のしきい値を超えるものをシート1の表面のキズ欠点として抽出する。このキズ欠点の抽出は画像処理ボードなどのハードで実行するものと、パソコンなどのソフトで実行するものがあるが、ハードでの処理のほうが高速で処理できるため、好ましい。   The image processing means 7 receives the output signal of the light receiving means 6 and detects the change in the amount of light received by the light receiving means 6, thereby inspecting the surface of the sheet 1 for flaws. The light receiving unit 6 outputs an analog or digital signal according to the amount of light received by the light receiving unit 6. When an analog signal is output, it is converted into a digital signal in the image processing means 7. The image processing means 7 detects a digital signal and executes image processing such as averaging processing and differential processing, and extracts those exceeding a predetermined threshold value as flaw defects on the surface of the sheet 1. There are two types of extraction of these flaws, one is performed by hardware such as an image processing board and the other is performed by software such as a personal computer. However, hardware processing is preferable because it can be processed at high speed.

次に、本発明によってシート1の同じ幅方向位置に周期的に発生するキズ欠点を検出する原理について説明する。   Next, the principle of detecting flaw defects that periodically occur at the same widthwise position of the sheet 1 according to the present invention will be described.

光照射手段2が照射する光をシート1に照射させ、シート1を透過もしくは反射した光のうち、受光手段6は直接透過光もしくは正反射光を受光せず、キズ欠点による散乱光のみを受光することにより、キズ欠点部の光量は正常部より多くなり、画像処理手段7では明部となる。そして、この明部を2値化することにより、明欠点として検出される。   Of the light transmitted or reflected by the sheet 1 by irradiating the sheet 1 with the light emitted by the light irradiating means 2, the light receiving means 6 does not directly receive the transmitted light or the regular reflected light, but only the scattered light due to the flaw defect. By doing so, the light quantity of the flaw defect portion becomes larger than that of the normal portion, and becomes the bright portion in the image processing means 7. Then, by binarizing this bright part, it is detected as a bright defect.

また、キズ欠点は、その発生原因のほとんどが搬送ロールであるため、搬送ロールの一部に異物が付着した際に、搬送ロールに付着した異物の幅方向位置と、同じ位置にキズ欠点が発生し、搬送ロールが回転していることにより、搬送ロール周期で継続的に発生するという特徴がある。また、シート1が延伸される工程やシート1の走行の蛇行によって、様々な角度のキズ欠点が発生するという特徴がある。   Most of the scratch defects are caused by the transport roll, so when a foreign substance adheres to a part of the transport roll, a flaw defect occurs at the same position as the width direction position of the foreign substance attached to the transport roll. However, since the transport rolls are rotating, they are continuously generated in the transport roll cycle. Further, there is a feature that flaw defects of various angles occur due to the process of stretching the sheet 1 and the meandering of the traveling of the sheet 1.

ここで、キズ欠点の角度による検出感度の違いについて図10を用いて説明する。   Here, the difference in detection sensitivity depending on the angle of the flaw defect will be described with reference to FIG.

図10はシート1の走行方向に対するキズ欠点10の角度が0°と90°の時に第二のライン状照明に相当する光照射手段4を用いてシート1に光を照射し、その透過光のうち受光手段6に受光される散乱光量の違いを示す図である。   FIG. 10 shows that when the scratch defect 10 has an angle of 0 ° and 90 ° with respect to the traveling direction of the sheet 1, the sheet 1 is irradiated with light using the light irradiation means 4 corresponding to the second linear illumination, and the transmitted light is transmitted. FIG. 7 is a diagram showing a difference in the amount of scattered light received by the light receiving means 6 among them.

キズ欠点10による散乱光は、シート1面において、キズ欠点10の長手方向に対して垂直な方向に散乱光が多く発生する。   A large amount of scattered light due to the scratch defect 10 is generated on the surface of the sheet 1 in a direction perpendicular to the longitudinal direction of the scratch defect 10.

そのため、図10(A)に示すシート1の走行方向に対するキズ欠点10の角度が0°の場合、受光手段6の受光軸はキズ欠点10による散乱光と直角の角度となるため、受光手段6で受光される光量は最も小さくなる。   Therefore, when the angle of the flaw defect 10 with respect to the traveling direction of the sheet 1 shown in FIG. 10A is 0 °, the light-receiving axis of the light receiving means 6 is at an angle perpendicular to the scattered light due to the flaw defect 10, and therefore the light receiving means 6 is provided. The amount of light received at is the smallest.

また、図10(B)に示すシート1の走行方向に対するキズ欠点10の角度が90°の場合、受光手段6の受光軸はキズ欠点10による散乱光と平行の角度となるため、受光手段6で受光される光量は最も大きくなる。   When the angle of the flaw defect 10 with respect to the traveling direction of the sheet 1 shown in FIG. 10B is 90 °, the light receiving axis of the light receiving means 6 is an angle parallel to the scattered light due to the flaw defect 10, and thus the light receiving means 6 is provided. The amount of light received at is the largest.

このように、シート1の走行方向に対するキズ欠点10の角度によって、検出感度は大きく異なる。   As described above, the detection sensitivity greatly varies depending on the angle of the flaw defect 10 with respect to the traveling direction of the sheet 1.

そのため、本装置では、前記のように、光照射手段2の構成として、第一のライン状照明と第二のライン状照明、第三のライン状照明を組み合わせることによって、キズ欠点の角度によらず一定の基準で検出することができる。   Therefore, in the present apparatus, as described above, by combining the first line-shaped illumination, the second line-shaped illumination, and the third line-shaped illumination as the configuration of the light irradiating means 2, the angle of the flaw defect can be reduced. Instead, it can be detected on a fixed basis.

この方法について図11、図12、図13を用いて説明する。ここで、シート1の走行方向に対するキズ欠点の角度をθ、第一のライン状照明3、第二のライン状照明4および第三のライン状照明5のそれぞれにおいてキズ欠点で発生した散乱光量の合計をxとする。   This method will be described with reference to FIGS. 11, 12, and 13. Here, the angle of the flaw defect with respect to the traveling direction of the sheet 1 is θ, and the amount of scattered light generated by the flaw defect in each of the first linear illumination 3, the second linear illumination 4, and the third linear illumination 5 is Let x be the total.

図11は、シート1の走行方向に平行な方向に発生したキズ欠点に対して、第一のライン状照明3、第二のライン状照明4および第三のライン状照明5のそれぞれから光を照射した場合に発生する散乱光と、それらを足し合わせた光を受光する受光手段6の受光量を示している。   FIG. 11 shows that light is emitted from each of the first line-shaped illumination 3, the second line-shaped illumination 4, and the third line-shaped illumination 5 with respect to a flaw defect generated in a direction parallel to the traveling direction of the sheet 1. The figure shows the amount of light received by the light receiving means 6 that receives the scattered light generated when the light is applied and the light obtained by adding them together.

シート1の走行方向に平行な方向に発生したキズ欠点に対して、第一のライン状照明3の光を照射した場合、キズ欠点の長手方向の削れた斜面に対して光が照射されるため、多くの散乱光が発生する。しかし、一方で、第二のライン状照明4と第三のライン状照明5から光を照射した場合は、キズ欠点の長手方向の斜面に対して照射される光が少ないため、散乱光は少なくなる。受光手段6で受光される散乱光は、前記第一のライン状照明3によるキズ欠点での散乱光と、前記第二のライン状照明4と前記第三のライン状照明5によるキズ欠点での散乱光とが足し合わされた光量となる。   When the light of the first linear illumination 3 is applied to the flaw defect generated in the direction parallel to the traveling direction of the sheet 1, the light is applied to the scraped surface in the longitudinal direction of the flaw defect. , A lot of scattered light is generated. However, on the other hand, when light is emitted from the second line-shaped illumination 4 and the third line-shaped illumination 5, less light is emitted to the slope in the longitudinal direction of the flaw defect, so scattered light is less. Become. The scattered light received by the light receiving means 6 is the scattered light due to the scratch defect due to the first linear illumination 3 and the scattered light due to the scratch defect due to the second linear illumination 4 and the third linear illumination 5. The amount of light is the sum of scattered light.

また、図12は、シート1の走行方向に垂直な方向に発生したキズ欠点に対して、第一のライン状照明3、第二のライン状照明4および第三のライン状照明5のそれぞれから光を照射した場合に発生する散乱光と、それらを足し合わせた光を受光する受光手段6の受光量を示している。
シート1の走行方向に垂直な方向に発生したキズ欠点に対して、第一のライン状照明3の光を照射した場合、キズ欠点の長手方向の削れた斜面に対して照射される光が少ないため、散乱光は少なくなる。しかし、一方で、第二のライン状照明4と第三のライン状照明5から光を照射した場合は、キズ欠点の長手方向の斜面に対して、光が照射されるため多くの散乱光が発生する。前記の通り、受光手段6で受光される散乱光は、前記第一のライン状照明3によるキズ欠点での散乱光と、前記第二のライン状照明4と前記第三のライン状照明5によるキズ欠点での散乱光とが足し合わされた光量となる。
In addition, FIG. 12 shows that the first line-shaped illumination 3, the second line-shaped illumination 4, and the third line-shaped illumination 5 are used for the flaw defect generated in the direction perpendicular to the traveling direction of the sheet 1. The figure shows the scattered light generated when light is irradiated and the amount of light received by the light receiving means 6 that receives the combined light.
When the light of the first line-shaped illumination 3 is applied to the flaw defect generated in the direction perpendicular to the traveling direction of the sheet 1, less light is emitted to the scraped surface in the longitudinal direction of the flaw defect. Therefore, scattered light is reduced. However, on the other hand, when light is emitted from the second line-shaped illumination 4 and the third line-shaped illumination 5, the scattered light in the longitudinal direction of the flaw defect is irradiated with a large amount of scattered light. appear. As described above, the scattered light received by the light receiving means 6 is the scattered light due to the flaw defect caused by the first linear illumination 3 and the second linear illumination 4 and the third linear illumination 5. The amount of light is the sum of the scattered light due to the flaw defect.

さらに、図13は、シート1の走行方向に対して斜め方向に発生したキズ欠点に対して、第一のライン状照明3、第二のライン状照明4および第三のライン状照明5のそれぞれから光を照射した場合に発生する散乱光と、それらを足し合わせた光を受光する受光手段6の受光量を示している。   Furthermore, FIG. 13 shows the first line-shaped illumination 3, the second line-shaped illumination 4, and the third line-shaped illumination 5, respectively, with respect to a flaw defect that occurs diagonally with respect to the traveling direction of the sheet 1. The scattered light generated when the light is emitted from the light source and the light receiving amount of the light receiving unit 6 that receives the light obtained by adding the scattered light are shown.

シート1の走行方向に対して斜め方向に発生したキズ欠点に対して、第一のライン状照明3の光を照射した場合、キズ欠点の長手方向の削れた斜面に対して光が照射されるため、散乱光が発生する。しかし、図11に示すシート1の走行方向に平行な方向に発生したキズ欠点と比較すると、キズ欠点の長手方向の削れた斜面に対して照射される光は少ないため、発生する散乱光はx(cos2θ)となる。また、第二のライン状照明4と第三のライン状照明5から光を照射した場合も、キズ欠点の長手方向の削れた斜面に対して光が照射されるため、散乱光が発生する。しかし、図12に示すシート1の走行方向に対して垂直な方向に発生したキズ欠点と比較すると、キズ欠点の長手方向の削れた斜面に対して照射される光は少ないため、発生する散乱光はx(sin2θ)となる。そのため、受光手段6で受光される散乱光は、前記第一のライン状照明3によるキズ欠点での散乱光と前記第二のライン状照明4と前記第三のライン状照明5によるキズ欠点での散乱光とが足し合わされた光量xとなり、これらは図11と図12の場合とほぼ同じ量の散乱光となる。 When the light of the first line-shaped illumination 3 is applied to a flaw defect generated in a diagonal direction with respect to the traveling direction of the sheet 1, the light is applied to the scraped surface in the longitudinal direction of the flaw defect. Therefore, scattered light is generated. However, as compared with the flaw defect generated in the direction parallel to the traveling direction of the sheet 1 shown in FIG. 11, less light is irradiated to the scraped slope in the longitudinal direction of the flaw defect, so that the scattered light generated is x. (cos 2 θ). Also, when light is emitted from the second line-shaped illumination 4 and the third line-shaped illumination 5, scattered light is generated because light is emitted to the scraped slope in the longitudinal direction of the flaw defect. However, compared with the flaw defect generated in the direction perpendicular to the traveling direction of the sheet 1 shown in FIG. 12, less light is emitted to the scraped slope in the longitudinal direction of the flaw defect, and therefore scattered light is generated. Is x (sin 2 θ). Therefore, the scattered light received by the light receiving means 6 is the scattered light due to the flaw defect due to the first line-shaped illumination 3 and the flaw defect due to the second line-shaped illumination 4 and the third line-shaped illumination 5. And the scattered light is added to form a light quantity x, and these light quantities are almost the same as in the cases of FIGS. 11 and 12.

上記のように、本発明のキズ欠点検査装置では、シート1に発生するキズ欠点10の角度によらず、ほぼ同じ量の散乱光が受光手段6で受光され、キズ欠点の角度によらず一定の基準で検出することができる。   As described above, in the flaw defect inspection apparatus of the present invention, almost the same amount of scattered light is received by the light receiving means 6 regardless of the angle of the flaw defect 10 generated on the sheet 1, and is constant regardless of the angle of the flaw defect. It can be detected by the standard.

[実施例]
図1の配置に従った装置を用いてキズ欠点の検査を実施した。フィルムとして、幅1000mm、厚み50μmのPETフィルムを用い、同じ周期で発生したキズ欠点を15度ずつ回転させ、PETフィルムに貼り付け、フィルム搬送装置を用いて、10m/minでフィルムを走行させた。さらに光照射手段として、第一のライン状照明には光の出射角度θ11が30°の光ファイバを並べた配列体1と第一のライン状照明の長手方向に垂直な面に対して対称な角度となるように配設した配列体2を持つクロス斜光照明を用い、第二のライン状照明、第三のライン状照明として、白色の光を照射する直線型LED照明を用い、それぞれの光軸の角度θ2、θ3を30°となるように設置した。また、第一のライン状照明の光軸と第二、第三のライン状照明の光軸は、フィルム面で交差するように設置し、フィルム面と光照射手段との距離を150mmに設置した。
[Example]
An inspection for flaw defects was carried out using the device according to the arrangement of FIG. As a film, a PET film having a width of 1000 mm and a thickness of 50 μm was used, scratch defects generated in the same cycle were rotated by 15 degrees, and the film was attached to the PET film, and the film was run at 10 m / min using a film transport device. . Further, as the light irradiation means, the first linear illumination is symmetric with respect to the array 1 in which optical fibers having a light emission angle θ11 of 30 ° are arranged and a plane perpendicular to the longitudinal direction of the first linear illumination. Cross oblique light illumination having the array 2 arranged at an angle is used, and linear LED illumination that emits white light is used as the second linear illumination and the third linear illumination. The axes were set so that the angles θ2 and θ3 were 30 °. Further, the optical axes of the first linear illumination and the optical axes of the second and third linear illumination are installed so as to intersect with each other on the film surface, and the distance between the film surface and the light irradiation means is set to 150 mm. .

撮像手段として、密着イメージセンサを用い、フィルムを挟んで、光照射手段の反対面に配設した。このとき、フィルム面と密着イメージセンサの受光軸のなす角度を90°とし、フィルム面と密着イメージセンサの距離を15mmに設置した。   A contact image sensor was used as the image pickup means, and the film was sandwiched between the image pickup means and the light irradiation means. At this time, the angle between the film surface and the light receiving axis of the contact image sensor was set to 90 °, and the distance between the film surface and the contact image sensor was set to 15 mm.

[比較例]
光照射手段として第一のライン状照明のみを用いた以外は実施例と同じ構成の装置でキズ欠点の検査を実施した。
[Comparative example]
A flaw defect was inspected with an apparatus having the same configuration as that of the example except that only the first linear illumination was used as the light irradiation means.

[実施例と比較例の対比]
図14に、キズ欠点の角度による密着イメージセンサの受光量を示すレーダーチャートを示す。
第一のライン状照明、第二のライン状照明および第三のライン状照明を組み合わせた光照射手段を用いた実施例では、密着イメージセンサの受光量は、キズ欠点の角度によらずほぼ一定であることが確認できた。このように、実施例では連続走行するフィルムに発生する全ての方向のキズ欠点を一定基準で検出することができることが確認できた。
[Comparison of Example and Comparative Example]
FIG. 14 is a radar chart showing the amount of light received by the contact image sensor depending on the angle of the flaw defect.
In the embodiment using the light irradiation means combining the first line-shaped illumination, the second line-shaped illumination and the third line-shaped illumination, the amount of light received by the contact image sensor is substantially constant regardless of the flaw defect angle. It was confirmed that As described above, in the example, it was confirmed that the flaw defects in all directions generated in the continuously running film could be detected on a fixed basis.

クロス斜光照明のみの光照射手段を用いた比較例では、フィルムの走行方向に平行なキズ欠点の受光量は多いが、フィルムの走行方向に垂直なキズ欠点の受光量は少なくなっており、同じキズ欠点であっても発生する角度によって検出感度に差があることが確認できた。   In the comparative example using the light irradiation means of only cross oblique illumination, the light receiving amount of the flaw defect parallel to the running direction of the film is large, but the light receiving amount of the flaw defect perpendicular to the running direction of the film is small, and the same. It was confirmed that even with flaw defects, there is a difference in detection sensitivity depending on the angle at which they occur.

1 :連続的走行するシート
2 :光照射手段
3 :第一のライン状照明
4 :第二のライン状照明
5 :第三のライン状照明
6 :受光手段
7 :画像処理手段
8 :光ファイバの第一の配列体
9 :光ファイバの第二の配列体
10:キズ欠点
11:受光手段の視野範囲
θ11:第一のライン状照明の第一の配列体の光軸の出射角度
θ12:第一のライン状照明の第二の配列体の光軸の出射角度
θ2:第二のライン状照明の光軸の出射角度
θ3:第三のライン状照明の光軸の出射角度
θ :シートの走行方向に対するキズ欠点の角度
x :キズ欠点で発生する散乱光量
21:フィルム
22:キズ欠点
23:検査台
24:照明光源
25:CCDカメラ
L1:照明光
L2:反射光
L3:垂直反射光
31:検査対象物
32:ライン状光源装置
33:発光ダイオード駆動装置
34:モニタカメラ
35:パーソナルコンピュータ
3A、3B:発光ダイオードの配列体
3C:発光ダイオードの光軸
41:シート
42:直流電源
43:ライン状光照射手段
44:ライン状光撮像手段
45:パーソナルコンピュータ
1: continuously running sheet 2: light irradiation means 3: first linear illumination 4: second linear illumination 5: third linear illumination 6: light receiving means 7: image processing means 8: optical fiber First array 9: Second array of optical fibers 10: Scratch defect 11: Field of view of light receiving means θ11: Exit angle θ12 of the optical axis of the first array of first linear illumination: First Angle θ2 of the optical axis of the second array of linear illuminations: angle of emission of the optical axis of the second linear illumination θ3: angle of emission of the optical axis of the third linear illumination θ: traveling direction of the sheet Angle of flaw defect against
x: amount of scattered light generated due to flaw defect 21: film 22: flaw defect 23: inspection table 24: illumination light source 25: CCD camera L1: illumination light L2: reflected light L3: vertical reflected light 31: inspection object 32: line shape Light source device 33: Light emitting diode drive device 34: Monitor camera 35: Personal computer 3A, 3B: Light emitting diode array 3C: Light emitting diode optical axis 41: Sheet 42: DC power source 43: Line light irradiation means 44: Line Optical imaging means 45: personal computer

Claims (2)

連続搬送されるシートのキズ欠点を検査するシートのキズ欠点検査装置であって、
前記シートの一方の面側から光を照射する長尺の光照射手段と、
前記シートの前記光照射手段が設置された面側に設置され、光照射手段から照射されて前記シートで反射された照射光を受光する受光手段、もしくは前記シートの前記光照射手段が設置された面側とは反対の面側に設置され、光照射手段から照射されて前記シートを透過した照射光を受光する受光手段と、
前記受光手段が受光した照射光の強度に応じた信号値から前記シートの表面に発生したキズ欠点部分を検出する画像処理手段と、を備え、
前記光照射手段は、第一のライン状照明と、第一のライン状照明を挟んで、第一のライン状照明の長手方向と平行に配置された第二および第三のライン状照明とで構成されており、
前記第一のライン状照明は、複数の点光源が直線状に配列された配列体が複数平行に並んで構成され、1つの配列体を構成する複数の点光源は、それぞれの照射光軸が互いに平行になるように配列されており、
前記複数の配列体には、前記第一のライン状照明の長手方向に垂直な平面に対し、照射光がこの平面の一方の面側から他方の面側へ向かうように照射光軸が傾いた第一の配列体と、照射光が前記平面の前記他方の面側から前記一方の面側へ向かうように照射光軸が傾いた第二の配列体の2つが少なくとも有り、
前記第二のライン状照明は、その長手方向の光量分布が均一な直線状の照射光を照射し、
前記第三のライン状照明は、その長手方向の光量分布が均一な直線状の照射光を照射し、
前記光照射手段の長手方向から見て、前記第一の配列体、第二の配列体、第二のライン状照明および前記第三のライン状照明のそれぞれの照射光軸は、前記シートの面で交差
前記光照射手段の長手方向に垂直かつ前記シートの面に平行な方向から見た、前記第一の配列体の各点光源の照射光軸と前記シートの面の垂線とのなす角度(鋭角)θ11、および前記第二の配列体の各点光源の照射光軸と前記シートの面の垂線とのなす角度(鋭角)θ12、
ならびに、前記光照射手段の長手方向から見た、前記第二のライン状照明の照射光軸と前記シートの面の垂線とのなす角度(鋭角)θ2、および前記第三のライン状照明の照射光軸と前記シートの面の垂線とのなす角度(鋭角)θ3が、
θ11=θ12=θ2=θ3を満たす、シートのキズ欠点検査装置。
A flaw defect inspection device for a sheet, which inspects a sheet for defects that are continuously conveyed,
A long light irradiation means for irradiating light from one surface side of the sheet,
The light receiving means is installed on the surface side of the sheet on which the light emitting means is installed, and the light receiving means for receiving the irradiation light emitted from the light emitting means and reflected by the sheet, or the light emitting means of the sheet is installed. A light receiving unit that is installed on the surface side opposite to the surface side and that receives the irradiation light that has been irradiated from the light irradiation unit and transmitted through the sheet,
Image processing means for detecting a flaw defect portion generated on the surface of the sheet from a signal value corresponding to the intensity of irradiation light received by the light receiving means,
The light irradiation means includes a first linear illumination and second and third linear illuminations arranged in parallel with the longitudinal direction of the first linear illumination with the first linear illumination interposed therebetween. Is configured,
The first linear illumination is configured by arranging a plurality of array bodies in which a plurality of point light sources are linearly arranged side by side in parallel, and the plurality of point light sources forming one array body have respective irradiation optical axes. Arranged in parallel to each other,
With respect to the plurality of arrays, the irradiation optical axis is inclined with respect to a plane perpendicular to the longitudinal direction of the first linear illumination so that the irradiation light goes from one surface side of this plane to the other surface side. There are at least two of a first array and a second array in which the irradiation light axis is inclined so that the irradiation light is directed from the other surface side of the plane toward the one surface side,
The second linear illumination irradiates a linear irradiation light with a uniform light amount distribution in the longitudinal direction,
The third linear illumination irradiates a linear irradiation light with a uniform light amount distribution in the longitudinal direction,
When viewed from the longitudinal direction of the light irradiation means, the irradiation optical axes of the first array body, the second array body, the second linear illumination and the third linear illumination are the planes of the sheet. Cross at
An angle (acute angle) formed by the irradiation optical axis of each point light source of the first array and the perpendicular to the surface of the sheet, as viewed from a direction perpendicular to the longitudinal direction of the light irradiation means and parallel to the surface of the sheet. θ11 and the angle (acute angle) θ12 formed by the irradiation optical axis of each point light source of the second array and the perpendicular to the surface of the sheet,
And the angle (acute angle) θ2 formed by the irradiation optical axis of the second linear illumination and the perpendicular to the surface of the sheet, as viewed in the longitudinal direction of the light irradiation means, and the irradiation of the third linear illumination. The angle (acute angle) θ3 formed by the optical axis and the perpendicular of the surface of the sheet is
A sheet defect inspection apparatus that satisfies θ11 = θ12 = θ2 = θ3 .
前記受光手段は、複数の受光素子と結合用のレンズとが等間隔に連続的に並べられており、前記結合用のレンズが、等倍で前記受光手段の受光素子に結合を行うレンズである、請求項1のシートのキズ欠点検査装置。   In the light receiving means, a plurality of light receiving elements and a coupling lens are continuously arranged at equal intervals, and the coupling lens is a lens that couples to the light receiving element of the light receiving means at equal magnification. The sheet defect inspection apparatus according to claim 1.
JP2016006128A 2016-01-15 2016-01-15 Sheet defect inspection device Expired - Fee Related JP6679942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016006128A JP6679942B2 (en) 2016-01-15 2016-01-15 Sheet defect inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016006128A JP6679942B2 (en) 2016-01-15 2016-01-15 Sheet defect inspection device

Publications (2)

Publication Number Publication Date
JP2017125805A JP2017125805A (en) 2017-07-20
JP6679942B2 true JP6679942B2 (en) 2020-04-15

Family

ID=59365136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016006128A Expired - Fee Related JP6679942B2 (en) 2016-01-15 2016-01-15 Sheet defect inspection device

Country Status (1)

Country Link
JP (1) JP6679942B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210060466A (en) 2018-09-21 2021-05-26 도레이 카부시키가이샤 Lighting for defect inspection of sheet-shaped articles, defect inspection device of sheet-shaped articles, and defect inspection method of sheet-shaped articles
JP2021060345A (en) * 2019-10-09 2021-04-15 オムロン株式会社 Sheet inspection device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002214158A (en) * 2001-01-19 2002-07-31 Central Glass Co Ltd Defect detecting method and detecting device for transparent plate-like body
JP2004309287A (en) * 2003-04-07 2004-11-04 Nippon Sheet Glass Co Ltd Defect detection device and defect detection method
JP2015068670A (en) * 2013-09-27 2015-04-13 東レ株式会社 Device and method for inspecting defect of sheet-like matter

Also Published As

Publication number Publication date
JP2017125805A (en) 2017-07-20

Similar Documents

Publication Publication Date Title
JP5521377B2 (en) Glass plate defect identification method and apparatus
JP4511978B2 (en) Surface flaw inspection device
JP5031691B2 (en) Surface flaw inspection device
CA2842544C (en) Apparatus and method for inspecting matter and use thereof for sorting recyclable matter
JPWO2003005007A1 (en) Method and apparatus for inspecting defects in sheet-like transparent body
KR20090113885A (en) Method and apparatus for illuminating material for automated inspection
JP2015040835A (en) Defect inspection device and defect inspection method for transparent tabular body
KR20190002637A (en) Surface inspection system and surface inspection method
JP2011209112A (en) Appearance inspection method of to-be-inspected object and appearance inspection apparatus of the same
JP2015068670A (en) Device and method for inspecting defect of sheet-like matter
JP6679942B2 (en) Sheet defect inspection device
JP2013205332A (en) Defect inspection device and defect inspection method
JP2013246059A (en) Defect inspection apparatus and defect inspection method
JP4630945B1 (en) Defect inspection equipment
JP7392470B2 (en) Lighting for inspecting defects in sheet-like objects and defect inspection device for sheet-like objects
JP7448808B2 (en) Surface inspection device and surface inspection method
JP6409606B2 (en) Scratch defect inspection device and scratch defect inspection method
JP2009025269A (en) Defect inspection apparatus and defect inspection method of optically-transparent sheet
JP5787668B2 (en) Defect detection device
JP2012068211A (en) Distortion inspection device for sheet member and distortion inspection method for sheet member
JP2016125817A (en) Inspection system, and inspection method
JP5471157B2 (en) Method and apparatus for detecting adhering matter on glass plate surface
JP2014186030A (en) Defect inspection device
CN215179724U (en) Optical detection system and detection device
JP2000065752A (en) Quality inspection apparatus using vertical illumination

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200302

R151 Written notification of patent or utility model registration

Ref document number: 6679942

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees