JPS6351381B2 - - Google Patents

Info

Publication number
JPS6351381B2
JPS6351381B2 JP56006680A JP668081A JPS6351381B2 JP S6351381 B2 JPS6351381 B2 JP S6351381B2 JP 56006680 A JP56006680 A JP 56006680A JP 668081 A JP668081 A JP 668081A JP S6351381 B2 JPS6351381 B2 JP S6351381B2
Authority
JP
Japan
Prior art keywords
wiring
line
power supply
area
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56006680A
Other languages
Japanese (ja)
Other versions
JPS57121250A (en
Inventor
Tomoji Takada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56006680A priority Critical patent/JPS57121250A/en
Publication of JPS57121250A publication Critical patent/JPS57121250A/en
Publication of JPS6351381B2 publication Critical patent/JPS6351381B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits

Description

【発明の詳細な説明】 本発明は論理機能素子の配置および配線の自由
度を損うことなしに直流抵抗およびインダクタン
スの小さい電源配線を行い得る半導体集積回路に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor integrated circuit in which power supply wiring with low direct current resistance and inductance can be provided without impairing the freedom of arrangement and wiring of logical functional elements.

半導体集積回路(LSI)が大規模化されるに従
い、論理接続情報から機能素子および配線のマス
クパターン設計、所謂アートワーク設計に多大な
労力を要する。そこで最近では計算機を用いたア
ートワーク自動設計が考えられ、この自動設計に
適したLSI方式としてマスタースライス方式やビ
ルデイングブロツク方式が注目されている。
As semiconductor integrated circuits (LSI) become larger in scale, much effort is required to design mask patterns for functional elements and wiring from logical connection information, so-called artwork design. Recently, automatic artwork design using computers has been considered, and the master slice method and building block method are attracting attention as LSI methods suitable for this automatic design.

マスタースライス方式は1つの半導体チツプ上
にトランジスタ等の能動素子および抵抗等の受動
素子によつて構成される汎用セルを予めマトリツ
クス状に多数個形成し、開発品種(回路機能の仕
様)に応じて配線マスクを作成して汎用セル内の
素子を結合し、これによつて所望の論理機能を実
現する。そしてこれらのセルにより実現された論
理機能を接続して所望とする半導体集積回路を完
成するものである。
In the master slicing method, a large number of general-purpose cells consisting of active elements such as transistors and passive elements such as resistors are formed in advance in a matrix on a single semiconductor chip, and the cells are divided according to the developed product (specifications of circuit functions). A wiring mask is created to connect the elements within the general purpose cell, thereby achieving the desired logic function. The logic functions realized by these cells are then connected to complete a desired semiconductor integrated circuit.

またビルデイングブロツク方式は1つの論理機
能に対し、その機能を実現する為のアートワーク
データを有する論理セルをセルライブラリーに登
録しておき、これを論理接続情報に従つて適宜選
択・組合せして配置し、論理セル間の配線を行つ
て所望とする回路機能の半導体集積回路を実現す
るものである。
In addition, in the building block method, for one logical function, logical cells having artwork data to realize that function are registered in a cell library, and these are selected and combined as appropriate according to logical connection information. A semiconductor integrated circuit with a desired circuit function is realized by arranging the logic cells and wiring between the logic cells.

しかしてこれらの方式に共通することは、半導
体チツプ上に論理機能を実現する能動素子が形成
された能動素子領域と、上記論理機能の入出力を
接続する配線トラツクを形成した配線領域とを備
える点である。上記配線トラツクは規格化された
幅および間隔で仮想的に設定されたマトリツクス
状の線路で、この配線トラツク上に前記論理機能
の入出力を接続する配線が施される。また別の共
通点は各能動素子に電力を供給する電源線および
接地線が、上記能動素子領域を貫通して設けられ
る点である。
What these systems have in common, however, is that they include an active element area in which active elements realizing a logic function are formed on a semiconductor chip, and a wiring area in which a wiring track is formed to connect the input and output of the logic function. It is a point. The wiring track is a matrix-like line virtually set with standardized widths and intervals, and wiring for connecting inputs and outputs of the logic function is provided on this wiring track. Another common feature is that a power supply line and a ground line for supplying power to each active element are provided to pass through the active element area.

これらいずれの方式にあつても、またこれらに
類似する他の方式であつても、LSIの大規模化お
よび微細化に伴い、次のような問題が生じてき
た。この問題につきマスタースライス方式により
実現される半導体集積回路を例に説明する。
In any of these methods, or in other similar methods, the following problems have arisen as LSIs become larger and smaller. This problem will be explained using a semiconductor integrated circuit realized by the master slice method as an example.

第1図は汎用セル(論理機能セル)1を縦方向
に並べてセル列2を構成した連接セル形のLSIの
一例を示すもので、上記セル列2にて1つの能動
素子領域3が構成されている。そして上記能動素
子領域3の間が配線領域4に定められ、同配線領
域4内に規格化された間隔を以つて格子状に配線
トラツクが設定されている。そして、この配線ト
ラツク上に各汎用セル1を結ぶ信号線5が配設さ
れている。この信号線5は半導体集積回路上で実
現すべき論理機能に応じて、汎用セル1間を相互
に接続して設けられる。またこの例では、上記能
動素子領域2を貫通して、セル列2の列方向に電
源線6および接地線7がそれぞれ配設され、各汎
用セル1への電力供給が行われている。尚、図中
8は半導体ペレツトを示している。
FIG. 1 shows an example of a connected cell type LSI in which general-purpose cells (logical function cells) 1 are arranged vertically to form a cell row 2. The cell row 2 constitutes one active element area 3. ing. A wiring region 4 is defined between the active element regions 3, and within the wiring region 4, wiring tracks are set in a lattice shape at standardized intervals. A signal line 5 connecting each general-purpose cell 1 is arranged on this wiring track. The signal lines 5 are provided to interconnect the general-purpose cells 1 according to the logical function to be realized on the semiconductor integrated circuit. Further, in this example, a power supply line 6 and a ground line 7 are respectively arranged in the column direction of the cell row 2 through the active element region 2 to supply power to each general-purpose cell 1. Note that 8 in the figure indicates a semiconductor pellet.

しかして、LSIの大規模化および微細化に伴
い、電源線6および接地線7の配線は、その幅が
狭く、厚さが薄くなり、しかも長さが長くなる。
この為、電源ラインの抵抗が大きくなつて電源電
圧の降下が無視できなくなる。例えば比抵抗ρ=
2.83×10-6Ω・cmのAl材にて形成された電源線6
の幅が2μm,厚さ0.8μm,長さ10mmである場合、
その直流抵抗は117Ωにもなる。これを上下2ヶ
所において母線9に接続した場合でも、チツプ中
央に10mAの電流を消費する論理機能が実現され
ると0.885Vもの電源電圧降下を生じる。このよ
うな電源電圧降下は、回路動作の速度低下を招く
上、誤動作の要因となる。更にはその回路がC−
MOS構成であればラツチアツプ現象の要因とも
なる。
However, as LSIs become larger and smaller, the power line 6 and ground line 7 become narrower, thinner, and longer.
For this reason, the resistance of the power supply line increases and the drop in power supply voltage cannot be ignored. For example, specific resistance ρ=
Power line 6 made of 2.83×10 -6 Ω・cm Al material
If the width is 2μm, the thickness is 0.8μm, and the length is 10mm,
Its DC resistance is 117Ω. Even if this is connected to the bus bar 9 at two locations, the top and bottom, if a logic function that consumes 10 mA of current is implemented in the center of the chip, a power supply voltage drop of 0.885 V will occur. Such a power supply voltage drop not only reduces the speed of circuit operation but also causes malfunction. Furthermore, the circuit is C-
If it is a MOS configuration, it can also be a cause of latch-up phenomenon.

また上述の如き電源線にあつては、そのインダ
クタンスも相当大きくなる。例えば上記仕様の
Al配線であれば、10mmの長さで約13nHものイン
ダクタンスが生じる。このインダクタンスは電源
線6上に1ns当り10mAの電流変化(di/dt=
107A/sec)があると、その両端間に0.13Vもの
スパイク電圧を発生させる。このスパイク電圧に
よつても回路の誤動作やラツチアツプ現象が生
じ、改善されなければならない問題であつた。
Furthermore, the inductance of the power line as described above is also considerably large. For example, the above specifications
With Al wiring, an inductance of about 13nH occurs with a length of 10mm. This inductance causes a current change of 10 mA per 1 ns (di/dt=
10 7 A/sec), it will generate a spike voltage of 0.13V across it. This spike voltage also causes circuit malfunctions and latch-up phenomena, which are problems that must be improved.

これに対して従来、第2図に示すように、電源
線6および接地線7をセル列2に対して垂直方向
にも設け、格子状の電源ラインを構成するものが
考えられた。然し乍ら上述した不具合が解消され
るものの、配線領域4を横切る電源線6および接
地線7によつて、配線トラツクに規則的な制限が
加わり、この結果配線の自由度が著しく妨げられ
た。また論理セル1の配置も制限され、汎用セル
および配線トラツクの利用効率が大幅に低下する
と言う新たな問題を招いた。
In contrast, conventionally, as shown in FIG. 2, a power line 6 and a ground line 7 were also provided in a direction perpendicular to the cell row 2 to form a grid-like power line. However, although the above-mentioned problems are solved, the power supply line 6 and the ground line 7 that cross the wiring area 4 impose regular restrictions on the wiring track, and as a result, the degree of freedom in wiring is significantly hindered. Furthermore, the arrangement of the logic cells 1 is also restricted, which brings about a new problem in that the efficiency of using general-purpose cells and wiring tracks is significantly reduced.

本発明はこのような事情を考慮してなされたも
ので、その目的とするところは、論理機能セルの
配置および信号配線の自由度を妨げることなしに
電源ラインの安定化を図つて電圧降下を減少せし
め、回路誤動作やラツチアツプ現象を防止するよ
うにした実用性の高い半導体集積回路を提供する
ことにある。
The present invention has been made in consideration of these circumstances, and its purpose is to stabilize the power supply line and reduce voltage drop without interfering with the arrangement of logic function cells and the degree of freedom in signal wiring. It is an object of the present invention to provide a highly practical semiconductor integrated circuit which is designed to reduce the amount of noise and prevent circuit malfunctions and latch-up phenomena.

本発明の概要は、論理機能セルを形成した能動
素子領域と配線ラインを設定して信号配線がなさ
れる配線領域とを備え、上記能動素子領域に貫通
して電源線および接地線を設けて各論理機能セル
に電力を供給するようにした半導体集積回路にお
いて、回路仕様に応じて自由に信号配線がなされ
た配線領域の空き領域に上記電源線および接地線
にそれぞれ接続される補助線を配設形成すること
によつて電源ラインの安定化を図り、これによつ
て上述した目的を効果的に達成したものである。
The outline of the present invention is to provide an active element area in which a logic function cell is formed and a wiring area in which wiring lines are set and signal wiring is performed, and a power supply line and a ground line are provided penetrating the active element area and each In a semiconductor integrated circuit designed to supply power to logic function cells, auxiliary wires connected to the above power supply line and ground line are placed in empty areas of the wiring area where signal wiring is freely done according to the circuit specifications. By forming this structure, the power supply line is stabilized, thereby effectively achieving the above-mentioned purpose.

以下、図面を参照して本発明の一実施例につき
説明する。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第3図は実施例回路の平面構成を模式的に示し
たものであり、第1図および第2図に示す従来例
を同一部分には同一符号を付して示してある。
FIG. 3 schematically shows the planar configuration of the embodiment circuit, and the same parts in the conventional example shown in FIGS. 1 and 2 are denoted by the same reference numerals.

半導体ペレツト8上には、トランジスタ等の能
動素子および抵抗やコンデンサ等の受動素子によ
り構成された汎用の論理機能セル1が所定の配列
規制に従つて複数形成されている。これらの論理
機能セル1は所定数ずつ縦方向に並べられてセル
列ブロツクを構成し、且つこのブロツク形成領域
を1つの能動素子領域3として所定間隔を隔てて
平行に複数箇所に亘つて設けられている。しかし
て各能動素子領域3の間およびその周辺は信号配
線用の配線領域4として定められている。しかし
て半導体ペレツト8の周辺には上記各領域3,4
を囲んで電源ラインおよび接地ラインからなる母
線9が配線され、この母線9に両端を接続し、且
つ前記能動素子領域3を貫通してセル列方向に電
源線6および接地線7がそれぞれ配設される。こ
の電源線6および接地線7によつて前記各論理機
能セル1が電力供給を受け、信号に対して所定の
論理機能を呈する。
A plurality of general-purpose logic function cells 1 are formed on the semiconductor pellet 8 in accordance with predetermined arrangement regulations, each of which is composed of active elements such as transistors and passive elements such as resistors and capacitors. These logic function cells 1 are arranged in a predetermined number in the vertical direction to form a cell row block, and this block forming area is used as one active element area 3 and are provided in parallel at a plurality of locations at predetermined intervals. ing. The area between and around each active element area 3 is defined as a wiring area 4 for signal wiring. Therefore, the above-mentioned regions 3 and 4 are formed around the semiconductor pellet 8.
A bus line 9 consisting of a power line and a ground line is wired surrounding the cell line, and both ends of the bus line 9 are connected to the bus line 9, and a power line 6 and a ground line 7 are respectively arranged extending through the active element region 3 in the cell column direction. be done. Each logic function cell 1 is supplied with power through the power supply line 6 and ground line 7, and exhibits a predetermined logic function in response to a signal.

しかして配線領域4には、所望とする回路機能
仕様に応じて、各論理機能セル1間の信号送受を
行う信号配線5が配線トラツクに沿つて自由に配
線される。この信号配線5の形成により所望の論
理機能を呈するセル1の接続が完成されることに
なる。
In the wiring area 4, signal wiring 5 for transmitting and receiving signals between the logic function cells 1 is freely wired along wiring tracks according to desired circuit function specifications. By forming the signal wiring 5, the connection of the cells 1 exhibiting the desired logical function is completed.

しかるのち、上記信号配線5がなされなかつた
配線領域4上の空き領域を利用して補助線10が
配設される。この補助線10は前記能動素子領域
3を貫通する電源線および接地線7にそれぞれ適
宜接続され、電流路のバイパスルートを実現する
もので、補助的な電源線あるいは接地線として機
能するものである。そして、この補助線10は、
配線領域4に余裕のある限り、その空き領域を利
用して網の目状に設けられる。
Thereafter, the auxiliary wire 10 is arranged using the empty area on the wiring area 4 where the signal wiring 5 has not been formed. This auxiliary line 10 is appropriately connected to the power supply line and the ground line 7 that pass through the active element region 3, and realizes a bypass route for the current path, and functions as an auxiliary power supply line or a ground line. . And this auxiliary line 10 is
As long as there is room in the wiring area 4, the wiring is provided in a mesh pattern using that empty area.

かくしてこのように構成された本実施例回路に
あつては、補助的な電源線あるいは接地線として
機能する補助線10は、信号配線5が配設形成さ
れたのち空き領域を利用して設けられるものであ
るから、論理機能セル1の配置や配線の自由度が
妨げられることがない。また補助線10は電源線
6および接地線7に流れる電流をバイパス、つま
り分散させるので、実質的に電源ライン配線の直
流抵抗を下げ、同時にその配線インダクタンスを
減少させる。従つて電圧降下やスパイク電圧によ
る誤動作およびラツチアツプ現象の要因が効果的
に取除かれ、安定した信頼性の高い動作が期待で
きる論理機能が実現できる。また補助線10は空
き領域を利用して形成されるので、各種論理機能
に対する汎用性も高い等の効果を奏する。
In the circuit of this embodiment configured in this manner, the auxiliary line 10 functioning as an auxiliary power supply line or a ground line is provided using a vacant area after the signal wiring 5 is arranged and formed. Therefore, the degree of freedom in the arrangement and wiring of the logic function cell 1 is not hindered. Further, since the auxiliary line 10 bypasses or disperses the current flowing through the power supply line 6 and the ground line 7, it substantially lowers the direct current resistance of the power supply line wiring and at the same time reduces its wiring inductance. Therefore, the causes of malfunctions and latch-up phenomena caused by voltage drops and spike voltages are effectively eliminated, and a logic function that can be expected to operate stably and with high reliability can be realized. Further, since the auxiliary line 10 is formed using a free area, it has the advantage of being highly versatile for various logical functions.

尚、本発明は上記実施例に限定されるものでは
ない。実施例ではマスタースライス方式の連接セ
ル形のものにつき説明したが、単独セル形のもの
であつてもよく、またビルデイングブロツク方式
のものあるいはこれに類似した方式のものであつ
ても同様に適用できる。また補助線10の配線数
や、電源線6、接地線7あるいは母線9への接続
箇所は、回路機能仕様に応じて定めればよい。要
するに本発明はその要旨を逸脱しない範囲で種々
変形して実施することができる。
Note that the present invention is not limited to the above embodiments. In the embodiment, a connected cell type master slice type is explained, but it may be a single cell type, or a building block type or similar type can be applied as well. . Further, the number of auxiliary wires 10 and the locations where they are connected to the power supply wire 6, the ground wire 7, or the bus bar 9 may be determined according to the circuit function specifications. In short, the present invention can be implemented with various modifications without departing from the gist thereof.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はそれぞれ従来例を示す構
成図、第3図は本発明の一実施例を示す構成図で
ある。 1……論理機能セル、2……セル列、3……能
動素子領域、4……配線領域、5……信号配線、
6……電源線、7……接地線、8……半導体チツ
プ、9……母線、10……補助線。
FIGS. 1 and 2 are block diagrams showing a conventional example, and FIG. 3 is a block diagram showing an embodiment of the present invention. 1...Logic function cell, 2...Cell column, 3...Active element area, 4...Wiring area, 5...Signal wiring,
6...Power line, 7...Grounding line, 8...Semiconductor chip, 9...Bus bar, 10...Auxiliary line.

Claims (1)

【特許請求の範囲】 1 各種論理機能を実現する為の複数の能動素子
を列状に形成した複数の素子領域と、上記能動素
子の入出力端間を相互に接続する為の配線トラツ
クを前記素子領域間にそれぞれ形成してなる配線
領域とを備え、前記能動素子にそれぞれ電力を供
給する電源線および接地線を前記素子領域上にそ
れぞれ配設形成し、指定された論理機能を実現す
る為の信号配線を前記配線領域の配線トラツク上
に配設形成してなる半導体集積回路において、 前記配線領域上の前記能動素子間を相互に接続
する信号配線が配設形成されなかつた領域に前記
素子領域上の電源線および接地線にそれぞれ接続
される補助線を配設形成してなることを特徴とす
る半導体集積回路。
[Scope of Claims] 1. A plurality of element regions in which a plurality of active elements for realizing various logical functions are formed in a row, and a wiring track for interconnecting input and output terminals of the active elements. A wiring area is formed between each element area, and a power supply line and a ground line for supplying power to each of the active elements are respectively arranged and formed on the element area to realize a specified logical function. In a semiconductor integrated circuit in which signal wiring is arranged and formed on a wiring track in the wiring region, the element is arranged in a region where no signal wiring interconnecting the active elements on the wiring region is arranged and formed. 1. A semiconductor integrated circuit comprising auxiliary wires each connected to a power supply line and a ground line on a region.
JP56006680A 1981-01-20 1981-01-20 Semiconductor integrated circuit Granted JPS57121250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56006680A JPS57121250A (en) 1981-01-20 1981-01-20 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56006680A JPS57121250A (en) 1981-01-20 1981-01-20 Semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPS57121250A JPS57121250A (en) 1982-07-28
JPS6351381B2 true JPS6351381B2 (en) 1988-10-13

Family

ID=11645073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56006680A Granted JPS57121250A (en) 1981-01-20 1981-01-20 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS57121250A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58164242A (en) * 1982-03-24 1983-09-29 Nec Corp Master slice type integrated circuit
US4511914A (en) * 1982-07-01 1985-04-16 Motorola, Inc. Power bus routing for providing noise isolation in gate arrays
JPH079940B2 (en) * 1985-05-30 1995-02-01 株式会社東芝 Semiconductor integrated circuit device
JPH0642513B2 (en) * 1985-08-06 1994-06-01 日本電気株式会社 Integrated circuit device
JPS6235643A (en) * 1985-08-09 1987-02-16 Hitachi Ltd Semiconductor integrated circuit device
JPS6344742A (en) * 1986-08-12 1988-02-25 Fujitsu Ltd Semiconductor device
JP2659970B2 (en) * 1987-10-14 1997-09-30 株式会社東芝 Semiconductor integrated circuit
JP2708180B2 (en) * 1988-07-14 1998-02-04 株式会社東芝 Semiconductor integrated circuit device
JPH0262062A (en) * 1988-08-26 1990-03-01 Nec Corp Master slice type semiconductor device
JP2668981B2 (en) * 1988-09-19 1997-10-27 富士通株式会社 Semiconductor integrated circuit
JP3587841B2 (en) 2002-12-05 2004-11-10 沖電気工業株式会社 Semiconductor integrated circuit

Also Published As

Publication number Publication date
JPS57121250A (en) 1982-07-28

Similar Documents

Publication Publication Date Title
DE3630835C2 (en) Integrated semiconductor circuit arrangements and systems
JP2668981B2 (en) Semiconductor integrated circuit
JPH0529456A (en) Semiconductor integrated circuit device
US5414638A (en) Programmable interconnect architecture
EP0374842A2 (en) Semiconductor integrated circuit device of standard cell system
JPS6351381B2 (en)
JP3441948B2 (en) Clock distribution circuit in semiconductor integrated circuit
JPH05308136A (en) Master slice integrated circuit
JPS59163837A (en) Semiconductor integrated circuit
EP0021661A1 (en) Semiconductor master-slice device
JPH04159751A (en) Semiconductor integrated circuit device and wiring therefor
US6013924A (en) Semiconductor integrated circuit and method for making wiring layout of semiconductor integrated circuit
JPH01144664A (en) Integrated circuit device for semiconductor memory
JPS612342A (en) Semiconductor integrated circuit device
JP3353397B2 (en) Semiconductor integrated circuit
JPS59165436A (en) Semiconductor integrated circuit device
JPH0316790B2 (en)
JPH073863B2 (en) Semiconductor integrated circuit
JP3037020B2 (en) Semiconductor integrated circuit device
JPS6074547A (en) Semiconductor integrated circuit
JPS621244A (en) Master slice type semiconductor device
JPH0677445A (en) Master slice layout integrated circuit
JP2656263B2 (en) Semiconductor integrated circuit device
JPS6074548A (en) Semiconductor integrated circuit
JPS641052B2 (en)