JPS6351196B2 - - Google Patents

Info

Publication number
JPS6351196B2
JPS6351196B2 JP54033921A JP3392179A JPS6351196B2 JP S6351196 B2 JPS6351196 B2 JP S6351196B2 JP 54033921 A JP54033921 A JP 54033921A JP 3392179 A JP3392179 A JP 3392179A JP S6351196 B2 JPS6351196 B2 JP S6351196B2
Authority
JP
Japan
Prior art keywords
polyamide
imide
insulated wire
diisocyanate
isocyanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54033921A
Other languages
Japanese (ja)
Other versions
JPS55125170A (en
Inventor
Yoshuki Mukoyama
Toichi Sakata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP3392179A priority Critical patent/JPS55125170A/en
Priority to US06/094,938 priority patent/US4294952A/en
Priority to DE19792947117 priority patent/DE2947117A1/en
Priority to GB7941113A priority patent/GB2037788B/en
Publication of JPS55125170A publication Critical patent/JPS55125170A/en
Publication of JPS6351196B2 publication Critical patent/JPS6351196B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Paints Or Removers (AREA)
  • Organic Insulating Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、新規のクレゾール系溶媒可溶ポリア
ミドイミドを用いて得られる絶縁電線に関するも
のである。本発明の目的は耐熱性、可とう性、耐
フレオン性、耐摩耗性のバランスのとれた安価な
絶縁電線を提供するにある。 現在、ポリエステル系樹脂を電気絶縁用被覆組
成物として用いた絶縁電線が比較的機械特性、電
気特性、耐熱性などのバランスがとれているため
に多く使用されている。しかし最近電気機器の小
型化、軽量化のため、さらに耐熱性が良好で耐フ
レオン性並びに耐摩耗性にすぐれた絶縁電線が要
求されている。耐熱性、耐フレオン性及び耐摩耗
性の良好な絶縁電線としては、ポリイミド、ポリ
アミドイミドなどの組成物を被覆した高度の耐熱
性を有する電線があるが、樹脂組成物がN―メチ
ルピロリドン(NMP)などのような特殊な溶媒
にしか溶解しないこともあつて樹脂自体が高価と
なり、コスト的に大きな問題がある。このためポ
リエステル系の絶縁電線の耐熱性向上のために、
トリス(2―ヒドロキシエチル)イソシアヌレー
ト(THEIC)を用いかつイミド基を含有したい
わゆるTHEIC変性ポリエステルイミドを用いた
絶縁電線が提案されている。しかしTHEIC変性
ポリエステルイミドはポリエステルに比較して耐
熱性は大幅に改良されているが耐摩耗性と耐フレ
オン性に難点があり、ポリアミドイミドなどには
およばない。 そこで耐熱性のすぐれたポリアミドイミドワニ
スをクレゾールなどのような汎用溶媒に可溶化す
る研究が数多くなされており、反応成分にラクタ
ム等を併用することが提案されている(例えば特
公昭46―29730号、特公昭49―30718号、特公昭50
―20993号、特公昭53―47157号)。しかし、この
ようにラクタム等を併用したクレゾール可溶ポリ
アミドイミドは、耐熱性、特に熱軟化温度の点
で、現行のポリアミドイミドに比較し著しく劣る
ものしか実際には得られていない。この熱軟化温
度を向上させるために、イソシアネート化合物の
一部にイソシアヌレート環を含有したポリイソシ
アネートを使用することが特開昭52―40599号公
報に記載されているが、この公報の実施例に示さ
れる組成では、熱軟化温度は向上するものの、可
とう性が著しく低下し、実用的価値のあるものは
得られていない。具体的には、焼付時間が長い場
合には熱軟化温度が良好であるが可とう性が低下
し、焼付時間が短い場合には十分に樹脂が高分子
量化せず、熱軟化温度、可とう性が低下する。 本発明者らは、現在NMP系溶液として市販さ
れているポリアミドイミド樹脂組成物(例えば日
立化成工業HI―404)のクレゾール系溶媒可溶性
化について鋭意検討を重ねた結果、本発明を完成
するに至つた。 本発明はイソシアネート基の残存量が10〜70%
のイソシアヌレート環含有ポリイソシアネート、
芳香族ジイソシアネート、ラクタム及び酸無水物
基を含有するポリカルボン酸を、イソシアヌレー
ト環含有ポリイソシアネートを全イソシアネート
量の1〜30当量%、ラクタムを全イソシアネート
量の50〜70当量%としてクレゾール系溶媒中で反
応させて得られるポリアミドイミド樹脂を含有す
る組成物で被覆してなるポリアミドイミド被覆絶
縁電線に関する。 本発明で用いられるイソシアヌレート環を含有
するポリイソシアネートは、イソシアネート基の
三量化によつて得られ、この反応はイソシアネー
ト基と反応しない溶剤の存在下で行なわれ、反応
を効果的に進めるためにはイソシアネート基の三
量化触媒を使用することが望ましい。溶剤として
は原料としてのイソシアネートを溶解するもので
あれば脂肪族及び芳香族系炭化水素、ハロゲン化
芳香族系炭化水素、エステル系、ケトン系、エー
テル系、エチレングリコールモノアルキルモノア
セテート系溶剤、ジメチルスルホオキサイド等の
中から任意に選定できる。 ポリイソシアネート化合物の三量化触媒として
は、アルカリ金属アセテート、鉄、マグネシウ
ム、ニツケル、亜鉛、錫、鉛、バナジウム、チタ
ン等の金属塩及び有機金属化合物、N―メチルモ
ルホリン、1,8―ジアザビシクロ(5,4,
0)ウンデセン―7,2―(ジメチルアミノメチ
ル)―4,6―ジメチルフエノールなどのフエノ
ールのマンニツヒ塩基、N,N―ビス―(ジメチ
ルアミノエチル)―N―メチルアミン等の第三級
アミンなどが使用でき、特に制限はない。 ポリイソシアネート化合物の三量化の反応温度
は、例えば50〜160℃の範囲で行なわれる。 実際のポリイソシアネート化合物の三量化反応
は複雑であり、必ずしもイソシアヌレート環を一
分子中に一個のみ含むイソシアネートの付加物だ
けが選択的に生成するものではなく、未反応のイ
ソシアネート及びイソシアヌレート環を一分子中
に二個以上含むイソシアネート付加物との混合物
が得られる。本発明においてはこの混合物も使用
できる。イソシアネート付加物に含有されるイソ
シアヌレート環の数に応じて触媒量、反応温度を
決めればよいが、一般的に残存イソシアネート基
の割合が50%程度になるような反応を行なう場合
を例にとればイソシアネートに対して第三級アミ
ン0.01〜2重量%、反応温度70〜160℃が好まし
い。 イソシアヌレート環含有ポリイソシアネートの
原料としてはイソシアヌレート環を形成するもの
であれば脂肪族、脂環族、芳香族いずれのジイソ
シアネート化合物でもよいが、耐熱性、溶解性及
びコスト面を考慮すれば芳香族ジイソシアネー
ト、特に4,4′―ジフエニルメタンジイソシアネ
ート、4,4′―ジフエニルエーテルジイソシアネ
ート、トリレンジイソシアネート、キシリレンジ
イソシアネートが好ましく、これらを混合して使
用してもよい。あらかじめ合成しておいたポリイ
ソシアネートを用いてもよく、経日変化を避ける
ためにフエノール、クレゾール等のブロツク剤で
安定化したものを使用してもよい。 イソシアヌレート環含有ポリイソシアネート
は、用途に応じて含有されるイソシアヌレート環
の個数の異なつたものを使用できるが、耐熱性、
可とう性等からみて、残存イソシアネート基含有
量は10〜70%の範囲とされる(ジイソシアネート
中のイソシアネート基含有量を100とする)。多す
ぎれば耐熱性が低下し、少なすぎれば可とう性が
低下する。 これらのポリイソシアネートの使用量は、次に
述べるラクタムの使用量と共に重要である。これ
らの使用量を間違えば実用的な耐熱性樹脂の製造
は不可能であり、従つて実用に供しうる絶縁電線
は得られない。イソシアヌレート環含有ポリイソ
シアネートは、全イソシアネート成分中で1〜30
当量%にすべきである。多すぎても少なすぎても
耐熱性と可とう性のバランスのとれた性質は発揮
されない。多すぎれば分岐度が高まり、合成中ゲ
ル化することもある。同様にクレゾール可溶化の
重要な原料であるラクタムとしては、一般的には
クレゾール系溶媒中でイソシアネート基又は酸無
水物基と反応して可溶なものであれば何でもよい
が、溶解性、反応性及びコスト面を考慮すれば、
ε―カプロラクタムが好ましい。使用量は決して
イソシアネート基を当量(ε―カプロラクタムを
2官能性と考える。従つて1モルが2当量)で加
える必要はなく、耐熱性、可とう性及び溶解性を
総合的に考慮すれば全イソシアネート当量の50〜
70当量%がよい。具体的には反応生成物である樹
脂骨核中に全イソシアネート当量の50〜70当量%
が含有されるようにすればよい。樹脂骨核中の含
有量が多すぎても少なすぎても耐熱性と可とう性
のバランスがとれ、かつ耐フレオン性並びに耐摩
耗性にすぐれた絶縁電線は得られない。 芳香族ジイソシアネートとしては、4,4′―ジ
フエニルメタンジイソシアネート、4,4′―ジフ
エニルエーテルジイソシアネート、トリレンジイ
ソシアネート、キシレンジイソシアネートなどが
好ましい。これらの芳香族ジイソシアネートを混
合して使用してもよい。 酸無水物基を含有するカルボン酸としては、例
えば一般式()及び()で示される化合物が
用いられ、イソシアネート基と反応する酸無水物
基を含有するカルボン酸またはその誘導体であれ
ばよく特に制限はない。必要に応じて酸無水物基
(R=H,アルキル基、フエニル基等) X=―CH2―、―CO―、―SO2―、―O―等)
含有するカルボン酸の一部を溶解性がそこなわれ
ない範囲でピロメリツト酸二無水物、ベンゾフエ
ノンテトラカルボン酸二無水物、ブタンテトラカ
ルボン酸二無水物、ビシクロ―〔2,2,2〕―
オクト―(7)―エン―2:3,5:6―テトラカル
ボン酸二無水物のようなカルボン酸二無水物にお
きかえてもよい。一般的には耐熱性、コスト面等
を考慮すればトリメリツト酸無水物などが好まし
い。 耐熱性の点からイソシアネート成分と酸成分の
使用量は、カルボキシル基及び酸無水物基に対す
るイソシアネート基の比が1.5〜0.7になるように
選定するのが好ましい。絶縁電線の特性上好まし
い高分子量の樹脂を得るためには1.0付近が特に
好ましい。クレゾール系溶媒としては、クレゾー
ルの他のフエノール、キシレノール等が使用で
き、混合溶媒でもよい。合成溶媒の一部には高沸
点の芳香族有機溶媒、例えば、キシレン、
NISSEKIHISOL―100、150、セロソルブアセテ
ート等も使用できる。 合成は、反応原料を同時に仕込んでもよく、又
原料の一部を後添加することもできるが好ましく
は全イソシアネート成分、ラクタム及びクレゾー
ル系溶媒を仕込んで160〜190℃で1〜3時間反応
させた後、酸無水物基含有ポリカルボン酸を加
え、200〜220℃で10〜20時間さらに反応を続けて
行なわれる。反応の進行状態は発生する炭酸ガス
の気泡及び溶液の粘度を観測することにより把握
可能である。経日変化を避け、均一な反応を進め
るためにはあらかじめイソシアネート成分をクレ
ゾール系溶媒に溶解しておくことも有効である。
反応を充分に進めるためには第3級アミンおよび
オクテン酸スズ、オクテン酸コバルトなどの有機
金属塩等の触媒を用いることもできる。 このようにして得られたクレゾール可溶ポリア
ミドイミドはさらにクレゾール系溶媒で樹脂分20
〜40重量%に希釈される。この場合、助溶媒とし
てキシレン、NISSEKI HISOL―100(日本石油
化学株式会社製芳香族炭化水素の商標)、セロソ
ルブアセテート、ジメチルホルムアミドなどを併
用してもよい。必要に応じて他のクレゾール可溶
樹脂類等を一部加えてもよい。このようにして調
製されたワニスを用い、絶縁電線が得られる。 本発明になるポリアミドイミド被覆絶縁電線は
良好な耐熱性、耐フレオン性、耐摩耗性、可とう
性を示す。 本発明を比較例及び実施例によつて説明する。
なお、比較例及び実施例における絶縁電線の製造
条件は下記のとおりである。 炉:炉高4.5mの竪型炉 炉温:入口/中央/出口=260℃/360℃/420
℃(比較例2のみ300℃/350℃/400℃) ダイス径(mm):1.075×2,1.100×2,1.125
×2、1.150×2 電線の線径:1.0mm 引張り速度:6〜8m/秒(比較例2のみ9〜
13m/秒) 比較例 1 (1) 芳香族ジイソシアネート三量体の合成 成 分 グラム トリレンジイソシアネート 600 キシレン 600 2―ジメチルアミノエタノール(触媒) 1.8 上記成分を温度計、かきまぜ機をつけた4つ口
フラスコに入れ、窒素気流中で140℃に昇温し、
同温度でイソシアネート基の含有量(初期濃度:
48重量パーセント)が25重量パーセントになるま
で反応を進めた。このものの赤外スペクトルには
1.710cm-1、1.410cm-1にイソシアヌレート環の吸
収が認められ、2.260cm-1にはイソシアネート基
の吸収が認められた。 (2) クレゾール可溶ポリアミドイミド被覆絶縁電
The present invention relates to an insulated wire obtained using a new cresol-based solvent-soluble polyamideimide. An object of the present invention is to provide an inexpensive insulated wire with well-balanced heat resistance, flexibility, freon resistance, and abrasion resistance. BACKGROUND ART Currently, insulated wires using polyester resins as electrical insulation coating compositions are often used because they have relatively well-balanced mechanical properties, electrical properties, heat resistance, etc. However, in recent years, in order to reduce the size and weight of electrical equipment, there has been a demand for insulated wires with even better heat resistance, freon resistance, and abrasion resistance. Insulated wires with good heat resistance, freon resistance, and abrasion resistance include highly heat-resistant wires coated with compositions such as polyimide and polyamideimide. ) and other special solvents, making the resin itself expensive, which poses a major problem in terms of cost. Therefore, in order to improve the heat resistance of polyester-based insulated wires,
An insulated wire using tris(2-hydroxyethyl) isocyanurate (THEIC) and so-called THEIC-modified polyesterimide containing an imide group has been proposed. However, although THEIC-modified polyesterimide has significantly improved heat resistance compared to polyester, it has drawbacks in abrasion resistance and freon resistance, and is not as good as polyamide-imide. Therefore, many studies have been conducted to solubilize polyamide-imide varnish, which has excellent heat resistance, in general-purpose solvents such as cresol, and it has been proposed to use lactam etc. as a reaction component (for example, Japanese Patent Publication No. 46-29730 , Special Publication No. 49-30718, Special Publication No. 1973
- No. 20993, Special Publication No. 53-47157). However, cresol-soluble polyamide-imide in which lactam or the like is used in combination is actually significantly inferior to the current polyamide-imide in terms of heat resistance, particularly heat softening temperature. In order to improve this thermal softening temperature, it is described in JP-A-52-40599 that a polyisocyanate containing an isocyanurate ring is used as a part of the isocyanate compound. In the composition shown, although the thermal softening temperature is improved, the flexibility is significantly reduced, and no product of practical value has been obtained. Specifically, if the baking time is long, the heat softening temperature is good, but the flexibility decreases, and if the baking time is short, the resin does not have a high molecular weight, and the heat softening temperature and flexibility decrease. Sexuality decreases. The present inventors have conducted extensive studies on solubilizing polyamide-imide resin compositions (for example, Hitachi Chemical HI-404) currently commercially available as NMP-based solutions in cresol-based solvents, and as a result, have completed the present invention. Ivy. The present invention has a residual amount of isocyanate groups of 10 to 70%.
isocyanurate ring-containing polyisocyanate,
An aromatic diisocyanate, a lactam, and a polycarboxylic acid containing an acid anhydride group are mixed into a cresol-based solvent, with the isocyanurate ring-containing polyisocyanate being 1 to 30 equivalent % of the total isocyanate amount, and the lactam being 50 to 70 equivalent % of the total isocyanate amount. The present invention relates to a polyamide-imide-coated insulated wire coated with a composition containing a polyamide-imide resin obtained by reaction in a polyamide-imide resin. The polyisocyanate containing an isocyanurate ring used in the present invention is obtained by trimerizing isocyanate groups, and this reaction is carried out in the presence of a solvent that does not react with isocyanate groups, so that the reaction can proceed effectively. It is desirable to use a trimerization catalyst of isocyanate groups. As long as the solvent dissolves the isocyanate as a raw material, aliphatic and aromatic hydrocarbons, halogenated aromatic hydrocarbons, esters, ketones, ethers, ethylene glycol monoalkyl monoacetate solvents, dimethyl It can be arbitrarily selected from sulfoxides, etc. Examples of trimerization catalysts for polyisocyanate compounds include alkali metal acetate, metal salts and organometallic compounds such as iron, magnesium, nickel, zinc, tin, lead, vanadium, and titanium, N-methylmorpholine, 1,8-diazabicyclo(5 ,4,
0) Mannitz base of phenols such as undecene-7,2-(dimethylaminomethyl)-4,6-dimethylphenol, tertiary amines such as N,N-bis-(dimethylaminoethyl)-N-methylamine, etc. can be used, there are no particular restrictions. The reaction temperature for trimerizing the polyisocyanate compound is, for example, in the range of 50 to 160°C. The actual trimerization reaction of polyisocyanate compounds is complex and does not necessarily selectively produce only isocyanate adducts containing only one isocyanurate ring in one molecule, and unreacted isocyanate and isocyanurate rings are A mixture with two or more isocyanate adducts in one molecule is obtained. This mixture can also be used in the present invention. The amount of catalyst and reaction temperature can be determined depending on the number of isocyanurate rings contained in the isocyanate adduct, but in general, let us take as an example the case where the reaction is carried out in such a way that the proportion of residual isocyanate groups is about 50%. The preferred reaction temperature is 0.01 to 2% by weight of the tertiary amine based on the isocyanate, and the reaction temperature is 70 to 160°C. As a raw material for polyisocyanate containing an isocyanurate ring, any aliphatic, alicyclic, or aromatic diisocyanate compound may be used as long as it forms an isocyanurate ring. Group diisocyanates, particularly 4,4'-diphenylmethane diisocyanate, 4,4'-diphenyl ether diisocyanate, tolylene diisocyanate, and xylylene diisocyanate are preferred, and a mixture of these may be used. A polyisocyanate synthesized in advance may be used, or a polyisocyanate stabilized with a blocking agent such as phenol or cresol may be used to avoid deterioration over time. Isocyanurate ring-containing polyisocyanates can be used with different numbers of isocyanurate rings depending on the purpose;
In view of flexibility, etc., the content of residual isocyanate groups is in the range of 10 to 70% (assuming the content of isocyanate groups in the diisocyanate to be 100). If it is too large, the heat resistance will decrease, and if it is too small, the flexibility will decrease. The amount of these polyisocyanates used is important as well as the amount of lactam used, which will be described below. If the amounts used are incorrect, it will be impossible to produce a practical heat-resistant resin and, therefore, it will not be possible to obtain a practically usable insulated wire. The isocyanurate ring-containing polyisocyanate contains 1 to 30 polyisocyanates in all isocyanate components.
It should be equivalent %. If it is too large or too small, a well-balanced property of heat resistance and flexibility will not be exhibited. If the amount is too large, the degree of branching will increase and gelation may occur during synthesis. Similarly, the lactam, which is an important raw material for cresol solubilization, can generally be any lactam as long as it reacts with isocyanate groups or acid anhydride groups in a cresol solvent and becomes soluble. Considering the nature and cost aspects,
ε-caprolactam is preferred. It is not necessary to add isocyanate groups in equivalent amounts (ε-caprolactam is considered to be difunctional. Therefore, 1 mole is 2 equivalents), and if heat resistance, flexibility, and solubility are comprehensively considered, 50~ of isocyanate equivalent
70 equivalent% is good. Specifically, 50 to 70 equivalents of the total isocyanate equivalents are contained in the resin bone core, which is the reaction product.
may be contained. If the content in the resin bone core is too high or too low, it will not be possible to obtain an insulated wire that has a good balance between heat resistance and flexibility, and has excellent freon resistance and abrasion resistance. Preferred aromatic diisocyanates include 4,4'-diphenylmethane diisocyanate, 4,4'-diphenyl ether diisocyanate, tolylene diisocyanate, and xylene diisocyanate. A mixture of these aromatic diisocyanates may be used. As the carboxylic acid containing an acid anhydride group, for example, compounds represented by the general formulas () and () can be used, and any carboxylic acid containing an acid anhydride group that reacts with an isocyanate group or a derivative thereof may be used. There are no restrictions. Add acid anhydride group if necessary (R=H, alkyl group, phenyl group, etc.) X=-CH 2 -, -CO-, -SO 2 -, -O-, etc.)
Pyromellitic dianhydride, benzophenonetetracarboxylic dianhydride, butanetetracarboxylic dianhydride, bicyclo[2,2,2] to the extent that the solubility of some of the carboxylic acids contained is not impaired. ―
It may be replaced with a carboxylic dianhydride such as oct-(7)-ene-2:3,5:6-tetracarboxylic dianhydride. In general, trimellitic anhydride is preferred in consideration of heat resistance, cost, etc. From the viewpoint of heat resistance, the amounts of the isocyanate component and acid component to be used are preferably selected such that the ratio of isocyanate groups to carboxyl groups and acid anhydride groups is 1.5 to 0.7. In order to obtain a resin with a high molecular weight that is preferable for properties of insulated wires, a value around 1.0 is particularly preferable. As the cresol solvent, phenols other than cresol, xylenol, etc. can be used, and mixed solvents may also be used. Some of the synthesis solvents include aromatic organic solvents with high boiling points, such as xylene,
NISSEKIHISOL-100, 150, cellosolve acetate, etc. can also be used. In the synthesis, the reaction raw materials may be charged at the same time, or some of the raw materials may be added later, but preferably all the isocyanate components, lactam and cresol solvent are charged and reacted at 160 to 190°C for 1 to 3 hours. Thereafter, an acid anhydride group-containing polycarboxylic acid is added, and the reaction is further continued at 200 to 220°C for 10 to 20 hours. The progress of the reaction can be determined by observing the generated carbon dioxide gas bubbles and the viscosity of the solution. In order to avoid deterioration over time and to proceed with a uniform reaction, it is also effective to dissolve the isocyanate component in a cresol solvent in advance.
In order to advance the reaction sufficiently, catalysts such as tertiary amines and organic metal salts such as tin octenoate and cobalt octenoate can also be used. The cresol-soluble polyamideimide thus obtained was further treated with a cresol solvent to reduce the resin content to 20%.
Diluted to ~40% by weight. In this case, xylene, NISSEKI HISOL-100 (trademark of aromatic hydrocarbons manufactured by Nippon Petrochemical Co., Ltd.), cellosolve acetate, dimethylformamide, etc. may be used in combination as a co-solvent. A portion of other cresol-soluble resins may be added as necessary. Using the varnish thus prepared, an insulated wire can be obtained. The polyamide-imide coated insulated wire according to the present invention exhibits good heat resistance, freon resistance, abrasion resistance, and flexibility. The present invention will be explained using comparative examples and examples.
The manufacturing conditions for the insulated wires in the comparative examples and examples are as follows. Furnace: Vertical furnace with furnace height of 4.5m Furnace temperature: Inlet/center/outlet = 260℃/360℃/420
℃ (Comparative example 2 only 300℃/350℃/400℃) Die diameter (mm): 1.075×2, 1.100×2, 1.125
× 2, 1.150 × 2 Wire diameter: 1.0 mm Pulling speed: 6 to 8 m/s (Comparative example 2 only 9 to
13m/sec) Comparative Example 1 (1) Synthesis components of aromatic diisocyanate trimer Gram tolylene diisocyanate 600 Xylene 600 2-dimethylaminoethanol (catalyst) 1.8 The above ingredients were mixed in a 4-mouth tube equipped with a thermometer and a stirrer. Place it in a flask and raise the temperature to 140℃ in a nitrogen stream.
At the same temperature, the content of isocyanate groups (initial concentration:
48% by weight) was reduced to 25% by weight. The infrared spectrum of this substance is
Absorption of isocyanurate rings was observed at 1.710 cm -1 and 1.410 cm -1 , and absorption of isocyanate groups was observed at 2.260 cm -1 . (2) Cresol-soluble polyamide-imide coated insulated wire

【表】 トリメリツト酸無水物を除く上記成分を温度
計、かきまぜ機、分留管をつけた4つ口フラスコ
に入れ、窒素気流中で温度を180℃に上昇し90分
間反応を行なう。次いでトリメリツト酸無水物を
添加し、210℃に昇温する。210℃で保温し15時間
反応を進めた。クレゾールで樹脂分濃度30重量%
に調製してワニスを得た。この粘度は250ポアズ
であつた。このようにして得られた樹脂のジメチ
ルホルムアミド中で測定した還元粘度は0.23であ
つた。赤外吸収スペクトルには1.780cm-1にイミ
ド基の吸収、1.650cm-1にイミド基の吸収が認め
られた。このワニスを用いて絶縁電線を調製し
た。 比較例 2 スケネクタデイ社製トリス(2―ヒドロキシエ
チル)イソシアヌレート変性ポリエステルイミド
ワニス(商品名:ISOMID)を用いて絶縁電線を
調製した。 実施例 1
[Table] Place the above ingredients except trimellitic anhydride into a four-necked flask equipped with a thermometer, stirrer, and fractionator tube, raise the temperature to 180°C in a nitrogen stream, and conduct the reaction for 90 minutes. Next, trimellitic anhydride is added and the temperature is raised to 210°C. The reaction was maintained at 210°C for 15 hours. Cresol resin concentration 30% by weight
A varnish was obtained. The viscosity was 250 poise. The reduced viscosity of the thus obtained resin measured in dimethylformamide was 0.23. In the infrared absorption spectrum, an imide group absorption was observed at 1.780 cm -1 and an imide group absorption at 1.650 cm -1 . An insulated wire was prepared using this varnish. Comparative Example 2 An insulated wire was prepared using a tris(2-hydroxyethyl)isocyanurate-modified polyester imide varnish (trade name: ISOMID) manufactured by Schenectaday. Example 1

【表】 比較例1(2)とほぼ同様にして合成し、クレゾー
ルで樹脂分濃度30重量%に調製したワニスを得
た。このものの粘度は260ボアズであつた。この
ようにして得られた樹脂のジメチルホルムアミド
中で測定した還元粘度は0.21であつた。赤外吸収
スペクトルには1.780cm-1にイミド基の吸収が認
められ、1.650cm-1にアミド結合の吸収が認めら
れた。このワニスを用いて絶縁電線を調製した。 実施例 2
[Table] A varnish was synthesized in substantially the same manner as in Comparative Example 1 (2) and adjusted to a resin concentration of 30% by weight using cresol. The viscosity of this material was 260 boads. The reduced viscosity of the thus obtained resin measured in dimethylformamide was 0.21. In the infrared absorption spectrum, imide group absorption was observed at 1.780 cm -1 and amide bond absorption was observed at 1.650 cm -1 . An insulated wire was prepared using this varnish. Example 2

【表】 比較例1(2)とほぼ同様にして合成し、クレゾー
ルで樹脂分濃度30重量%に調製したワニスを得
た。このものの粘度は260ボアズであつた。この
ようにして得られた樹脂のジメチルホルムアミド
中で測定した還元粘度は0.23であつた。赤外吸収
スペクトルには、1.780cm-1のイミド基の吸収及
び1.650cm-1のアミド基の吸収が共に認められた。
このワニスを用いて絶縁電線を調製した。 実施例 3
[Table] A varnish was synthesized in substantially the same manner as in Comparative Example 1 (2) and adjusted to a resin concentration of 30% by weight using cresol. The viscosity of this material was 260 boads. The reduced viscosity of the thus obtained resin measured in dimethylformamide was 0.23. In the infrared absorption spectrum, both imide group absorption at 1.780 cm -1 and amide group absorption at 1.650 cm -1 were observed.
An insulated wire was prepared using this varnish. Example 3

【表】 シアネート
[Table] Cyanate

【表】 比較例1(2)とほぼ同様にして合成し、クレゾー
ルで樹脂分濃度30重量%に調製したワニスを得
た。このものの粘度は250ボアズであつた。この
ようにして得られた樹脂のジメチルホルムアミド
中で測定した還元粘度は0.22であつた。赤外スペ
クトルには1.780cm-1のイミド基の吸収及び1.650
cm-1のアミド基の吸収が共に認められた。このワ
ニスを用いて絶縁電線を調製した。 以上のようにして得られた絶縁電線の特性を表
1に示す。
[Table] A varnish was synthesized in substantially the same manner as in Comparative Example 1 (2) and adjusted to a resin concentration of 30% by weight using cresol. The viscosity of this material was 250 boads. The reduced viscosity of the thus obtained resin measured in dimethylformamide was 0.22. In the infrared spectrum, the imide group absorption at 1.780 cm -1 and 1.650
Absorption of the amide group at cm -1 was observed in both cases. An insulated wire was prepared using this varnish. Table 1 shows the characteristics of the insulated wire obtained as described above.

【表】 (120℃〜1時間)し水分を除去するオートクレ
ープの反応釜に絶縁電線及び冷凍機油(RM−
25F)を入れて密封する。次いで減圧脱泡(約10
mmHg)しながら100℃に加熱する。30分間保温後
冷却を行ない使用した冷凍機油と同量のフレオン
ガス(R−22)を吸入させ125℃で7日間処理を
続ける。この後に室温まで徐冷を行ない静かにフ
レオンガスを除く。フレオンガスを除いた後ただ
ちに試料に付着した油分をふきとり130℃−10分
間の加熱処理を行なう。このようにして得られた
絶縁電線について外観判定、破壊電圧の大小、硬
度などを測定し、総合的に良否を判定する。 (◎…良、〇…やや良、△…難点あり) 比較例1のε―カプロラクタムを全イソシアネ
ート量とほぼ当量用いて合成したクレゾール可溶
ポリアミドイミドから得られた絶縁電線に比べて
イソシアヌレート環ポリイソシアネート及びε―
カプロラクタムの各含有量等に留意して合成した
ワニスから得られた実施例1〜3の各絶縁電線は
いずれも耐熱性(熱軟化温度)、可とう性、耐摩
耗性及び耐フレオン性においてすぐれていること
がわかる。また現在F種電線用エナメルワニスと
して好評なトリス(2―ヒドロキシエチル)イソ
シアヌレート変性ポリエステルイミドを用いた絶
縁電線(比較例2)に比べても熱衝撃性、耐摩耗
性及び耐フレオン性においてすぐれていることが
示される。
[Table] Insulated wires and refrigerating machine oil (RM-
25F) and seal. Next, vacuum degassing (approximately 10
mmHg) and heat to 100°C. After keeping it warm for 30 minutes, it was cooled, and the same amount of Freon gas (R-22) as the used refrigeration oil was inhaled, and the treatment was continued at 125°C for 7 days. After this, the mixture is slowly cooled to room temperature and the Freon gas is gently removed. Immediately after removing the Freon gas, wipe off the oil adhering to the sample and heat it at 130°C for 10 minutes. The insulated wire thus obtained is evaluated for appearance, breakdown voltage, hardness, etc., and is comprehensively judged to be good or bad. (◎...Good, 〇...Slightly good, △...Difficulties) Compared to the insulated wire obtained from the cresol-soluble polyamide-imide synthesized using ε-caprolactam in Comparative Example 1 in an amount approximately equivalent to the total amount of isocyanate, the isocyanurate ring Polyisocyanate and ε-
The insulated wires of Examples 1 to 3, which were obtained from varnishes synthesized with careful consideration of caprolactam contents, were all excellent in heat resistance (thermal softening temperature), flexibility, abrasion resistance, and freon resistance. It can be seen that It also has superior thermal shock resistance, abrasion resistance, and freon resistance compared to insulated wires using tris(2-hydroxyethyl) isocyanurate-modified polyesterimide (Comparative Example 2), which is currently popular as an enamel varnish for F-class wires. It is shown that

Claims (1)

【特許請求の範囲】 1 イソシアネート基の残存量が10〜70%のイソ
シアヌレート環含有ポリイソシアネート、芳香族
ジイソシアネート、ラクタム及び酸無水物基を含
有するポリカルボン酸を、イソシアヌレート環含
有ポリイソシアネートを全イソシアネート量の1
〜30当量%、ラクタムを全イソシアネート量の50
〜70当量%としてクレゾール系溶媒中で反応させ
て得られるポリアミドイミド樹脂を含有する組成
物で被覆してなるポリアミドイミド被覆絶縁電
線。 2 イソシアヌレート環含有ポリイソシアネート
が4,4′―ジフエニルメタンジイソシアネート、
4,4′―ジフエニルエーテルジイソシアネート、
トリレンジイソシアネートまたはキシリレンジイ
ソシアネートから得られるイソシアヌレート環含
有ポリイソシアネートである特許請求の範囲第1
項記載のポリアミドイミド被覆絶縁電線。 3 ラクタムがε―カプロラクタムである特許請
求の範囲第1項又は第2項記載のポリアミドイミ
ド被覆絶縁電線。 4 酸無水物基を含有するポリカルボン酸が、ト
リメリツト酸無水物である特許請求の範囲第1
項、第2項又は第3項記載のポリアミドイミド被
覆絶縁電線。
[Scope of Claims] 1. Isocyanurate ring-containing polyisocyanate, aromatic diisocyanate, lactam, and acid anhydride group-containing polycarboxylic acid having a residual amount of isocyanate groups of 10 to 70%; 1 of the total isocyanate amount
~30 equivalent% lactam, 50% of total isocyanate amount
A polyamide-imide coated insulated wire coated with a composition containing a polyamide-imide resin obtained by reacting the polyamide-imide resin in an amount of 70 equivalent% in a cresol solvent. 2 The isocyanurate ring-containing polyisocyanate is 4,4'-diphenylmethane diisocyanate,
4,4′-diphenyl ether diisocyanate,
Claim 1 is an isocyanurate ring-containing polyisocyanate obtained from tolylene diisocyanate or xylylene diisocyanate.
Polyamide-imide coated insulated wire as described in . 3. The polyamide-imide coated insulated wire according to claim 1 or 2, wherein the lactam is ε-caprolactam. 4. Claim 1, wherein the polycarboxylic acid containing an acid anhydride group is trimellitic anhydride.
The polyamide-imide coated insulated wire according to item 1, 2 or 3.
JP3392179A 1978-11-30 1979-03-22 Polyamideimide-coated insulated wire Granted JPS55125170A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3392179A JPS55125170A (en) 1979-03-22 1979-03-22 Polyamideimide-coated insulated wire
US06/094,938 US4294952A (en) 1978-11-30 1979-11-16 Polyamide-imide resin and its production
DE19792947117 DE2947117A1 (en) 1978-11-30 1979-11-22 POLYAMIDIMIDE RESIN, METHOD FOR THE PRODUCTION AND USE THEREOF
GB7941113A GB2037788B (en) 1978-11-30 1979-11-28 Polyamide-imade resin and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3392179A JPS55125170A (en) 1979-03-22 1979-03-22 Polyamideimide-coated insulated wire

Publications (2)

Publication Number Publication Date
JPS55125170A JPS55125170A (en) 1980-09-26
JPS6351196B2 true JPS6351196B2 (en) 1988-10-13

Family

ID=12399971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3392179A Granted JPS55125170A (en) 1978-11-30 1979-03-22 Polyamideimide-coated insulated wire

Country Status (1)

Country Link
JP (1) JPS55125170A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006112568A1 (en) * 2005-02-21 2006-10-26 Ls Cable Ltd. Enamel vanish composition for enamel wire and enamel wire using the same
KR100627508B1 (en) 2005-02-21 2006-09-22 엘에스전선 주식회사 Enamel Vanish Composition for enamel wire and enamel wire using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5240599A (en) * 1975-09-25 1977-03-29 Bayer Ag Preparation of polycondensate containing imide group

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5240599A (en) * 1975-09-25 1977-03-29 Bayer Ag Preparation of polycondensate containing imide group

Also Published As

Publication number Publication date
JPS55125170A (en) 1980-09-26

Similar Documents

Publication Publication Date Title
US4294952A (en) Polyamide-imide resin and its production
US7122244B2 (en) Polyamide-imide resin solution and the use thereof for producing wire enamels
JPS62116632A (en) Novel copolyamideimide, its prepolymer and its production
JPH0128768B2 (en)
JPS5968108A (en) Insulated wire
US4740576A (en) Preparation of polyamidoimide coatings having a long shelf life
JPS6351196B2 (en)
US5514747A (en) Polyamide-imide-modified polyurethane insulation enamel composition
JPH04212206A (en) Insulating paint, solderable insulated wire, manufacture of the insulated wire, and flyback transformer using the insulated wire
JPS6369819A (en) High temperature resistant rapid solderable wire enamel
US4997891A (en) High temperature resistant fast soldering wire enamel
JPS6018513A (en) Polyamide imide resin composition
JPS6213767B2 (en)
JPS5821414A (en) Thermosetting resin composition
US20020072582A1 (en) New coating binders with urea and/or hydantoin structures, a process for their production and their use
JPH0455209B2 (en)
JPS585207B2 (en) Polyamideimide resin composition
JPS6141086B2 (en)
JPS6213768B2 (en)
US4356297A (en) In-situ formation of a diprimary amine curing agent
JPS58104925A (en) Polyamide-imide resin composition and its preparation
JPS6245644B2 (en)
JPS582334A (en) Preparation of polyester imide containing isocyanurate ring
JPH0280429A (en) Heat-resistant resin composition
JPH0345728B2 (en)