JPS6213767B2 - - Google Patents

Info

Publication number
JPS6213767B2
JPS6213767B2 JP57020954A JP2095482A JPS6213767B2 JP S6213767 B2 JPS6213767 B2 JP S6213767B2 JP 57020954 A JP57020954 A JP 57020954A JP 2095482 A JP2095482 A JP 2095482A JP S6213767 B2 JPS6213767 B2 JP S6213767B2
Authority
JP
Japan
Prior art keywords
resin
polyamide
inner layer
weight
equivalent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57020954A
Other languages
Japanese (ja)
Other versions
JPS58140909A (en
Inventor
Kenji Asano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP57020954A priority Critical patent/JPS58140909A/en
Publication of JPS58140909A publication Critical patent/JPS58140909A/en
Publication of JPS6213767B2 publication Critical patent/JPS6213767B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はワニスとの相性に優れた絶縁電線に関
するものである。 ポリアミドイミド樹脂を被覆した絶縁電線は耐
熱性、耐冷媒性、耐湿性、機械的特性に優れ、F
〜H種の各種機器、クーラー、空調機等の冷媒使
用機器、耐水モータなどあらゆる分野に適用さ
れ、特性的には万能のH種クラスの耐熱エナメル
線であるが高価である点が欠点となつている。 近年、高価な極性溶媒可溶なポリアミドイミド
樹脂にかわり、後述するようなクレゾール系溶媒
可溶のポリアミドイミド樹脂が提案されている。
しかし、このクレゾール系溶媒可溶のポリアミド
イミド樹脂を被覆した絶縁電線はエポキシ系処理
ワニスと組合わせると、従来の極性溶媒可溶のポ
リアミドイミド樹脂を被覆した絶縁電線同様耐熱
寿命が低下し、場合によつてはF種ギリギリとな
る。 本発明の目的は、エポキシ系処理ワニスとの相
性を改良したクレゾール系溶媒可溶ポリアミドイ
ミド樹脂被覆絶縁電線を提供することにある。 本発明の要旨とするところは、酸無水物基を含
有するポリカルボン酸を1.00当量、イソシアヌレ
ート環含有ポリイソシアネートを0.01〜0.30当
量、芳香族ジイソシアネートとイソシアヌレート
環含有ポリイソシアネートの当量の和を0.80〜
1.50当量、ラクタムを0.3〜0.9当量としてクレゾ
ール系溶媒中で反応させて得られるポリアミドイ
ミド樹脂100重量部に対してアミノ樹脂及びフエ
ノール樹脂をそれぞれ0.1〜15重量部添加して成
る樹脂組成物と内層とし、ポリイミド樹脂を外層
として導体周上に塗布、焼付けしてなり、外層の
皮膜厚を1としたとき内層の皮膜厚を0.5〜20と
なるように構成したことを特徴とする絶縁電線に
ある。 即ち、本発明はポリアミドイミド樹脂をクレゾ
ール可溶化したのに伴つて生じる耐ワニス性の低
下、耐熱性の低下、外観の悪化等を特定のポリア
ミドイミド樹脂と二次添加樹脂の配合及びポリイ
ミド層のオーバーコートにより、それらの難点を
顕著に改善したものである。 本発明において使用されるポリアミドイミド樹
脂の原料となるイソシアヌレート環含有ポリイソ
シアネートはポリイソシアネート化合物の三量化
によつて得られ、この反応はイソシアネート基と
反応しない溶剤の存在下で、フエノール、ラクタ
ム類のようなイソシアネート基と反応する成分を
加えずに行なわれ、反応を効率的に進めるために
は、ポリイソシアネート化合物の三量化触媒を使
用することが望ましい。 溶剤としては、原料としてのポリイソシアネー
ト化合物を溶解するものであれば脂肪族及び芳香
族炭化水素、ハロゲン化芳香族系炭化水素、エス
テル系、ケトン系、エーテル系、エチレングリコ
ールモノアルキルモノアセテート系溶剤、ジメチ
ルスルホオキサイド等の中から任意に選定でき
る。ポリイソシアネート化合物の三量化触媒とし
てはアルカリ金属アセテート、鉄、マグネシウ
ム、ニツケル、亜鉛、錫、鉛、バナジウム、チタ
ン等の金属塩及び有機金属化合物、N−メチルモ
ルホリン、1,8−ジアザビシクロ(5,4,
0)ウンデカン−7,2−(ジメチルアミノメチ
ル)−4,6−ジメチルフエノールなどのフエノ
ールのマンニツヒ塩基、2−ジメチルアミノエタ
ノール等の第三級アミンなどが使用でき、特に制
限はない。ポリイソシアネート化合物の三量化の
反応温度は例えば50〜160℃の範囲で行なわれ
る。 イソシアヌレート環含有ポリイソシアネートの
原料としては、脂肪族、脂環族、芳香族いずれの
ジイソシアネート化合物でもよいが、芳香族ジイ
ソシアネート、特に4,4′−ジフエニルメタンジ
イソシアネート、トリレンジイソシアネート、キ
シリレンジイソシアネート、4,4′−ジフエニル
エーテルジイソシアネート等が好ましい。 イソシアヌレート環含有ポリイソシアネート
は、耐熱性、可撓性の点から残存イソシアネート
基の含有量は10〜70%の範囲が好ましい(原料イ
ソシアネート中のイソシアネート基含有量を100
とする)。 イソシアヌレート環含有ポリイソシアネート
は、全イソシアネート成分に対して0.01〜0.30当
量用いることが耐熱性、可撓性の点で好ましい。
クレゾール系溶媒可溶化の重要な原料であるラク
タムとしては、一般的にはクレゾール系溶媒中で
イソシアネート基又は酸無水物基と反応して、ク
レゾール系溶媒に可溶なものであれば何でも良い
が、溶解性、反応性及び価格面を考慮すれば、ε
−カプロラクタムが好ましい。 ラクタムの使用量は耐熱性、可撓性及び溶解性
の点で全イソシアネート当量の0.30〜0.90当量
(ε−カプロラクタムを2官能と考える)が好ま
しい。 芳香族ジイソシアネートとしては、4,4′−ジ
フエニルメタンジイソシアネート、4,4′−ジフ
エニルエーテルジイソシアネート、トリレンジイ
ソシアネート、キシリレンジイソシアネートなど
が好ましい。 酸無水物基を有するポリカルボン酸としては、
耐熱性、価格の点でトリメリツト酸無水物が好ま
しい。 イソシアネート成分と酸成分の使用量は、カル
ボキシル基および酸無水物基に対するイソシアネ
ート基の比が1.5〜0.8になるように選定するのが
耐熱性の点で好ましい。 絶縁電線の特性上好ましい高分子量の樹脂を得
るためにはカルボキシル基及び酸無水物基に対す
るイソシアネート基の比を1.0付近にすることが
特に好ましい。 クレゾール系溶媒としてはクレゾールの他フエ
ノール、キシノール等が使用でき、混合溶媒でも
よい。 合成は全イソシアネート成分、ラクタムおよび
クレゾール系溶媒を仕込んで160〜190℃で1〜3
時間反応させた後、酸無水物基含有ポリカルボン
酸を加え、200〜220℃で10〜20時間さらに反応を
続けて行われる。 このようにして得られたポリアミドイミド樹脂
は、ジメチルホルムアミド中で測定した還元比粘
度が0.15以上のものが特に絶縁電線としての特性
が良い。 このポリアミドイミド樹脂は、その後クレゾー
ル系溶媒で樹脂分20〜40重量%に希釈されて絶縁
電線用ワニスとして使用される。 本発明におけるポリアミドイミド樹脂は単独で
も耐熱性、機械的特性、耐フロン性に優れたエナ
メル皮膜を形成するが、高速焼付時における硬化
性、作業性はフエノールホルムアルデヒド樹脂、
アルコキシ変性アミノ樹脂、エポキシ樹脂、ポリ
イソシアネート樹脂、フエノキシ樹脂などの二次
樹脂の1種または2種以上を添加することによつ
て格段と向上する。その添加量はポリアミドイミ
ド樹脂100重量部に対して二次樹脂が0.1〜30重量
部であり、この範囲をこえるとエナメル線の可撓
性が低下する。 特に、ポリアミドイミド樹脂100重量部に対し
てアミノ樹脂およびフエノール樹脂をそれぞれ
0.1〜15重量部を添加してなる樹脂組成物を用い
ると、外観、可撓性に優れた絶縁皮膜が得られ
る。 本発明において使用されるポリイミド樹脂とし
てはPyre−MLワニス(米国Du Pont社製)、トレ
ニース#2000、#3000(東レ株式会社製)等があ
げられるが、これに限定されるものではない。 また、本発明において外層の皮膜厚を1とした
とき内層の皮膜厚が0.5以下のときは耐ワニス性
は向上するが価格高となり、内層の皮膜厚が20以
上のときは十分な耐ワニス性が得られない。 耐ワニス性と価格のバランスをとるには外層の
皮膜厚を1としたとき内層の皮膜厚を2〜8とす
るのが好ましい。 以下、本発明の具体的実施例を比較例と対比し
ながら説明する。 なお、耐ワニス性の評価は比較例1〜4、実施
例1〜4で得られた絶縁電線をJIS.C3003に準拠
し対撚試料を作成してエポキシ系ワニス処理し、
高温で熱劣化後の破壊電圧を常温で測定して寿命
評価を行つた。 比較例 1 トレニース#2000(東レ株式会社製)ワニスを
1.0mmφの導体上に塗布焼付してエナメル線を得
た。 比較例 2 (1) 芳香族ジイソシアネート三量体の合成成 分 当 量 トリレンジイソシアネート 600 キシレン 600 2−ジメチルアミノエタノール (触媒) 1.8 上記成分を温度計、撹拌機を備えた4つ口フ
ラスコに入れ、窒素気流中で140℃に昇温し、
同温度でイソシアネート基の含有量(初期濃度
48重量%)が25重量%になるまで反応を進め
た。 (2) ポリアミドイミド樹脂の合成
The present invention relates to an insulated wire that is highly compatible with varnish. Insulated wire coated with polyamide-imide resin has excellent heat resistance, refrigerant resistance, moisture resistance, and mechanical properties.
~ It is a heat-resistant enameled wire of the all-purpose H class, which is applied to various fields such as various H class equipment, coolers, air conditioners and other refrigerant-using equipment, and water-resistant motors, but its disadvantage is that it is expensive. ing. In recent years, in place of expensive polar solvent-soluble polyamide-imide resins, cresol-based solvent-soluble polyamide-imide resins as described below have been proposed.
However, when insulated wires coated with polyamide-imide resin that is soluble in cresol-based solvents are combined with epoxy-based varnish, the heat-resistant life of the insulated wires coated with conventional polyamide-imide resins that are soluble in polar solvents is reduced, and In some cases, it is barely class F. An object of the present invention is to provide an insulated wire coated with a cresol-based solvent-soluble polyamide-imide resin that has improved compatibility with epoxy-based treated varnish. The gist of the present invention is to use 1.00 equivalent of a polycarboxylic acid containing an acid anhydride group, 0.01 to 0.30 equivalent of an isocyanurate ring-containing polyisocyanate, and the sum of the equivalents of an aromatic diisocyanate and an isocyanurate ring-containing polyisocyanate. 0.80~
A resin composition and an inner layer obtained by adding 0.1 to 15 parts by weight of an amino resin and a phenolic resin to 100 parts by weight of a polyamideimide resin obtained by reacting 1.50 equivalents and 0.3 to 0.9 equivalents of lactam in a cresol solvent, and an inner layer. An insulated wire is characterized in that the outer layer is coated with polyimide resin on the circumference of the conductor and baked, and when the outer layer has a coating thickness of 1, the inner layer has a coating thickness of 0.5 to 20. . That is, the present invention solves the problem of decreased varnish resistance, decreased heat resistance, deterioration of appearance, etc. that occur when polyamide-imide resin is solubilized with cresol, by combining a specific polyamide-imide resin with a secondary additive resin, and by improving the composition of the polyimide layer. The overcoat significantly improves these drawbacks. The isocyanurate ring-containing polyisocyanate, which is the raw material for the polyamide-imide resin used in the present invention, is obtained by trimerizing polyisocyanate compounds, and this reaction is carried out in the presence of a solvent that does not react with isocyanate groups. It is desirable to use a trimerization catalyst of a polyisocyanate compound in order to carry out the reaction without adding a component that reacts with isocyanate groups such as, and to proceed efficiently with the reaction. Examples of solvents include aliphatic and aromatic hydrocarbons, halogenated aromatic hydrocarbons, ester-based, ketone-based, ether-based, and ethylene glycol monoalkyl monoacetate-based solvents as long as they dissolve the polyisocyanate compound as a raw material. , dimethyl sulfoxide, etc. Trimerization catalysts for polyisocyanate compounds include alkali metal acetates, metal salts and organometallic compounds such as iron, magnesium, nickel, zinc, tin, lead, vanadium, and titanium, N-methylmorpholine, 1,8-diazabicyclo(5, 4,
0) Mannitz bases of phenols such as undecane-7,2-(dimethylaminomethyl)-4,6-dimethylphenol, tertiary amines such as 2-dimethylaminoethanol, etc. can be used, and there are no particular limitations. The reaction temperature for trimerizing the polyisocyanate compound is, for example, in the range of 50 to 160°C. The raw material for the isocyanurate ring-containing polyisocyanate may be any aliphatic, alicyclic, or aromatic diisocyanate compound, but aromatic diisocyanates, especially 4,4'-diphenylmethane diisocyanate, tolylene diisocyanate, and xylylene diisocyanate , 4,4'-diphenyl ether diisocyanate and the like are preferred. In terms of heat resistance and flexibility, the isocyanurate ring-containing polyisocyanate preferably has a residual isocyanate group content in the range of 10 to 70% (the isocyanate group content in the raw material isocyanate is 100% to 70%).
). It is preferable to use the isocyanurate ring-containing polyisocyanate in an amount of 0.01 to 0.30 equivalents based on the total isocyanate components in terms of heat resistance and flexibility.
Lactam, which is an important raw material for cresol solvent solubilization, can generally be anything that reacts with isocyanate groups or acid anhydride groups in cresol solvents and is soluble in cresol solvents. , considering solubility, reactivity and price, ε
-Caprolactam is preferred. The amount of lactam to be used is preferably 0.30 to 0.90 equivalents of the total isocyanate equivalents (considering ε-caprolactam to be difunctional) in terms of heat resistance, flexibility and solubility. Preferred aromatic diisocyanates include 4,4'-diphenylmethane diisocyanate, 4,4'-diphenyl ether diisocyanate, tolylene diisocyanate, and xylylene diisocyanate. As a polycarboxylic acid having an acid anhydride group,
Trimellitic anhydride is preferred in terms of heat resistance and cost. From the viewpoint of heat resistance, it is preferable to select the amounts of the isocyanate component and acid component so that the ratio of isocyanate groups to carboxyl groups and acid anhydride groups is 1.5 to 0.8. In order to obtain a resin with a high molecular weight that is preferable in view of the characteristics of an insulated wire, it is particularly preferable that the ratio of isocyanate groups to carboxyl groups and acid anhydride groups is around 1.0. As the cresol solvent, in addition to cresol, phenol, xynol, etc. can be used, and a mixed solvent may also be used. Synthesis is carried out by charging all isocyanate components, lactam and cresol solvent and heating at 160 to 190℃ for 1 to 3 hours.
After reacting for an hour, an acid anhydride group-containing polycarboxylic acid is added, and the reaction is continued at 200 to 220°C for 10 to 20 hours. The thus obtained polyamide-imide resin has particularly good properties as an insulated wire if it has a reduced specific viscosity of 0.15 or more when measured in dimethylformamide. This polyamide-imide resin is then diluted with a cresol solvent to a resin content of 20 to 40% by weight and used as a varnish for insulated wires. The polyamide-imide resin in the present invention forms an enamel film with excellent heat resistance, mechanical properties, and fluorocarbon resistance even when used alone, but the phenol formaldehyde resin has poor hardenability and workability during high-speed baking.
Significant improvement can be achieved by adding one or more secondary resins such as alkoxy-modified amino resins, epoxy resins, polyisocyanate resins, and phenoxy resins. The amount of the secondary resin added is 0.1 to 30 parts by weight per 100 parts by weight of the polyamide-imide resin, and if this range is exceeded, the flexibility of the enameled wire will decrease. In particular, amino resin and phenol resin are added to 100 parts by weight of polyamide-imide resin, respectively.
When a resin composition containing 0.1 to 15 parts by weight is used, an insulating film with excellent appearance and flexibility can be obtained. Polyimide resins used in the present invention include, but are not limited to, Pyre-ML varnish (manufactured by Du Pont, USA), Trenice #2000, #3000 (manufactured by Toray Industries, Inc.), and the like. In addition, in the present invention, when the outer layer film thickness is 1, when the inner layer film thickness is 0.5 or less, varnish resistance improves but the price increases, and when the inner layer film thickness is 20 or more, sufficient varnish resistance is obtained. is not obtained. In order to strike a balance between varnish resistance and price, it is preferable that when the outer layer has a thickness of 1, the inner layer has a thickness of 2 to 8. Hereinafter, specific examples of the present invention will be described while comparing them with comparative examples. For evaluation of varnish resistance, the insulated wires obtained in Comparative Examples 1 to 4 and Examples 1 to 4 were twisted in accordance with JIS.C3003 and treated with epoxy varnish.
The lifespan was evaluated by measuring the breakdown voltage at room temperature after thermal deterioration at high temperatures. Comparative example 1 Trenice #2000 (manufactured by Toray Industries, Inc.) varnish
An enamelled wire was obtained by coating and baking on a 1.0 mmφ conductor. Comparative Example 2 (1) Synthesis component equivalent of aromatic diisocyanate trimer Tolylene diisocyanate 600 Xylene 600 2-dimethylaminoethanol (catalyst) 1.8 Place the above ingredients in a four-necked flask equipped with a thermometer and a stirrer. , heated to 140℃ in a nitrogen stream,
At the same temperature, the content of isocyanate groups (initial concentration
48% by weight) was reduced to 25% by weight. (2) Synthesis of polyamideimide resin

【表】 トリメリツト酸無水物を除く上記成分を温度
計、撹拌機、分留管を備えた4つ口フラスコに
入れ、窒素気流中で温度を180℃に上昇し、90
分間反応を行う。次いでトリメリツト酸無水物
を添加して210℃に昇温し、このままの温度で
15時間反応を進めた。 次いでクレゾールで樹脂分濃度30重量%に調
整してワニスを得た。このワニスの粘度は250
ポアズあり、また樹脂のジメチルホルムアミド
中で測定した還元粘度は0.23であつた。 上記の如くして得られたポリアミドイミド樹脂
ワニスを1.0mmφの導体上に塗布焼付してエナメ
ル線を得た。 比較例 3 比較例2におけるポリアミドイミド樹脂100重
量部に対してPR−1501(日立化成(株)製フエノー
ルホルムアルデヒド樹脂)およびメラン−20(日
立化成(株)製アルコキシ変性アミノ樹脂)をそれぞ
れ5重量部ずつ添加し、クレゾールで樹脂分濃度
30%に調整してポリアミドイミド樹脂組成物と
し、これを1.0mmφの導体上に塗布焼付してエナ
メル線を得た。 比較例4ならびに実施例1〜4 比較例3におけるポリアミドイミド樹脂組成物
を内層、比較例1におけるポリイミド樹脂を外層
とし、内層と外層の皮膜厚が下表の通りになるよ
うに1.0mmφの導体上に塗布焼付してダブルコー
トエナメル線を得た。 上記比較例および実施例における各種エナメル
線の特性は下表の通りである。
[Table] The above ingredients except trimellitic anhydride were placed in a four-necked flask equipped with a thermometer, stirrer, and fractionating tube, and the temperature was raised to 180°C in a nitrogen stream.
Perform the reaction for minutes. Next, trimellitic anhydride was added, the temperature was raised to 210℃, and the temperature was maintained at this temperature.
The reaction proceeded for 15 hours. Next, the resin concentration was adjusted to 30% by weight with cresol to obtain a varnish. The viscosity of this varnish is 250
There were poises, and the reduced viscosity of the resin measured in dimethylformamide was 0.23. The polyamide-imide resin varnish obtained as described above was applied and baked on a 1.0 mm diameter conductor to obtain an enameled wire. Comparative Example 3 5 weight parts each of PR-1501 (phenol formaldehyde resin manufactured by Hitachi Chemical Co., Ltd.) and Melan-20 (alkoxy-modified amino resin manufactured by Hitachi Chemical Co., Ltd.) were added to 100 parts by weight of the polyamide-imide resin in Comparative Example 2. Add parts at a time and adjust the resin concentration with cresol.
The polyamide-imide resin composition was adjusted to 30%, and this was coated and baked on a 1.0 mmφ conductor to obtain an enameled wire. Comparative Example 4 and Examples 1 to 4 The polyamide-imide resin composition in Comparative Example 3 was used as an inner layer, the polyimide resin in Comparative Example 1 was used as an outer layer, and a conductor of 1.0 mmφ was made so that the film thickness of the inner layer and the outer layer were as shown in the table below. A double-coated enameled wire was obtained by coating and baking on top. The characteristics of the various enamelled wires in the above comparative examples and examples are shown in the table below.

【表】 以上説明してきた通り、本発明はクレゾール系
溶媒可溶ポリアミドイミド樹脂を内層、ポリイミ
ド樹脂を外層としたダブルコート絶縁電線を得る
ものであり、エポキシ系処理ワニスとの相性に優
れ、かつ安価な絶縁電線が得られるようになる。
[Table] As explained above, the present invention provides a double-coated insulated wire with an inner layer made of cresol-based solvent-soluble polyamide-imide resin and an outer layer made of polyimide resin, which has excellent compatibility with epoxy-based treated varnish, and It becomes possible to obtain inexpensive insulated wires.

Claims (1)

【特許請求の範囲】[Claims] 1 酸無水物基を含有するポリカルボン酸を1.00
当量、イソシアヌレート環含有ポリイソシアネー
トを0.01〜0.30当量、芳香族ジイソシアネートと
イソシアヌレート環含有ポリイソシアネートの当
量の和を0.80〜1.50当量、ラクタムを0.3〜0.9当
量としてクレゾール系溶媒中で反応させて得られ
るポリアミドイミド樹脂100重量部に対してアミ
ノ樹脂及びフエノール樹脂をそれぞれ0.1〜15重
量部添加してなる樹脂組成物と内層とし、ポリイ
ミド樹脂を外層として導体周上に塗布、焼付けし
てなり、外層の皮膜厚を1としたとき内層の皮膜
厚を0.5〜20となるように構成したことを特徴と
する絶縁電線。
1 Polycarboxylic acid containing an acid anhydride group at 1.00
equivalent, the isocyanurate ring-containing polyisocyanate is 0.01 to 0.30 equivalent, the sum of the equivalents of the aromatic diisocyanate and the isocyanurate ring-containing polyisocyanate is 0.80 to 1.50 equivalent, and the lactam is 0.3 to 0.9 equivalent, and is obtained by reacting in a cresol solvent. The inner layer is a resin composition made by adding 0.1 to 15 parts by weight of an amino resin and a phenol resin to 100 parts by weight of a polyamide-imide resin, and the outer layer is made of a polyimide resin, which is coated on the circumference of the conductor and baked. An insulated wire characterized in that the inner layer has a coating thickness of 0.5 to 20 when the coating thickness of the inner layer is 1.
JP57020954A 1982-02-12 1982-02-12 Insulated wire Granted JPS58140909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57020954A JPS58140909A (en) 1982-02-12 1982-02-12 Insulated wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57020954A JPS58140909A (en) 1982-02-12 1982-02-12 Insulated wire

Publications (2)

Publication Number Publication Date
JPS58140909A JPS58140909A (en) 1983-08-20
JPS6213767B2 true JPS6213767B2 (en) 1987-03-28

Family

ID=12041574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57020954A Granted JPS58140909A (en) 1982-02-12 1982-02-12 Insulated wire

Country Status (1)

Country Link
JP (1) JPS58140909A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02216367A (en) * 1989-02-17 1990-08-29 Mitsubishi Motors Corp Small angle steering device
JPH02216365A (en) * 1989-02-17 1990-08-29 Mitsubishi Motors Corp Small angle steering device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2032075C3 (en) * 1970-06-29 1980-06-26 Bayer Ag, 5090 Leverkusen Multilayer insulation materials
JPS5163984U (en) * 1975-02-12 1976-05-20

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02216367A (en) * 1989-02-17 1990-08-29 Mitsubishi Motors Corp Small angle steering device
JPH02216365A (en) * 1989-02-17 1990-08-29 Mitsubishi Motors Corp Small angle steering device

Also Published As

Publication number Publication date
JPS58140909A (en) 1983-08-20

Similar Documents

Publication Publication Date Title
US4448844A (en) Heat resistant resin and process for producing the same
US7122244B2 (en) Polyamide-imide resin solution and the use thereof for producing wire enamels
US4294952A (en) Polyamide-imide resin and its production
US3493540A (en) Polyimides which are soluble in organic solvents
US4740576A (en) Preparation of polyamidoimide coatings having a long shelf life
US4614782A (en) Heat resistant resin composition
JPS6213767B2 (en)
JPS6213768B2 (en)
US20060122353A1 (en) Method of producing a modified diisocyanate,method of producing a self-lubricating enamelling varnish and method of producing an enameled electrical conductor
JPH09302226A (en) Polyamide-imide resin composition and cold-setting heat-resistant coating with high adhesiveness
US4429072A (en) Preparation of aqueous thermosetting electrical insulating varnishes, and use of the varnishes
JPS6139689B2 (en)
JPS6351196B2 (en)
JP3336220B2 (en) Insulated wire
JPS6411656B2 (en)
JPS6141086B2 (en)
JPS585207B2 (en) Polyamideimide resin composition
JPH08143663A (en) Heat-resistant resin composition
JPS60118740A (en) Heat-resistant resin composition
KR920001726B1 (en) Cable
JPH10265717A (en) Coating material for insulation
JPH05331367A (en) Resin composition and insulated wire produced using the same
JPS62156122A (en) Heat-resistant resin composition
JP4399912B2 (en) Resin composition for electrical insulation and insulated wire using the same
JPH0445179A (en) Insulating coating compound